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PREFACE

The Fifth International Conference on Numerical Ship Hydrodynamics (INC5) was held

in Japan on 24-28 September 1989 at Hiroshima International Conference Center.
The Conference was sponsored jointly by the Shipbuilding Research Association of

Japan, and the following agencies in the Washington D.C. area: David Taylor
Research Center, Office of Naval Research and Naval Studies Board of the National

Research Council.

Over one hundred and ninety distinguished researchers from eighteen countries
gathered for this conference and forty-six well-qualified papers were presented.

Four keynote speakers were invited from outside the ship hydrodynamics community.
Their presentations provided a good balance between the computational fluid

dynamics and the experimental aspects of ship hydrodynamics. Because of the rapid

progress in the computational fluid dynamics and the rather long time span of four

years since the previous meeting, a large number of papers was submitted. For the
first time in these conferences, several parallel sessions were held. Even so,

many good papers had to be rejected. A special session for group discussions was

arranged to allow extended interchange of ideas among the specialists and to

deepen knowledge of ongoing research.

It was the paper committee's position that the validation of the computational
fluid dynamics was of primary importance. Thus, the committee asked all the

authors as a matter of policy to carry out an accuracy analysis with respect to
grid sizes and/or time steps, convergence check or test computations for less

complicated cases. This request influenced the content of the papers and resulted
in more careful numerical analysis, including comparisons with other results. It
was realized that this would entail additional expense and extra work for the

authors, but the committee believed that the resulting papers would reflect a

higher academic standard.

The committee enthusiastically supported the Workshop on Computational Fluid

Dynamics Validation organized by the International Towing Tank Committee (ITTC)
Validation Panel and Hiroshima University. This was a very well attenided and
highly productive workshop. The results should have an impact on the three

components of CFD: analysis, computation, and experiment - the ACE of numerical

ship hydrodynamics.

The success of the Conference was due to the collective efforts of a large number

of individuals. The members of the Numerical Towing Tank Research Group in Japan
(NTG) helped greatly in hosting the conference in Hirosihima. Grateful

acknowledgements are also extended to the staff of Hiroshima University for their
devoted assistance. Special thanks go to Ms. Chizuko Kodeca for her invaluable
organizing efforts. Without her skills the conference could not have been such a
technical success and a very pleasant experience.

anna1 Wood: Schot

Co-Chair
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WELCOMING ADDRESS

Katsuro Horinokita,
Chief Executive, Shipbuilding Research Association of Japan

Ladies and gentlemen, on behalf of the Japanese sponsoring organization, it is of
my great pleasure to welcome all of you to Japan and tothe Fifth International
Conference on Numerical Ship Hydrodynamics.

Four keynote lectures and forty six papers will be presented by international
authorities during the four-day conference. More than 190 participants attend the
conference from sixteen countries. This is actually an international conference. We
are much delighted with such a positive reaction.

Behind such a positive reaction, I guess, there is a potential expectation for the
computational fluid dynamics, CFD. As you may know, when we started to work out to
host the conference in Japan, four years ago, the shipbuilding industries in Japan
were suffering from a serious setback. Now they are expanding their activities into
various fields and cultivating new frontier problems such as ocean engineering,
environmental sciences, high speed marine vehicles with new concepts and so on. This
may be the case internationally.

The computational dynamics or simulation is a promising tool for such unkown
problems in new fields. CFD in marine hydrodynamics is expected not only to predict
the flows around the marine vehicles or ocean structures but for more global aspects
such as energy or environmental problems.

On the other hand the high speed computers are becoming much popular and easy to
access. Their capability seems unbounded. CFD, with complementary use of the
conventional tanks, will make us possible to make further steps into new frontier
fields.

Thus much is expected for this conference. I believe the conference will be
successful and fruitful. And I hope also that the conference may be a good occasion
for international human channel.

Finally I would like to express our cordial gratitude to our co-sponsors. As you
know, this conference ha; initiated and has been supported by David Taylor Research
Center. Without their foresight and continuous efforts the conference has not existed.
My gratitude should be extended to Office of Naval Research and Naval Studies Board
National Research Council for their consistent supports.

Again I would like to say welcome to the Fifth International Conference on
Numerical Ship Hydrodynamics. Thank you.



OPENING ADDRESS

Hisashi Kajitani
Professor, The University of Tokyo

The Fifth International Conference on Numerical Ship Hydrodynamics is now open at
the newly built Hiroshima International Conference Center, gathering over one hundred
and ninety distinguished researchers from eighteen countries. The Conference is
sponsored by David Taylor Research Center, Office of Naval Research, Naval Studies
Board of the National Research Council and the Shipbuilding Research Association of
Japan. We appreciate heartily their continuous encouragement and financial support.

This is the fifth Conference. The first two were held in the United States in
1975 and 1977, the third in France in 1981 and the fourth again in the United States,
Washington DC in 1985. With increasing the time, the remarkable progress was made in
exchanging knowledge and new arts in the field of ship hydrodynamics and ocean
engineering. It was about four years ago that a group of Japanese colleagues
proposed first to invite this conference to Japan. Since then, Ms. Joanna Schot has
endeavored on the US side greatly as a co-chairperson, and Prof. Kazu-hiro Mori of
Hiroshima University worked hard as the main coordinator for the management of the
Conference. It is hard to express our full acknowledgement for their contributions.

As you know through the program, four keynote lectures and high quality forty-six

papers are presented. They deal with mainly 1) the flow simulation by Navier-Stokes
solver, 2) simulation of free surface flow and forces by boundary element or boundary
integral method including Rankine source method, 3) motion of ships or bodies among
waves including waves of radiation and diffraction, and 4) several important topics
about turbulent flow, ray theory, treatment of Green function for free surface flow,
soliton, squat, free surface boundary layer with surface tension, image processing,
cavitation, hull-appendage juncture flow and so on. Many papers were received for the
proposed topics of the program. We endeavored to accept as many as possible by
compressing the presentation time and setting up some parallel sessions. Even so,
still some good papers could not be accepted. However, we earnestly expect hot and
ample discussions by all the participants. For this purpose and to deepen our
understanding, we decided to devote the final session, though optional, for group
discussions. Participants may choose either of the three topics, i.e. Rankine source
method, N-S solver and BIM for radiation and diffraction problems. I am expecting
that a lot of free and dreamful discussions will be take place there.

Our interest to know the fluid dynamics phenomena is expanding widely and
profoundly. We know that many new problems to be studied are arising and range from
micro scale fluid flow for the resistance reduction to global scale flow as one of the
importance in environmental science and technology.

Hiroshima, a cultural center of mid-west of Japan, is a reborn but historical

city. A history around Hiroshima conveys a famous story of "three arrows" that has
been transferred from a Samurai general N. Mohri of this district to his three sons
of battle age about 450 years ago. The very old general Mohri said to
his three sons; one arrow is easy to be broken down but three arrows are not if they
are bounded together tightly. Thereby he asked his sons to cooperate each other for
the best results. We admit that the development is great in numerical ship
hydrodynamics. However, we recognize at the same time that the final target is to
grasp the fundamental and fine knowledge about the fluid flow physics. For this end

the cooperation and binding together of three arrows -- analysis, computation and
experiment -- is essential.

I hope you'll enjoy the Conference as well as the scenery and the history of
Hiroshima.
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Developing an Accurate and Efficient Method
for Compressible Flow Simulations

- An Example of CFD in Aeronautics -

K. Fujii
The Institute of Space and Astronautical Science

Sagamihara, Japan

Abstract At the same time, adding-high-order artificial dissipa-
tion is required to keep the computation stable espe-

Capability of the current CFD technology in the cia!ly when the central difference is used for convective
aeronautical society is discussed with one of the rep- tec'ms.
resentative Navier-Stokes codes in Japan, as an exam- Second, accurate prediction of aerodynamic co-
pie. The code is named LANS3D and was developed eflicients is required. A few percent of the drag re-
for the numerical simulation of high-Reynolds number duction is important for aircraft design, and the ef-
compressible flows. The algorithm used in this code fect of Reynolds number and other parameters should
is briefly described first and then the applications for be accurately evaluated. Transition and turbulence
aircraft simulation, vortical flow simulation and space- modeling are also important. Simulation results for
plane simulation are presented. These example show lower Reynolds-number flows can not be extrapolated
how the code has been improved to satisfy two impor- to high Reynolds numbers. In some applications such
tant requirements of the computational fluid dynamics as leading-edge separation flow field over a delta wing
(CFD) codes; efficiency and accuracy. Importance of as shown later, strong separation vortices become key
developing a supporting system on graphic worksta- factor for the aerodynamic coefficients. Since the
tions is finally discussed. Reynolds number is high, flow field away from the

body surface is considered to be rotational inviscid
1. Introduction in such applications. However, as is the case of an-

Computational Fluid Dynamics (CFD) is begin- other applications, viscous effect near the body surface

ning to play an important role in the aeronautical should be properly evaluated because that is the key

industry all over the world. People now realize that factor to determine the location and the strength of

CFD can be a new and effective design tool with the the separation vortices.

aid of supercomputer. At the same time, CFD is be- The present author has been engaged in devel-
coming an important scientific tool for the fluid dy- oping an efficient and accurate method for the simu-
namics research. As high-speed supercomputers with lation of complicated flows by solving the compress-
large memory become popular, the research now is ible Navier-Stokes equations. In the initial stage of
focused on the Navier-Stokes simulations for under- the development, main effort was laid on improving
standing fluid physics as well as for the future use as the efficiency. With the progress of supercomputer
a design tool in engineering, capability, recent effort tends to be focused on the

In the application of the CFD to the aeronautical improvement of the accuracy. In the present paper,
problems, there are two important remarks to note. the method and the developed Navier-Stokes computer
First, representative Reynolds number is large com- code named LANS3D ('LANS' stands for the LU-ADI
pared to many of the other CFD applications. Even Navier-Stokes code) is briefly described first. Some of
though viscous equations are solved, contribution of the application examples are then presented. First ex-
viscous terms is small in most of the flow field. Thus, ample is the transonic flow over transport aircraft con-
computational algorithms that have been dev loped figuration. Second example is the simulation of vortex
for the Euler equations are mainly used. Physically, breakdown over a strake-delta wing conducted when
viscous effect is confined to the thin layers near the the author was a research associate at NASA Ames
body surface and to evaluate viscous effect properly Research Center. In this simulation, the importance
with the Navier-Stokes simulations, grid spacing near of the grid resolution and the accuracy of the numeri-
the body surface should be very small. For instance, cal algorithm was realized and the computer code was
typical Ay for the transonic flow simulation is o(10 - 5- modified. Finally, recent application to the spaceplane
106). Thus, explicit time integration is not appropri- configuration is presented. The spacecraft design is so
ate and implicit time integration is indispensable, critical that the simulation should be accurate for the

5



complicated flow field. These examples will show how to decrease the arithmetic operations and can be con-
the accuracy and efficiency of the code have been im- sidered as the compromise of the ADI and,-LU factor-
proved and what problems are left to Le improved. ization algorithms as pointed out by Janmeson[5]. In

this algorithm, LU factorization -is introduced 'in ad-
2. Governing Equations and Numerical Algo- dition to the ADI factorization,. Each ADI opera.it
rithm which is obtained by the so called Beam-Warming &b -

Compressible Navier-Stokes Equations gorithm[6] is first diagonalized and then decomposed.
into two parts using the- flux vector splitting idea 7].

The basic equations under consideration are the To keep the diagonally dominance, approximate LDU
unsteady Navier-Stokes equations written for a body- decomposition is used-;nstead.of simple LU decompo-
fitted coordinate system ( , 77,). sition.

The Beam-Warming factorization applied to Eq.
+ 8 + 8J + ,+( = Re-'OS (1) (1) is written as

In Eq.(1), the thin-layer approximation has been
introduced. The use of thin-layer Navier-Stokes equa- I + h6-+' - Dil) I+ h6j 'n - D,[,, x
tions is justified because the viscous effects are con-
fined to a thin layer near the wall and are dominated (I+ h6C - hRe- 16J-X1MJ - D,I) AQn (3)
by the viscous terms associated with the strain rates
normal to the wall, and because the flow away from the = -h (6,En + 6,1F

n + 6,Gn - Re-1 3")

body is essentially inviscid. It should be noted that all -(Il + DCI, + DeI)Qn
the viscous terms are not properly evaluated in the
viscous layers even by the full Navier-Stokes equations where h is the time-step, and 6 is a central finite-
because of the grid deficiency. difference operator. The Di and D, terms are implicit

and explicit artificial dissipation terms which should
The pressure, density, and velocity components be added to the left-hand side and the right-hand side,

are related to the energy for an ideal gas by respectively, to maintain stability. The basic algorithm

S[ +is first-order accurate-in time and second-order accu-
p = (7- 2)[e - -p(u + v2 + w2)] (2) rate in space.2

As will be mentioned later, thin-layer approximation In the LU-AD! algorithm, each AD! operator is
is sometimes extended in two directions. In that case, in the ad th moed i oprts usadditional terms appear in Eq.(1) although there is no diagonalized and then decomposed into two parts us-
essetioal c es inear sin pralho gh thering the technique of flux vector splitting. For example,
essential change in the solution process. in the c-direction,
Numerical Alvoritlim I + h6A

The algorithm is called LU-ADI (or ADI-LU) Tt(I + h6Dj+ + ha b-)T "1

factorization method proposed by Obayashi et al.[1] T((I- ahib-, + h6'D+)(I+ahIDAj) -  (4)
and the 3-D Navier-Stokes code based on this algo- Ai f A

rithm was developed by Fujii and Obayashi[2]. Note AI + A

that this LU-ADI algorithm is different from the orig- where a is a :oefficient appearing on the j-index for
inal algorithm presented in Refs. 3 and 4. Since the tle upwind differencing. In other words, a = 1.0 when
applications are focused on the Navier-Stokes simula- fiist-order differencing is used for the C-derivative, and
tions, LU-ADI algorithm uses the Euler implicit inte- 1.5. when second-order differencing is used. Currently,
gration in time. With the aid of factorization, most a is set to be 1.0 to eliminate additional arithmetic op-
of the implicit schemes avoid the memory problem of erations. The decomposition in Eq. (4) can be called
inverting huge matrices. They are usually classified approximate LDU factorization, or diagonally domi-
into two categories based on how to factorize the im- nant factorization. This decomposition is more stable
plicit operator. One is the ADI factorization and the than simple LU factorization because the diagonal el-
other is the LU factorization. In the ADI factoriza- ement always has IDAl.
tion method, the left-hand-side implicit operator is
split into three components for each direction using In the solution process, an inversion in one di-
appro :.matc factor.zation. In the LU factorization, rection consists of one scalar forward sweep, and one
the operator is split into two components based on scalar backward sweep. Thus, LU-ADI algorithm re-
the positive and negative flux Jacobian matrices. The quires little additional memory and is easily vector-
ADI factorization is efficient but has large factoriza- ized. Note that an operator in each direction can
tion error and stability problem, and the LU factor- be considered to be a single iteration of a symmet-
ization has more arithmetic ol.. zations and difficulty ric Gauss Seidel relaxation in one dimension. The bA
for the efficient-vectorization. LU-ADI algorithm tries terms are modified to include an~implicit artificial dis-
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sipation term. Another modification is necessary in
the (-direction to evaluate implicit viscous terms. Ad- (qL)j+112 = qj + 4[(1 - KS)A_ + (1 + IcS)A+lj
ditional details of the derivation of the LU-ADI algo- 4
rithm are given in Ref. 1. In the right-hand side, ex- (qR),+112 = q.+l - stI - Ics)A+ + (1 + 1cs)A_]j+i,

phcit artificial dissipation is necessary. the dissipation (7)
model was changed time to time, but currently, non- where
linear second-order and fourth-order mixed dissipation
model is implemented. The idea comes from the TVD
scheme and the model is called simplified TVD-type (A+)i = qi+l - qj, (A) =qj - qj-l
dissipation. Again, the details are found in Ref. 1. and

High-order upwind differencing has become pop- - 2A+,_ + c
ular in recently-developed Euler methods for com- (A) + 

pressible inviscid flow simulations. This feature has
been extended in the straightforward manner for the s is the Van Albada's limiter and e is a small constant
evaluation of convective terms of Navier-Stokes comn- to prevent zero division. For all the results here, third-
putations. Lately, the matrix form of the dissipation order accuracy corresponding to ic = 1/3 is used. Near
terms implicitly introduced by upwind methods was the boundary, the MUSCL interpolation goes back to
studied[8,9] and, it was shown that such terms in the the first-order.
upwind schemes such as Roe's flux difference splitting
became small in the viscous layers. Thus the use of The flux evaluation for the central difference
the proper upwind could improve the accuracy in the method is written in the same form as Eq.(6) con-
viscous layer as well as make the discontinuities sharp. sidering the artificial dissipation into account.

Convective terms in the right-hand side of the gi+iI2 = 1
code was recently modified and the code inchldes the + Ej+i (8)
option to choos either original central differencing - ((1 - P)e2 - VC4VfAC)j+ij 2(Qj+i - Qj)]
with artificial dissipation or flux difference splitting where V is a kind of limiter function.
with. Roe's average[10]. Iligher-order extension of
flux difference splitting using the MUSOL approach The first two terms Ej and Ei+i correspond to

is found in Ref. 3, but is briefly described again, the second-order central difference and the last term

When the convective terms inre differenced with the corresponds to the dissipation model. The same is true

flux-difference splitting of Roe, the spatial derivatives for Eq.(6). The first two terms construct central dif-

are written in the conservative form as a flux balance. ference and the last term is dissipative term implicitly

For instance in the g-drection, added by upwinding. Without limiter functions, first
two-terms become setond-order central difference for

-first-order upwind method, and become fourth-order
=)r (B3+1i -E.-i 2) (5) central difference for third-order upwind method. The

point here is the fornof the dissipation terms. In the
artificial dissipation'model used with the central differ-
ence, magnitude of the coefficient is the same for all the

The numferical flux tk&i/2 can-be writtet as the equations. Suppose we decompose the Euler equations
solution t9 an approximate Riemann problem arid-the into asot of independent equations for the waves with
necessary metric terms are evaluated a, the cell inter- the charadcteristic-peed-u, u+c, u-c, the magnitude of
faces j+1/2. rooffiicatlhould be chosen to be large enough for any

oflthe-wave-i. In the flux evaluation of the Roe's flux
difference splitting, this coefficient is in the form of ma-

S-[t(QL) + (QR) - IO- Q)b4±/2, (6) trix-A. If you rewrite this dissipation term, it is recog-
2 jnized that dissipation depends on the strength of each

wave and the magnitude is automatically determined
where 13 is the fluX, vector and 2 is the corre- for each wave by upwinding. Thus, artificial dissipa-

sponding Jacobian matrix computed using-the Roe's tion included in the high resolution upwind methods
average state -. Qr, and Qn are thu state var- could be smaller than the dissipation used with the
ables to the left and right of the half-cell interface, central difference methods. It should also be noted
These state variabhez are-determined-from the locally that Vatsa et al. demonstrated this di. sipation-terrns
one-dimeasivnal non-oscillatory interpolations called become aitomatically bmall in the %iscous layers near
MUSCL approach. Primitive variables qjp,e°v,w,pVT the body surface[8]. On the other hand, some kind
are u.cd for that purpose, and high-order ac-curate of-scaling to decrease the dissipation is necessary near
monotone differencing is givenzby-a one-parnim er r.. the body surface-for the central difference approach.

7



3. Application Examples wave is always perpendicular to the center symmetry
plane. On the other hand, the shock wave curves for-

3.1 AircrAft Simulation ward at the root section because of the large recircu-

- Toward Efficient Code - lating region induced by the wing-fuselage interaction.
Computed off-body particle path traces are presented
in Fig. 4. The strong spiral is created and moved out-

Following the several trial computations to eval- board behind the shock wave over the wing. Near the
uate the code capability[4], the developed 3-D Navier- wing-fuselage junction, there exists a large recirculat-
Stokes code based on the LU-ADI algorithm was first ing region, where the vortical flow resembles the coiled
used for the simulation of an isolated wing named W- spring bent 900. The vortex axis is perpendicular to
14[2]. This wing geometry was developed as a wing for both the wing and the fuselage surface. The Cp dis-
the transonic transport aircraft by Mitsubishi Heavy tributions over the wing and the fuselage surfaces for
Industries. The purpose of this study was to compare 4.0-deg case are compared with the experiment in Figs.
the computed result with the experiment, and thus, 5a and 5b respectively. The overall agreement is feirly
several computations were carried out for the angles good, not only for the wing but also for the fuselage.
of attack varying from 0* to 7.5*. The Mach number Note that the discrepancy, in the pressure level at the
was fixed to be the design Mach number 0.82. Total tip section can be explained by the elastic deformation
number of the grid points was 200,000. The angles of the test model in the experiment. It is possible that
of attack assigned for the computations were slightly the tip section of the steel model was twisted by aero-
modified from those of the experiment by MIl design- dynamic forces, since the aspect ratio of the wing is
ers, and the computors: Fujii and Obayashi, were not very high. The discrepancy in the inboard region may
informed of the experimental data in advance. The be due to the poor turbulence model. The details of
flow was assumed to be fully turbulent and the so- the computations are found in Ref. 12.
called Baldwin and Lomax turbulence model[ll] was
used. The comparison of the surface Cp distribution In 1988, along with the parametric study for
with the experiment for 2.46- deg. case is shown in several wing-fuselage combinations, the flow simula-
Fig. 1. The computed result shows the same tendency tion over an almost complete aircraft was tried by
as the experiment. The data agreement for both up- Tzkanashi et al[13]. In addition to the wing and fuse-
per and lower surface is good at every station and, in lage, vertical and horizontal tails were added. The
addition the pressure at the trailing edge is well pre- centerline symmetry plane was modified to include
dicted, which is important for the design process of a the viscous effect of the vertical tail. The horizon-
new wing. tal tail wing were sandwiched between two chordwise

grid lines and the effect of viscous layers over the tail
In early 1986, the code was modified for the sim- surface was introduced there. Only the coarse grid

ulation of wing-fuselage combination[12. Again, the simulation using about 600,000 grid points was carried
used geometry named W-18 was designed by the MIII out. The surface grid distribution and the computed
and seven angle of attacks (from 0.00 to 6.00) that were surface pressure contours are plotted in Fig. 6 and 7,
shifted a little from the experiment by the empirical respectively. The Mach number is 0.6, the angle of
way were suggested to the computors who were not attack is 0 deg and the Reynolds number is 3.5x106

informed of the experimental data. Figure 2 shows for this case. Reference 13 shows the details of the
the grid for the upper half volume of the computa- computation.
tional domain. Since not only the viscous layers over
the wing but also the viscous layers over the fuselage All the computations above were carried out
should be considered, the thin-layer approximation is within the specified time frame, as they should be for
now adopted for two directions and thus, the basic the design purpose. The reliable solutions, thus, had
equations (1) are modified. The turbulence model was to be obtained within reasonable computer time and
also modified near the wing-fuselage junction. The the efficiency was the matter of concern. Initially, wing
computational grid was generated by Takanashi us- simulation required roughly two hours on Fujitsu VP
ing his modified conformal mapping technique, and supercomputer, and now requires 20 min. to 40 min.
the number of the grid points was increased to about of computer time. Wing-fuselage simulation could be
800,000. carried out within 2 to 3 hours. However, for the de-

sign purpose, twice as much should be considered for
Figures 3a-3b show the surface pressure contour safety. Checking the effect of parameters such as grid

plots for the 6 0-deg case. There occurs a large shock- spacing or artificial dissipation model is also necessary.
induced separation near the root section, and shock
wave exists even at the fuselage surface. The shock 3.2 Vortex Breakdown Simulation
wave has a strong spanwise curvature as in the case of - Toward Accurate Code -
isolated wing, but remarkable difference exists near the
wing-fuselage junction. For an isolated wing, the shock '[he flow over aircraft and missiles at moderate
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to high angles of attack is characterized by the pres- by the central difference computation. It is clear that
ence of large spiral vortices on the leeward side of the merging of two vortices occurs downstream in the up-
body. These separation vortices induce low pressure wind result, but still upstream than the experiment at
on the body upper surface, and this low pressure is the same Reynolds number.
the predominant factor of the resulting aerodynamic
characteristic of the body. Research on such flow is The same computation was carried out using
of great importance practically as well as physically smaller number of grid points (about 120,000 in to-
because understanding of the separated and vortical tal). Compared to the previous grid, the number of
flow fields may lead to the control of vortex behav- the grid points are decreased in all the directions. Fig-
ior and eventually to the enhancement of flight vehicle ures 10a and 10b represent the total pressure contour
performance. plots obtained by the upwind and central difference

computations, respectively. The contours are again

To understand vortical flow field structure over plotted at 35% to 95 % chordwise stations with 10,%
a strake-delta wing configuration, a series of computa- increase. The upwind result shown in Fig. 10a indi-
tions was conducted when the author was a NRC re- cates the existence of two vortices and their merging
search associate at NASA Ames Research Center[14]. process although the inner vortex is not as distinct as
Two types of vortex breakdown - bubble and spiral the fine grid result. On the other hand, the central
shaped - were successfully simulated and the differ- difference result in Fig. 10b shows only one flattened
ence of the flow structure of each breakdown was char- vortex instead of two vortices.
acterized. However, the result at the same time in- Final example is the result at 30 degrees. The
dicated still better grid resolution and reducing the pi n e she tat vorex breartificial dissipation are critically important for an ac- previous study in Ref. 15 showed that vortex break-
curate simulation of vortical flow field. In all the air- down takes place near the trailing edge both in the ex-
crat simulation son vortaoiel Intall the wa periment and in the computational results on the fine
craft simulations shown above ,central difference was grid. Here medium grid (previously mentioned grid
used for the convective terms. High-resolution upwind of Here medium poid cpevios mentioned out
difference might have less dissipation as noted in the of about 120,000 points) computations are carried out
section 2, and was implemented as an option. Here, both with the central differencing and the upwind dif-
some of the results[15] are presented and compared ferencing. The computed total pressure contour plots
with the result by central difference computation (note are presented in Figs. lla and 11b. An abrupt in-
that central difference always requires some artificial crease of the vortex-core is observed near the trailing
dissipation model with it). The flow field is the sub- edge in the upwind result shown in Fig. la. This in-sonic flow over a strake-delta wing. The freestream dicates that the vortex has undergone breakdown. In
Mach number is 0.3, and the Reynolds number based fact, the plot of the streamwise velocity (although notonMhatchoer is .3x nd the ynoldowng bad shown here) showed that there exists the reverse flowon the root chord is 1.3x106 in the following computa- region near the trailing edge. The central difference

result shown in Fig. 11b, on the other hand, does not
show such a sudden change. Again, the resolution is

In the first example, the total number of grid enhanced by the use of the present upwind scheme at
points is about 850,000; 119 points in the chordwise least on the grid used here (although a slight increase
direction, 101 point circumferentially and 71 points of the number of grid points may introduce breakdown
in the normal direction. Details of the grid genera- phenomenon also in the central difference result).

tion and the grid distribution can be found in Ref.

14. Figure 8 shows the overall view of the spanwise It is recognized from these results that the
total pressure contour plots at several chordwise sta- present upwind scheme has better resolution than the
tions at the angle of attack 12 degrees. The contours conventional central difference scheme on the same
are plotted at 35% to 95 % chordwise stations with 10 grid although grid resolution itself is, of course, an
% increase. At this angle of attack, there exist two important factor for an accurate flow-simulation. Up-
vortices over the upper surface of the wing; one ema- wind scheme is more "vortex-preserving" than central
nating from the strake leading edge and the other from differencing scheme ( with added dissipation ) since it
the main-wing leading edge. These two vortices merge has a lower level of dissipation. In the present upwind
together over the main-wing surface because of the mu- scheme where the dissipation terms are constructed
tual interaction. Both results indicate the existence of ;_ #t . f a c shtwo ortcesove th wig srfae ad teirintrac A. th . . tri fom, achchaacteristic wave has its
two vortices over the wing surface and their interac- own minimum dissipation. On the other hand, cen-
tion. It seems that the merging of the two vortices tral difference scheme where dissipation terms are con-
occurs more downstream in the upwind solution. The structed in the scalar form, requires amount of dissi-
corresponding particle path traces showing the vortex pation which is large enough for all the waves.
trajectories are shown in Fig. 9 for the upwind result.
The computed vortex trajectories are presented in Fig. Of course, solutions of both central and upwind
9. Also presented are the experiment and the result difference schemes should converge to the solution of
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the original partial differential equations as the compu- ers with much large memory and faster speed would

tational grid is refined. The point here is that the accu- be required.
racy estimation based on the idea of the Taylor expan-
sion is important but not good enough for the system Recent effort to solve these problems seems to be

of nonlinear equations. What we need in numerical in two directions. One is the use of unstructured mesh.

schemes is the better representation of the properties Using the unstructured mesh, handling complex geom-

of original partial differential equations and, in that etry is easier and such grid system is combined with

sense, upwind difference scheme shows better result the finite element method or finite volume method for

than that of the central difference scheme for the grid arbitrary cell shapes. So far as -the Euler equations

distributions feasible under the memory restriction of are concerned, such approach may be a good choice

the current supercomputers. since explicit time integration can be used. However,
for viscous flow simulations, implicit time integration

3.3 Spaceplane Simulation may be necessary and the problem how to apply the

- Accuracy and Efficiency Required - implicit time integration and how to adopt turbulence
models should be solved. The other approach is the

Since February 1985, when U.S. President Rea- zonal method. In this method, computational grid is
gan announced the NASP project, there occurred a constructed for each element of the geometry. For in-
strong acceleration on the research of orbiting or hy- stance in aircraft simulation, each of the wing, fuselage
personic flight vehicle. The CFD is one of the im- and engine has its own grid distributions. Although
portant areas.necessary for the development, and the modification of the existing finite difference codes to
computations have been carried out for transonic to the zonal codes is relatively easy, accurate and robust
hypersonic flow regime for the spaceplane configura- interface method to transfer the data for each zonal
tion proposed for the research at the NAL in Japan. region should be developed. In this approach, num-

Following the comparison of the original central ber of the grid points is also easily increased locally.
differencing and the new upwind differencing that is One of the example[17] is shown in Fig. 14. The flow

diferie ande nseiew upwsiulatind s d erec -thts field and the solution algorithm are the same as Fig.
described above[15], a series of simulations were con- lob. Number of the grid points is globally decreased

ducted. One of the result is presented in Fig. 12 1b ubro h rdpit sgoal erae
where the computed surface density contours at the but is locally increase in the vortical flow region, and
Mach n mber 1.5, the Reynolds number 4 x06, and the result seems to be better than Fig. 10b although

Mh anuberfattack 1.5 the peyned numbe 4o an the total number of the grid points is almost the same.

the aingle of attack 15 are plotted. The contours on Currently the effort .o develop the zonal interface algo-
tie wing surface and the fuselage surface indicate the rithm such as Chimera method[18] is underway. With

vortical flow generated above. The surface presure such method, the zonal code can- handle complex body
distributions at one cross section is compared with the
experiment in Fig. 13. The disagreement in the lower configuration, and the applicability of the code to the

surface Op at the final station is due to the model sup- practical problems is to be improved.

port, and otherwise pretty good agreement was ob-
tained with the experiment. The details of the series 4. Supporting System Development

of computations and the effect of each element such as
tail fins will appear in Ref. 16. With the increase of the data obtained by the

.3.4 Strategy for Complex Configurations CFD research, importance of visualization of the com-
4 fputed results began to be recognized. To help people

to understand what happens in the flow field from the
One of the important items to be solved in or- obtained data, we have to visualize the flow and the

der to apply the CFD to practical problems is how use of graphic workstations has an important role for
to handle complex configurations. Although the so- that purpose. Compared to the circumstances sev-
phlisticated grid generation programs have been de- eral years ago, the level of the graphic software is im-
veloped by many researchers, the application of the proved, and visualizing complex flow field in realistic

flow solution codes is still restricted to relatively sim- image now is not a difficult task. However, in most
pie configurations, and a method is needed to make cases, such softwares are used only to create nice and

the code applicable to the flow simulation over truly beautiful pictures. That may be only important to ad-
complex configurations (say, complete aircraft with na- vertise the CFD capability. What is really, important

celles, engines and so on). Another important item is is the development of the software to help understand-
the problem of the grid resolution. As is seen in the ing the result. Such softwares should be interactively
result shown above, even with the high-resolution up- used without requiring researcher's effort and can dis-
wind scheme, total number of grid points necessary play the plots they want quickly. Displaying beautiful,
for accurate flow simulations becomes enormous. As and real-image pictures does not have the first priority.
the number of the grid points becomes large, computer
time also becomes large and, as aresult, supercomput- The computer programs that satisfy some of the
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requirement mentioned above have been developed center of vortex on the two windows as shown in Fig-
at. NASA Ames Research Center. They are called ure 16. Because the right window is perpendicular to
' PLO £3D', 'GAS' and 'RIP' and each of them has the left one, the three-dimensional position is uniquely
its own unique feature[19,20]. For instance in RIP, defined by the two set of the hair cursors.
particle trajectories are computed on the CRAY-2 su-
percomputer and the result is displayed on the IRIS The viewing of any windows can be modied by
workstation. The graphic process is carried out inter- mouse input while the viewing has its own default val-

ues. Users do not need to know the exact definitions
actively on the IRIS display, of viewing but move the mouse till the desired viewing

Graphic workstations are also useful for grid gen- is achieved.
eration. Sometimes, grid generation process requires Summary
more human time than flow computation itself. Inter-
active use of graphic workstation will reduce amount
of effort for the grid generation process. The computer code named LANS3D, one of the

representative Navier-Stokes codes in Japan, is taken
One of the super Graphic Workstation has been as an example and the capability of the current CFD

introduced at our laboratory lately and the preproces- technology was discussed. This code was developed
sor (grid generation) and postprocessor (flow visual- for the numerical simulation of high-Reynolds num-
ization programs) for Navier-Stokes and other solvers ber compressible flows. The algorithm used in this
having the features discussed in this paper are in the code and how it has been improved so far explained
process of being built up on that machine[21]. Here two important aspects of the computational fluid dy-
some of tle display examples for the post processor are namics (CFD) codes: efficiency and accuracy. Some
presented. First, it has various function, not only con- of the application examples showed the capability of
tour plotters but also particle path tracer, shock wave the code for engineering problems. The code and its
detector and so on. Two or more flow functions can be modified versions have been extensively used by many
displayed not only on the same window but also on the researchers. Reference 22 reviews such applications.
two or more windows respectively because displaying There are many problems (such as turbulence model,
two or more functions at the same time would help unsteady effect) to be solved before making the CFD
understanding of the physical phenomenon. One of codes an engineering tool, but imminent problem is
these examples are shown in Figure 15. It shows pres- the treatment of complex configurations. To use the
sure contours of the flow field around a double delta best of the CFD, supporting system is important and
wing (discussed above) on the left window and total the graphic software development for fluid dynamic re-
pressure contours on the right window. The picture search on the workstations should have attention.
are obtained in the following simple manner. Firstly,
the grid and flow data are read in. Then two windows Acknowledgement
are opened. The left window is selected to display
the pressure contours and then the right window is se- The LANS3D code was mainly developed by the
lected to display the total pressure contours. The third first author of this paper and Dr. Shigeru Obayashi
window can be opened and on which another function (currently at NASA Ames Research Center) at the Na-
can be displayed if necessary. Also the transforma- tional Aerospace Laboratory, Japan and many people
tions, which are the translation, the rotation and the have helped improving the code capability and its ap-
scaling, can interactively be done as will be described plications. The authors express their special thanks
later. to Dr. Susumu Takanashi and Mr. Masahiro Yoshida

at the National Aerospace Laboratory and Ms. Kisa
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Fig. 1 Comparison of the computed Op distributions with the experimental data at several
spanwise stations

M,, 0.82, a = 2.460, and Re =2.0 x 106.

Fig. 2 Overall view of the discretized- region of the grids (upper half of the computational
volume).
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a) overall view

b) close-up view

Fig. 3 Computed surface pressure contour plots
:M. 0.82, a = 6.000, and Re - 1.67 x 10.

Fig. 4 Computed off-body particle path trace
M. = 0.82, a = 6.000, and Re = 1.67 x 106.
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Fig. 6 Body geometry and the surface grid for the wing-fuselage-tail combination.

Fig. 7 Computed pressure contour plots for the wing-fuselage-tail combination
M.. = 0.60, a = 0.00, and Re = 3.47 x 106.
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PMAX = 0.9900 PMAX = 0.9900
PMIN = 0.8500 PMIN = 0.8500

= 0.0050 P = 0.0050

upwind difference result central difference result
Fig. 8 Computed total pressure contour plots at several chordwise stations

0.30, a - 12.00, and Re - 1.3 x 106.

A INNER PRIMARY
VORTEX

OUTER PRIMARY

VORTEX

I\

upwind result central difference EXPERIMENT BY

result BRENNENSTUHL & HUMMEL:Re = 1.3 X 106

Fig. 9 Computed vortex position compared with experiment
Mo, = 0.30, a = 12.0 ° , and Re = 1.3 x 10.
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PMAX = 0.9900 PMAX = 0.9900
PMIN = 0.8300 PMIN = 0.8500

AP = 0.0050 AP = 0.0050

0.975 0.950

upwind difference result central difference result

Fig. 10 Computed total pressure contour plots at several chordwise stations -medium grid-
M. = 0.30, a = 12.00, and Re = 1.3 x 106.

PMAX = 0.9900
PMIN = 0.7900

AP = 0.010

PMAX = 0,9900

PMIN = 0.7400

upwind difference result

Fig. 11 Computed total pressure contour plots at several chordwise stations -medium grid-
Moo = 0.30, a = 30.00, and Re = 1.3 x 106.
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AC7

upwind difference result

central difference result

Fig. 12 Overall view of the computed surface density contour plots over a spaceplane
Mo,=1.5, ot=15*, and Re =4.0 x 106.

PMAX = i.550 PMAX = 150
PMItJ = 0.1090 PMIN = 0,.1090

upwind difference result central difference result

Fig. 13 Spanwise surface C!, plots (x/c = 91%)
M,,=1.5, a=150 , and Re = 4.0 x 106.
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Fig. 14 Computed'total pressure contour plots at several chordwise stations -zonal solution-
Mo= 0.30, a = 12.0, and Rd = 1.3 x 106 .

Fig. 15 Pressure and Total pressure contour plots over double delta wing
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Fig. 16 Three dimensional positioning using multi-windows

Fig. 17 Example of man-macline interface
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DISCUSSION of computational grid points is becoming
by F. Stern larger and larger. With such background, I

think it is the time to evaluate all the
Most of the effort to improve the viscous terms to remove ambiguity. Thin-layer

calculation results has been devoted to the approximation is only a practical
discretization procedures (ie, upwind or approximation and should be given up soon with
central differencing) and grid resolution as the increase of the computational grid
opposed to the removal of the thin layer points.

assumption; however, for the complex points
considered in the paper, I do not believe that Please refer (Al] about modification of
the thin layer approximation is appropriate. turbv'lence model at juncture.
Please provide justification and evidence for
its case. Also, what modifications were made (All Hung, C.M. and Buning, P.G., "Simulation
to the Baldwin-Lomax turbulence model in of Blunt-Fin Induced Shock Wave and
junction regions? Turbulent Boundary Layer Interaction", J.

Fluid Mech., Vol.154, pp.16 3 -185, 1985.
Author's Reply

Your question is very important. Please DISCUSSION

read the paragraph after Eq.(l), P.2 in the by Y. Kodama
manuscript. Computational grids usually used
for high Reynolds number flow simulations have You showed comparison of "coarse grid"
very small spacing from the body surface case and "fine grid" case. But in some cases
outward but have relatively large spacing "fine grid" is not fine enough to resolve the
along the body surface. In other words, cell flow field. When you compute a flow, on what
aspect ratio is quite large. With such grid, principle do you determine the number of grid
we would never be able to resolve viscous points?
terms associated with the strain rates along
the body even though we included all the Author's Reply
viscous terms in the program. This was checked
by many research scientists at NASA Ames Re- The best way to determine the number of
search Center several years ago. the grid points is to compute the flow field

until the solution does not change with
The same is true for the region away from further increase of the grid points. However,

the body surface. Since grid spacing is not as in practice, it is impossible to do so
fine as that near the body surface, viscous especially in the case of large scale com-

terms are not properly evaluated even though putation. The fine grid I used in the
the program computes viscous terms there, computation was the maximum number of the
Thus, we can say that we are just simulating grid points that fitted into the main memory
rotational inviscid flow in the region away of the super-computer used for that
from the body surface even when we are solving computation. We considered that the solution
the Navier-Stokes equations. Again, I have resolved at least the global feature of the
checked how large the contribution by the flow by comparing it with the experiment. It
viscous terms is compared to other terms, and is true that the solution I have shown lacks
the result said no contribution. Hoivoler, capturing small scales and thus, did not go
because of the artificial dissipation, the into the quantitative comparison of the detail
solution tends to be dissipative there. For (See AIAA J. Sept., 1989 by Fujii and Schiff).
instance, strength of the vortex tends to Besides, there were many more assumptions such
decay easily even with the Euler computations, as flow symmetry (which never realize when
Thus before trying to evaluate viscous terms breakdown takes place) and no turbulence
properly, we have to minimize the artificial model. We can st-ll say that vortical flow
dissipation effect and this can be realized by requires fine grid resolution from the fact
the use of high-resolution upwind method, that the solution depended on the grid

resolution. Further research in the near
Inclusion of all the viscous terms is not future using more grid points will show how

a difficult task and probably would require reasonable the current solution is.
only 10 to 20% more computational time. Number
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Boundary-Layer Stability and Transition

W. S. Saric
Arizona State University

Tempe, USA

Abstract y normal-to-the-wall coordinate

Within the last five years, increased emphasis on z spanwise coordinate
secondary instability analysis along with the
experimental observations of subharmonic instabilities
have changed the picture of the transition process for 1. Introduction
boundary layers in low-disturbance environments.
Additional efforts with Navier-Stokes computations The problems of understanding the origins of
have formed an impressive triad of tools that are turbulent flow and transition to turbulent flow are the
beginning to unravel the details of the early stages of most important unsolved problems of fluid mechanics
transition. This paper reviews these recent efforts. and aerodynamics. There is no dearth of applications

for information regarding transition location and the
details of the subsequent turbulent flow. A few

Symbols examples can be given here. (1) Nose cone and heat
shield requirements on reentry vehicles and thea chordwise complex wavenumber normalized by "aerospace airplane" are critical functions of transition

L altitude. (2) Vehicle dynamics and "observables" are
modulated by the occurrence of laminar-turbulent

A disturbance amplitude transition. (3) Should transition be delayed with
Laminar Flow Control on the wings of large transportAo amplitude at R=R,,, usually Branch I aircraft, a 25% savings in fuel will result. (4) Lack of a
reliable transition, prediction scheme hampers efforts to

pressure coefficient accurately predict airfoil surface heat transfer and to
cool the blades and vanes in gas turbine engines. (5)

F o/R = 6.28fvJ 0 2: dimensionless frequency The performance and detection of submarines and
torpedoes are significantly influenced by turbulent

f dimensional frequency [hz] boundary-layer flows and efforts directed toward drag
reduction require the details of the turbulent processes.

L 4vx*/Jo: boundary-layer reference length. (6) Separation and stall on low-Reynolds-number
airfoils and turbine blades strongly depend on whether

N ln(A/Ao): amplification factor the boundary layer is laminar, transitional, or turbulent.

R 4R, = U0L/v: boundary-layer Reynolds number The common thread connecting each of these
applications is the fact that they all deal with bounded

R0  initial boundary-layer Reynolds number, usually shear flows (boundary layers) in open systems (with
Branch I different upstream or initial amplitude conditions). It is

well known that the stability, transition, and turbulent
R. Uox*/v: x-Reynolds number or chord Reynolds characteristics of bounded shear layers are

number fundamentally different from those of free shear layers
(Morkovin. 1969; Tani, 1969; Reshotko, 976).

U basic-state chordwise velocity normalized by Uo Likewise, the stability, transition, and turbulent
characteristics of open systems are fundamentally

Uo freestream velocity, [in/s] different from those of closed systems (Tatsumi, 1984).
The distinctions are vital. Because of the influence of

V kinematic viscosity [m2/s] indigenous disturbances, surface geometry and
roughness, sound, heat transfer, and ablation, it is not

.o 27tfL/U0 : dimensionless circular frequency possible to develop general prediction schemes for
transition location and the nature of turbulent structures

x* dimensional chordwise coordinate [m] in boundary-layer flows.

x chordwise coordinate normalized with L
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There have been a number of recent advances in environmental conditions. The impossibility of
the mathematical theory of chaos that have been matching or fully understanding these environmental
applied to closed systems. Sreenivasan and Strykowski conditions has led to the failure of any absolute
(1984), among others, discuss the extension of these transition prediction scheme for even the simple Blasius
ideas to open systems and conclude that the relationship flat-plate boundary layer.
is still uncertain. It appears from a recent workshop The preceding does not always follow the observed
and panel discussion (Liepmann et al. 1986) that the behavior. At times, the initial instability can be so
direct application of chaos theory to open systems isstil soe dstace aay.Howver thepropec of strong that the growth of linear disturbances is -by-
still some distance away. However, the prospect of passed (Morkovin, 1969) in such a way-that turbulentincorporating som e of the m athem atical ideas of chaos s os a p a r s c n ay i saiii s o c r n h
into open system problems and of encouraging the spots appear or secondary instabilities occur and the
transfer of data to the mathematicians is good. Since flow quickly becomes turbult en Ths menoenon isther isstil sme ncetaity i th diectappicaion not well understood but has been documented in cases
there is still some uncertainty in the direct application of roughness and high freestream turbulence (Reshotko,
of chaos theory to transition no further mention of this 1986). In this case, transition prediction schemes basedwill be given here. on linear theory fail completely.

The purpose of this report is to bring into
perspective certain advances to our understanding of 1.2 Review of the Literature
laminar-turbulent transition that have occurred within
the last five years. In particular, these advarces have The literature review follows the outline of the
been made by simultaneous experimental, theoretical, process described above and begins with Reshotko
and computational efforts. (1984a, 1986) on receptivity (i.e. the means by which

freestream disturbances enter the boundary layer). In
1.1 Basic Ideas of Transition these papers, Reshotko summ.irizes the recent work in

this area and points out the difficulties in understanding
With the increased interest in turbulent drag the problem. Indeed, the receptivity question and the

reduction and in large scale structures within the knowledge of the initial conditions are the key issues
turbulent boundary layer, researchers in turbulence regarding a transition prediction scheme. Of particular
have been required to pay attention to the nature of concern to the transition problem are the quantitative
havebenruired transiio proceseno t ihenrae odetails of the roles of freestream sound and turbulence.laminar-turbulent transition processes. It is generally Aside from some general correlations, this is still anaccepted that the tr:ansition from laminar to turbulent
flow occurs because of an incipient instability of the opaque area. However. in section 3.2 below, aflowoccrs ecase o anincpiet intablit ofthe demonstration of the role of initial conditions on the
basic flow field. This instability intimately depends on observed transition phenomenon is discussed.
subtle, and sometimes obscure, details of the flow. The
process of transition for boundary layers in external The details of linear stability theory are given in
flows can be qualitatively described using the following(albeit, oversimplified) scenario. tefloig Mack (1984b). This is i'etually a monograph on

boundary-layer stability theory and should be
Disturbances in the freestream, such as sound or considered required reading for those interested in all

vorticity, enter the boundary layer as steady and/or aspects of the subject. It covers 58 pages of text with
170 references. In particular, his report updates theunsteady fluctuations of the basic state. This part of the three-dimensional (3-D) material in Mack (1969),

process is called receptivity (Morkovin, 1969) and,
although it is still not well understood, it provides the covering in large part Mack's own contributions to the
vital initial conditions of amplitude, frequency, and area.
phase for the breakdown of laminar flow. Initially The foundation paper with regard to nonlinear
these disturbances may be too small to measure and instabilities -is Klebanoff et al. (1962). This seminal
they are observed only after the onset of an instability, work spawned numerous experimental and theoretical
The type of instability that occurs depends on Reynolds works (not all successful) for the period of 20 years
number, wall curvature, sweep, roughness, and initial after its publication. It was not until the experimental
conditions. The initial growth of these disturbances is observations of subharnonic instabilities by Kachanov
described by linger stability theory. This growth is et al. (1977), Kachanov and Levchenko (1984), and
weak, occurs over a viscous length scale, and can be Saril and Thomas (1984), along with the work on
modulated by pressure gradients, mass flow, aianThms(94,logwttewrkntmduated by prsure gradients, etcamae flows, secondary instabilities, that additional progress was
temperature gradients, etc. As the amplitude grows, made in this area. Recent papers of Herbert (1984a,b,c;
three-dimensional and nonlinear interactions occur in 1985; 1986a,b) cover the problems of secondary
the form of secondary instabilities. Disturbance growth instabilities and nonlinearities, i.e. those aspects of the
is very rapid in this cak e (now over a convective length breakdown process that succeed the growth of linear
scale) and breakdowr .o turbulence occurs. disturbances. It should be emphasized that two-

dimensional waves do not completely represent theFor many years, linear stability theory, with the breakdown process since the transition process isOrr-Sommerfeld equation as its keystone, served as the always three-dimensional in bounded. shear, flows.
basic tool for predictors and designers. Since the initial Herbert describes the recent efforts in extending the
growth is linear and its behavior can be easily stability analysis into regions of wave interactions that
calculated, transition prediction schemes are usually produce higher harmonics, three-dimensioriality,
based on linear theory. However, since the initial subharmonics, and large growth rates--all harbingers of
conditions (receptivity) are not generally known, only transition to turbulence. Recent 3-D Navier-Stokes
correlations are possible and, most importantly, these computations by Fasel (1980,1986), Spalart (1984),
correlations must be between two systems with similar

24



Spalart and Yang (1986), Kleiser and Laurien (1985, dimensionless frequency, F, is introduced as F o/R =

1986) Reed and co-workers (Singer et al. 1986, 1987; 2nfv/U,2 where f is the frequency in Hertz.
Yang et al. 1987) have added additional understanding
to the phenomena. More is said about this in section Usually, an experiment designed to observe T-S
3.2, waves and to verify the 2-D theory is conducted in a

low-turbulence wind tunnel (uJ/Uo from 0.02% to
The paper by Aral (1984) is an extensive 0.06%) on a flat plate with zero pressure gradient

description and review of transition prediction and (determined from the shape factor = 2.59 and not from
correlation schemes for two-dimensional flows that pressure measurements!) where the virtual-leading-
covers 34 pages of text and over 100 citations. An edge effect is taken into account by carefully controlled
analysis of the different mechanisms that cause boundary-layer measurements. Disturbances are
transition such as Tollmien-Schlichting (T-S) waves, introduced by means of a 2-D vibrating ribbon using
Gb3rtler vortices, and turbulent spots is given. The single-frequency, multiple-frequency, step-function, or
effects that modulate the transition behavior are random inputs (Pupator and Saric, 1989) taking into
presented. These include the influence of freestream account finite-span effects (Mack, 1984a). Hot wires
turbulence, sound, roughness, pressure gradient, measure the U + u' component of velocity in the
suction, and unsteadiness. A good deal of the d ita boundary layer and d-c coupling separates the mean
comes from the work of the group at ONERA/CERT from the fluctuating part. The frequency, F, for single-
part of which has only been available in report form. frequency waves remains a constant.
The different transition criteria that have been
developed over the years are also described which gives When the measurements of are repeated along a
an overall historical perspective of transition prediction series of chordwise stations, the maximum amplitude of
methods. the waves varies. At constant frequency, the

disturbance amplitude initially decays until the
In a companion paper, Poll (1984b) extends the Reynolds number at which the flow- first becomes

description of transition to 3-D flows. When the basic unstable is reached. This point is called the Branch I
state is three-dimensional, not only are 3-D neutral stability point and is given by RI. The
disturbances important, but completely different types amplitude grows exponentially until the Branch II
of instabilities can occur. Poll concentrates on the neutral stability point is reached which is given by Rn.
problems of leading-edge contamination and crossflow The locus of RI and Ru points as a function of
vortices, both of which are characteristic of swept-wing frequency gives the neutral stability curve. If the
flows. Thle history of these problems as well as the growth rate of the disturbances is defined as a =
recent work on transition prediction and control o(R,F), Fig. 1 is the locus of a(RF) --0. For R > 600
schemes for 3-D flows ar discussed by Reed and Saric the theory and experiment agree very well for Blasius
(1989). flow. For R < 600 the agreement is not as good

because the theory is influenced by nonparallel effects
Reshotko (1984b, 1985, 1986) and Saric (1985b) and the experiment is influenced by low growth rates

review the application of stability and transition and nearness to the disturbance source. Virtually all
information to problems of drag reduction and in problems of practical interest have R > 1000 in which
particular, laminar flow control. They discuss a variety case the parallel theory seems quite adequate (Gaster,
of the laminar flow control and transition control issues 1974; Sarie and Nayfeh, 1977).
which will not be covered here. By assuming that the growth rate, a = o(RF), to

hold locally (within the quasi-parallel flow
2. Review of T-S Waves approximation), the disturbance equations are

integrated along the surface with R = R(x) to give:
The disturbance state is restricted to two

dimensions with a one-dimensional basic state. The 2- A/Ao = exp(N)
D instability to be considered is a viscous instability in
that the boundary-layer velocity profile is stable in the where dN/dR = cr, A and A, are the disturbance
inviscid limit and thus, an increase in viscosity (a amplitudes at R and RI, respectively, and RI is the
decrease in Reynolds number) causes the instability to Reynolds number at which the constant-frequency
occur in the form of 2-D traveling waves called T-S disturbance first becomes unstable (Branch I of the
waves. All of this is contained within the framework of neutral stability curve).
the Orr-Sommerfeld equation, OSE. The historical
development of this work is given in Mack (1984b) and The basic design tool is the correlation of N with
a tutorial is given by Saric (1985a). transition Reynolds number, RT, for a variety of

observations. The correlation will produce a number
The OSE is linear and homogeneous and forms an for N (say 9) which is now used to predict RT for cases

eigenvalue problem which consists of determining the in which experimental data are not available. This is
wavenumber, a, as a function of frequency, o, the celebrated eN method of Smith and von Ingen (e.g.
Reynolds number, R, and the basic state, U(y). The Arnal, 1984; Mack, 1984b). The basic LFC technique
Reynolds number is usually defined as R = iTjy = changes the physical -parameters and keeps N within
JR, and is used to represent jistance along the reasonable limits in order to prevent transition. As long
surface. In general, L = 4vx /U, is the most as laminar flow is maintained and the disturbances
straightforward reference'length to ue because of the remain linear, this method contains all of the necessary
simple form of R and because the Blasius variable is physics to accurately predict disturbance behavior. As
the same as y in the OSE, When comparing the a transition prediction device, the eN method is certainly
solutions of the OSE with experiments, the the most popular technique used today. It works within
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some error limits onl if comparisons are made with do temporal theory. Thus progress has been first made
experiments with identical disturbance environments, with the channel flow problem.
Since no account can be made of the initial disturbance
amplitude this method will always be suspect to large Different types of three-dimensional transition
errors and should be used with extreme care. When phenomena recently observed (e.g. Kachanov et al.
bypasses occur, this method does not work at all. Mack 1977; Kachanov and Levchenko, 1984; Saric and
(1984b) and Arnal (1984) give examples of growth-rate Thomas, 1984; Saric et al. 1984, Kozlov and
and eN calculations showing the effects of pressure Ramanosov, 1984) are characterized by Isgg.rt
gradients, Mach number, wall temperature, and three patterns of peaks and valleys (see Fig. 2) and by their
dimensionality for a wide variety of flows. These occurrence at very low amplitudes of the fundamental
reports contain the most up-to-date stability T-S wave. This pattern also evolves rapidly into
information, transition. These experiments showed that the

subharmonic of the fundamental wave (a necessary
feature of the staggered pattern) was excited in the

3. Secondary Instabilities and Transition boundary layer and produced either the resonant wave
interaction predicted by Craik (1971) (called the C-

There are different possible scenarios for the type) or the secondary instability of Herbert (1983)
transition process, but it is generally accepted that (called the H-type). Spectral bk'oadening to turbulence
transition is the result of the uncontrolled growth of with self-excited subharmonics has been observed in
unstable three-dimensional waves. Secondary acoustics, convection, and free shear layers and was not
instabilities with T-S waves are reviewed in some detail identified in boundary layers until the results of
by Herbert (1984b, 1985, 1986), Saric and Thomas Kachanov et al. (1977). This paper reinitiated the
(1984) and Saric et al.(1984). Therefore, only a brief interest in subharmonics and prompted the
outline is given in section 3.1 in order to give the reader simultaneous verification of C-type resonance (Thomas
some perspective of the different types of breakdown. and Saric, 1981; Kachanov and Levchenko, 1984).
Section 3.2 discusses the very recent results. Subharmonics have also been confirmed for channel

flows (Kozlov and Ramazanov, 1984) and by direct
integration of the Navier-Stokes equations (Spalart,

3.1 Secondary Instabilities 1984). There is visual evidence of subharmonic
breakdown before Kachanov et al. (1977) in the work

The occurrence of three-dimensional phenomena in of Hama (1959) and Knapp and Roache (1968) which
an otherwise two-dimensional flow is a necessary was "not recognized as such at the time of their
prerequisite for transition (Tani, 1981). Such publication. The recent work on subharmonics is found
phenomena were observed in detail by Klebanoff et al. in Herbert (1985, 1986a,b), Saric, Kozlov and
(1962) and were attributed to a spanwise differential Levchenkc (1984), and Thomas (1986).
amplification of T-S waves through corrugations of-the
boundary layer. The process leads rapidly to spanwise The important issues that have come out of the
alternating "peaks" and "valleys", i.e., regions of subharmonic research is that the secondary instability
enhanced and reduced wave amplitude, and an depends not only on disturbance amplitude, but on
associated system of streamwise vortices. The peak- phase and fetch as well. Fetch means here the distance
valley structure evolves at a rate much faster than the over which the T-S wave grows in the presence of the
(viscous) amplification rates of T-S waves. The 3-D background disturbances. If T-S waves are
schematic of a smoke-streakline photograph (Saric et permitted to grow for long distances at low amplitudes,
al. 1981) in Fig. 1 shows the sequence of events after subliarmonic secondary instabilities are initiated at
the onset of "peak-valley splitting". This represents the disturbance amplitudes of less than 0.3%U 0. Whereas,
path to transition under conditions similar to Klebanoff if larger amplitudes are introduced, the breakdown
et al. (1962) and is called a K-type breakdown. The occurs as K-type at amplitudes of 1% U. Thus, there
lambda-shaped (Hama and Nutant, 1963) spanwise no longer exists a "magic" amplitude criterion for
corrugations of streaklines, which correspond to the breakdown.
peak-valley structure of amplitude variation, are a result
of weak 3-D displacements of fluid particles across the A consequence of this requirement of a long
critical layer and precede the appearance of Klebanoff's enough fetch for the subharmonic to be entrained from
"hair-pin" vortices. This has been supported by hot- the background disturbances is that the subharmonic
wire measurements and Lagrangian-type streakline interaction will occur at or to the right of the Branch II
prediction codes (Saric et al.,1981; Herbert and neutral stability point. Since this is in the stable region
Bertolotti, 1985). Note that the lambda vortices are of the fundamental -wave, it was not likely to be
ordered in that peaks follow peaks and valleys follow observed because the experimenters quite naturally
valleys, concentrated their attention of measurements between

Since the pioneering work of Nishioka et al.(1975, Branch land Branch U.

1980), it is accepted that the basic transition
phenomena observed in plane channel flow are the 3.2 Recent Results
same as those observed in boundary layers, Therefore,
little distinction will be given here as to whether work The surprise that results from the analytical model
was done in a-channel or a boundary layer. From the of Herbert (1986a,b) and the Navier-Stokes
theoretical and computational viewpoint, the plane computations of Singer, Reed, and Ferziger (1986), is
channel is particularly convenient since the Reynolds that under conditions of the experimentally observed K-
number is constant, the mean flow is strictly parallel, Type breakdown, the subharmonic H-Type is still the
certain symmetry conditions apply, and one is" able to dominant breakdown mechanism instead of the
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fundamental mode. This is in contrast to Klebanoff's Direct numerical simulations ate playing an
experiment, confirmed by Nishioka et al. (1975, increasingly important role in the investigation of
1980),Kachanov et al. (1977), Saric and Thomas transition; the literature is growing,,especially recently.
(1984), Saric et al. (1984), and Kozlov and Ramazanov This trend is likely'to continue as cofisiderable progress
(1984) where only the breakdown of the fundamental is expected towards the developmenit of new, extremely
into higher harmonics was observed. Only Kozlov and powerful supercomputers. In such simulations, the full
Ramazanov (1984) observed the H-type in their channel Navier-Stokes equations are solved directly by
experiments and only when they artificially introduced employing numerical methods, such as finiie-difference
the subharmonic. or spectral methods. The direct simulation approach is

widely applicable since it avoids many of theThis apparent contradiction was resolved by restrictions that usually have to be imposed in
Singer, Reed, and Ferziger (1987). Here the full three- theoretical models.
dimensional, time-dependent incompressible Navier-
Stokes equations are solved with no-slip and The Navier-Stokes solutions are taken hand-in-
impermeability conditions at the walls. Periodicity was hand with the wind tunnel experiments in a
assumed in both the streamwise and spanwise complementary manner. The example of Singer, Reed,
directions. The implementation of the method and its and Ferziger (1987) illustrates that these two techniques
validation are described by Singer, Reed and Ferziger cannot be separated. The next step in the simulations
(1986). Initial conditions include a two-dimensional T- will be to predict the growing body of detailed data
S wave, random noise, and streamwise vortices. No being developed by Nishioka et al. (1980, 1981, 1984,
shape assumptions are necessary, the spectrum is larger, 1985) on the latter stages of the breakdown process.
and random disturbances whether freestream or already
in the boundary layer can be introduced and monitored
for growth and interactions (Singer, Reed, and Ferziger, 4. Transition Prediction and Control
1986). Other advantages realized by computations are
1) the inclusion of boundary-layer growth, neglected in When the recent work on subharmonics is added to
linear theory but important to the growth of secondary the discussion at the end of section 3 on the limitations
instabilities, 2) the generation of ensemble averages, 3) of the eN method, one indeed has an uncertainty
the visualization of flow phenomena for comparison principle for transition (Morkovin, 1978). Transition
with experiments (advanced graphics capability), and 4) prediction methods will remain conditional until the
the calculation of vorticity and energy spectra, often receptivity problem is adequately solved and the bypass
unavailable from experiments, mechanisms are well understood. In the mean time,

extreme care must be exercised when using correlationThe streamwise vortices can alter the relative methods to predict transition. Additional problems of
importance of the subharmonic and fundamental transition prediction and laminar flow control are
modes. Streamwise vortices of approximately the discussed by Reshotko (1985, 1986). The main
strength of those that might be found in transition principle of laminar flow control is to keep the
experiments can explain the difficulty in experimentally disturbance levels low enough so that secondary
identifying the subharmonic route to turbulence instabilities and transition do not occur. Under these
(Herbert 1983). conditions, linear theory is quite adequate and eN

methods can be used to calculate the effectiveness of a
The corresponding computational visualizations of particular LFC device.

Singer et al. (1987) are shown in Figs. 3 and 4; flow is
from lower right to upper left. Figure 4 shows the The idea of transition control through active
vortex structures, commonly seen in the transition feedback systems is an area that has received
process, under the conditions of a forced 2-D T-S wave considerable recent attention (Liepmann and
and random noise as initial conditions. The Nosenchuck, 1982; Thomas, 1983; Kleiser and Laurien,
subharmonic mode is present as predicted by theory but 1984, 1985; Metcalfe et al., 1985). The technique
not seen experimentally. Other views of the vortical consists of first sensing the amplitude and phase of an
structure are given by Herbert (1986a). However, when unstable disturbance and then introducing an
streamwise vorticity (as is present in the flow from the appropriate out-of-phase disturbance that cancels the
turbulence screens upstream of the nozzle) is also original disturbance. In spite of some early success,
included, the subharmonic mode is overshadowed by this method is no panacea for the transition problem.
the fundamental mode (as in the experiments!). The Besides the technical problems of the implementation
resulting pattern, ordered peak-valley structure, is seen of such a system on an aircraft, the issue of three-
in Fig. ,. Here is a case in which the computations dimensional wave cancellation must be addressed. As
have explained discrepancies between theory and Thomas (1983) showed, when the 2-D wave is
experiments. canceled, all of the features of the 3-D disturbances

remain to cause transition at yet another location.
In the presence of streamwise vorticity, the Some clear advantages over pIssive systems have yet to

fundamental mode is preferred over the subharmonic; be demonstrated for this technique.
this agrees with experimental observations, but not with
theory .. does not account for this presence).
Without streamwise vorticity, the subharmonic modes Acknowledgements
dominate, as predicted by theory and confirmed by
computational simulations. In the presence of This work is supported by the Air Force Office
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2 'ITS

Figure 1. Staggered peak-valley structure (H-type mode).

A 1

Figure 2. Peak-valley splitting structure (K-type mode).
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Figure 3. Vortex lines with A = 2.0%, t-- 177. The flow goes from lower right to upper
left.

Figure 4. Vortex lines with A = 2.0%, t 132. The flow goes from lower right to upper
left. Elliptical streamwise vortices with m.ximum u perturbation of 1.8% are
included.
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DISCUSSION structure in "low" Reynolds number turbulent

by F. Stern boundary layers. The control of turbulent

boundary layers then rests on the type of

Please comment on the influence of the large scale structure that may be present.

type of breakdown on the state of the For "high" Reynolds number turbulent boundary

resulting turbulent boundary layer, which is layers, the situation is not so clear i.e. it

quite important both in experiments and is hard to imagine that the details of the

calculations. Also, are there any transition process influence the structure of

similarities between the processes you have fully developed turbulence.

classified for transition and those associated

with relaminarization? It is unlikely that any of the structure

of the transition process is recovered during

Author's Reply relaminarization of a turbulent flow. I

believe relaminarization to be highly

The first part of this question hits to dissipative due to large changes in the basic

the heart of the motivation for doing work on state which cause a loss in the turbulence

the latter stages of transition, production mechanisms. Unfortunately, there

is a dearth of detailed experiments in this

The type of transition is important area.

because of its influence on the large-scale
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A bstrnct Stokes equation with the addition of a random noise term.
This principle makes it possible to use all the formalism of

In this paper, we combine RNG modeling tech- classical RNG theory.

niques with spectral element discretization proce- Recently, renormalization group methods have been devel-

dures to formulate an algorithm appropriate for oped [1], [2] to analyse a variety of turbulent flow problems.

simulating high Reynolds number turbulent flows For homogeneous turbulent flows, such important quanti-

in complex geometries. Three different approaches ties as the Kolmogrov constant, Batchelor constant, tur-

of modeling are followed based on RNG algebraic, bulent Prandtl number, rate of decay to isotropy, skewnes

differential k - e, and subgrid-scale models for the factor, etc. have been obtained directly from this theory in

turbulent viscosity. Results obtained for the fully good agreement with available data. Efforts in developing

developed channel flow, and for the separated floNv RNG methods for sub-grid (large-eddy simulation) model

in a cavity and over a backwards- facing step sug- constants have also been notably successful [3].

gest that all three formulations are suitable for tur- RNG methods involve systematic approximations to the

bulent flow simulations. The implementation of full Navier-Stokes equations that are obtained by using

RNG models within the framework of a high-order perturbation theory to eliminate or decimate infinitesimal

disdretization scheme (i.e. spectral element meth- bands of small scale modes, iterating the perturbation pro-

ods) is essential, as it results in resolution of fine cedure to eliminate finite bands of modes by constructing

turbulence structures even with the simple differ- recursion relations for the renormalized transport coeffi-

ential k - c model at relatively. small number of cients, and evaluating the parameters at a fixed point in the

degrees of freedom. lowest order of a dimensional expansion around a certain

critical dimension. The decimation procedure, when ap-

1. RENORMALIZATION GROUP FORMULATION plied successively to the entire wavenumber spectrum leads

to the RNG equivalent of full-closure of the Reynolds av-

Renormalization Group Theory (RNG) has proven to be a eraged Navier-Stokes equations. The resulting RNG trans-
Renomalzaton rou Thory RNG ha prvento e a port coefficients are differential in character as opposed to

very useful tool in theoretical physics and statistical me- ar oei cients f enti nal alose to

chanics to study systems with a very large number of de- ad hoc algebraic coefficients of conventional closure meth-
ods. All constants and functions appearing in the RNG

grees of freedom. The most prominent use of this approach closures are fully determined by the RNG analysis.

was in developing the theory of phase transitons of the

3ccond kind. Ath.'6ghl G theuy h fuund its way into In essence, the RNG method provides an analical mcthod-

fluid mechanics relatively recently, particularly in develop- to eliminate small scales from the Navier-Stokes equations,

ing turbulence theory [1], it has already proved to be a. thus leading to a dynamically consistent description of the

valuable research tool, and it has provided a series of inter- large-scales. The formal process of successive elimination of

esting theoretical and numerical results. A milestone for small scales together with re-scaling of the resulting equa-

RNG theory in fluid mechanics was the establishment of tions results in a calculus for the derivation of transport

the so-called correspondence principle, stating that in the approximations in turbulent flows.

inertial range the behavior of the small-scale Navier-Stokes

turbulence is statistically equivalent to the modeled Navier-
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The renormalization group method has been used to derive The RNG procedure provides the additional two differ-
three different types of models: an algebraic eddy viscos, entia equations for Y and ' , which can be integrated as
ity model, a differential k-c, and a subgrid scale turbulence follows
model for large eddy simulationsli]. The governing equa. Y -VO

12 = a Y - "y (8a)
tions for the flow motion are the Navier-Stokes equations: (t 3 - 01 + _')1/2

v Vi Op + , Ov, ( ah + '_ tdt (8b)-+" azi1)= (bat viu ai a 1/2 (t3 -1 + 0')1/2

ilong~with the incompressibility constraint Here the coefficients (ay,'ry) and (cu.,' -r) are known con.
0- = 0 (2) stants derived from the asymptotic behavior of the model,
ax, while the parameter a involved in equations (5-6) is the

Here P is the total viscosity defined as v = vo+ZvT (the sum inverse total Prandtl number defined from the RNG alge-
of the molecular and turbulent viscosity, respectively). braic relation (ao refers to molecular properties)

a-1.3929 ]oo1 a+ 2.3929 oas=o
RNG Algebraic Model I a - 1.3929 3 ao+ 2.3929 1 - (9)

ao -1.3929 ao +2.3929 v
This model is the simplest of all, however it is not very The total viscosity v is implicitly defined from equations
general as it requires the a priori postulation of the charac- (8) at each node of the computational domain. In the high
teristic integral length scale, and thus an assumption needs Reynolds number region where v > vo, we obtain
to be made based on physical considerations. The eddy vis- k2

cosity v is obtained from the following relation: v = 0.0845- (10)
C

S -4 _ C This high Reynolds number approximation is similar to
/ o[11+ !(27r)l - "]' (3) that commonly used in algebraic models. Thus, the al-

where H(x) is the Hcaviside function defined by H(x) =gebraic models contain terms like L1, which diverge when

for x : 0 and 11(x) = 0 otherwise, and A is an integral k --* 0 (i.e., near wall regions or separation zones) thus

length scale of the turbulence in the inertial range. The creating immense difficulties computationally. The differ-

constants a = 0.120 and C = 100 are derived in 11). The ential relations obtained via RNG techniques, however, do
not contain such singular behavior and thus have great po-

mean dissipation rate c can be expressed entirely through tnti suc h s earan flo s he dretial
the esolablefiel astential for success with separating flows. The differentialthe resolvable field as

relations provide definitive interpolation formulae to con-

2=Oxi + (4) nect low and high Reynolds regions of the flow.

The total viscosity is then obtained by solving an algebraic RNG subgrid-scale Model

cubic equation at every node of the computational domain In large eddy simulations (LES) the velocity field vi is de-
at each time step. composed into large scales i7i and subgrid components V.

RNO k-c Model It is the modeling of terms involved these latter compo-
nents that is crucial for accurate computations as previous

This is a differential model based on differential recursion attempts using various subgrid models [4] have indicated.
relations discussed in [1]. It is free of adjustable parame- The RNG subgrid model is derived by elimination of modes
ters, however two additional equations are derived for the from the interval Ao A, where A = y( r)1/4 (,i = 0.20) is
turbulent kinetic energy k, and the rate of dissipation e. a dissipation cut-off limit, and the wavevector Ao = Ae-1

Dk = P - + , k can be expressed through the computational mesh size A.
aD- ax) The general RNG derived viscosity given by

Da - oa () = Lo(1+- - 1))h/ (11)
Here we define the production term P based on the turbu- can then be expressed in terms of a length scale A, which
lent viscosity in LES represents the width of a suitably chosen Gaussian

!1 I (a. + - (a c.. *.., cu:on .... rcducc; to an idcnticl cquation
as in (3), where A is given by the integral

and the terms F, Y are defined subsequently from: dkdpdq

/ = 0.656I 1 Y P (7b) (k= + p + q2) 2  (2

Y = /(7c)
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Here Ai = 7r/Ai (for i = 1,2,3) and Aj = 2,. The above a a , + A2(
integral can be readily evaluated by breaking it up to three is + J d. = fds. (15)
asymptotic integrals and a finite triple integral that can

be computed numerically. In cases of simple geometries The spectral element discretization corresponds to numer-
(i.e. plane channels) theintegral can be evaluated through ical quadrature of the v2'tonal form (15) restricted to

algebraic relations [3]. the space Xh C Ko. The discrete space X, is defined

in terms of the spectraL element discretization parameters

(K, N, N2), where K is the number of "spectral elements",

2. SPECTRAL ELEMENT METHODOLOGY and N, N2 are the degrees of piecewise high.order polymo.

mials in the two directions respectively that fill the space
Let us denote by fl the three-dimensional computational Xh. By selecting appropriate Gauss-Lobatto points 4, and
domain, and by Of the computational boundary-surface; corresponding weights p, = PpP, equation (15) can be re-
we can then rewrite the governing equations (1) in the form, placed by,

v A (13) 8 8N, N2 + 2a
+ ---- (v- H 80p9 ~j-] + A

ksi=0q.0 h .ip09=0

where Hi includes all nonlinear and forcing terms (e.g. the K N p)

random force to be included in LES). The separation of k.1pso =.

linear and nonlinear termq in the above equation leads Here Jk is the Jacobian of the transformation from global
naturally to a mixed (explicit-implicit) time advancement to local coordinates (x, I') z*. (r, r), for the two.dimensional
scheme. The temporal discretization proceeds by employ- element k. The Jacobian is easily calculated from the par.
ing the spltting scheme; accuracy and relative advantages tial derivatives of the geometry transformation r., r,,, s, ,,.
of the scheme in the current applications are discussed in The next step in implementing (16) is the selection of a

15]. The resulting system of equations is a system of sepa- basis which reflects the structure of the piecewise smooth
rately solvable elliptic equations for pressure and velocity, space Xl,. We choose an interpolant basis with components
The discretization of these equations in space is obtained defined in terms of Legendre-Lagrangian interpolants, hi(ri)
through the spectral element method. For simplicity we 6,. Here, rj represents local cord-nate and 6ij is the Kronecker-
only present the two-dimensional equations, however our delta symbol. It was shown in [6], [7] that-such a spectral
implementation is general for truly three-dimensional ge- element implementation converges spectrally fast to the ex.
ometry and flow. Here we follow a 'layered' approach, ac- act solution for a fixed number of elements K and N -4 oo,
cording to which the discretizations and solvers are con- for smooth data and solution, even in non-rectilinear ge-
structed on the basis of a hierarchy of nested operators ometries.
proceeding from the highest to the lowest derivatives. This Happroach is motivated by the fact that the highest deriva- Having selected the basis we can proceed in writing the
tivesac in anoeqatn gove the ctiity euients, local to the element k spectral element approximations fortves in an equation govern the continuity requirements, O,(or t ) as follows,

conditioning, and stability of the system. Given the brevity
of the current paper we shall limit our description of spec- = #'=0,,mh(r)h.(s) Vrn, n E (0,..., N), (0,..., N),
tral element methods to the innermost layer, the elliptic (17a)
'kernel', which represents both the pressure equation and where 0,,, is the local nodal value of #. The geometry is
the viscous corrections in equation (13). also represented via similar type tensoxial products with

A typical elliptic equation for a field variable 0 can be saine-order polynomial degree, i.e.
put in a standard Helmholtz equation form with variable (,p)k = (z n,Y.k)h(r)/ (s) Vrn,n

coefficients as follows

a v0 - A = = 12 E (O,...,N),(O,..., N), (17b)

-x (14 Here 4,,, are the global physical coordinates of the-

In addition, let us assume 'homogeneous boundary condi- node rn in the k element. This isoparametric mapping

tions 0 = 0 on Ofl. Equation (14) can then be further leads to a compatible pressure formulation without the

diseretized using planar spectral elements in plane x - . presence of spurious modes (5.
If we define Hol the standard Sobolev space that contains We now insert (17) into (16) and choose test functions .
functions which satisfy homogeneous boundary conditions, which are non-vanishing at only one global node to arrive
and introduce testfunctions 0 E Ho, we can then write the at the discrete matrix system. This procedure is straight-
equivalent variational statement of (14) as, forward and here we cite the final matrix syetem,
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where I denotes dircct stiffness summation for the global

system to insure that the ensemble is performed in space

HI. The x-component, for example, of the Helmholtz op.

erator is defined as follows,
z k = qv (r 2qD D 6 + (3 )q

+ ( ,qPqDiDuI + ( pqDDP1 4  (18b)

Here ,, - v(.), and Dii = j( 1 ,); all other parame.

ters have been defined previously. The mass matrix Bk- is
diagonal and is defined as B = pifii. The y-component

of the Helmholtz operator is defined similarly.

The natural choice of solution algorithm for a time- and Fig. 1 Spectral Element Mesh employed for thesimulation of flow in a lid-driven cavity
space-dependent viscosity v(0,11,t) is an iterative proce-

dure; to date both conjugate gradient techniques and multi- shown in figure 1. Flow is generated by driving the lid of

grid methods have been implemented for elliptic equations the cavity in the x-direction at a constant velocity U = 1.
[6],[8]. The advandage of the formulation proposed here To avoid the spurious effects due to the step changes of the

as compared to the formulation in (6] is that the splitting velocity at the two upper corners a sufficiently smooth ve-

scheme results in separate,elliptic equations for the pres- locity profile that asymptotes to U in the immediate vicin.

sure and velocity that can be very efficiently solved using ity of the corners was imposed. Experimental evidence

those iterative techniques. We have found that, for spec- suggests that the flow in the cavity becomes turbulent at

tral element discretizations involving elements of low as- a Reynolds number slightly above R = 5,000 with the ini-

pect ratio, multigird methods converge much faster than tiation point of transition being at the downstream lower

conjugate gradient methods; their convergence rate, how- corner [9].
ever, is greatly deteriorated for large aspect ratio or very

deformed spectral elements. A more quantitative analysis

of the computational complexity as well as of the conver.

gence properties of the aforementioned iterative methods

in spectral element approximations, and in particular in

the context of parallel implementation, is given in [8].

3. NUMERICAL RESULTS ,',

In this section we first present results for the flow in a I .M _// V

lid-driven cavity obtained using the algebraic model and %V ' \\ "

two-dimensional spectral element simulations. We then \ ' . / / / ,

validate the RNG methodology by simulating two different i L _4 _ 1 ! ..

flows for which detailed experimental data and results from % %

direct numerical simulations are available: the fully devel-

oped turbulent channel flow, and the flow over a backwards-................-

facing step. These results are obtained using the k - e and

the subgrid-scale RNO models. F :::'

Turbulent Flow in a Lid-Driven Cavity

Here we consider a square two-dimensional cavity in x - Fig. 2 Velocity vectors of mean turbulent flow at
with mean flow being two-dimensional also. The exact Reynolds number R = 50,000

geometry and the corresponding spectral element mesh is
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We simulate the lid-driven cavity flow at Reynolds num-

ber R = 50,000 with the algebraic model (equation (3))

employed in the computation. As a characteristic length

A needed for the model at each nodal point we consider

the distance from the point to the nearest wall which is

proportional to the characteristic size of the largest eddies

of turbulence in this flow. In figure 2 we plot the velocity i 11.1? 1

vectors of the mean turbulent flow and in figure 3 several -

a-velocity profiles in the neighborhood of the right lower 1 44
corner of the cavity. It is seen that the flow undergoes sep-

aration as we move from the center of the cavity to the ... .

corner, as expected. However, the size of the recirculation

zone as well as the strengti, of the reverse flow is weak due

to the effects of the increased apparent viscosity. Indeed,

direct numerical simulations on the same mesh at Reynolds

number R = 10,000 shows regions of multiple small and

large size instantaneous eddies (figure 4); the time-averaged

flow however exhibits only very small recirculation zones Fig. 4 Instantaneous velocity vectors at

in figures 2-3. R = 10000: The flow is computed via direct
similar to the ones shown nspectra element simulation

0 12831:01

(a)

X.o5 XO90 X*O.5

BOTTOM WALL 2xl 
5

,-

Fig. 3 Velocity (x-component) profiles at station OM00 x

x= 0.85 (a); 0.90 (b); 0.95 (c) in the v

neighborhood of the downstream secondaryeddy 0o1213"o

To examine the spatial variation of the eddy-viscosity after

a stationary state is reached we plot in figure 5a the total

viscosity at a vertical station through the center of the (b)

cavity. We see that the distribution is smooth and peaks

at the lid where there is enhanced mixing, while it achieves

a minimum at the wall (molecular viscosity) and in the

region close to the center of the cavity where the fluid is

almost stagnant. Thus, the total viscosity increases by

almost three orders of magnitude from its molecular to its 4x10-

maximum value at the moving wall. In figure 5b we plot o300 x oACO

the total viscosity at the same position as in figure 5a but at

Reynolds number R = 25,000. We see in this case that the

region close to the bottom wall where the fluid motion is Fig. 5 Total viscosity variation at a vertical station
through the cavity center

weaker the region of molecular viscosity is broader, whereas (a) R = 50,000

the outside distribution is similar to the one in figure 5a. b) R = 25,000
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k - c Modeling of Turbulent Channel Flow condition for the dissipation rate. In order to minimize

We simulate first flow in a plane channel at Reynolds num- discretization errors and ensure accurate imposition of the
ber R. = 1000. Here the Reynolds number is based on zero flux condition on c we increased the resolution to or-

the wall-shear velocity U. and the channel half width. The der N = 15 per element. The results of this simulation
computational domain extends from y+ - 8.5 to y+ = were identical to results displayed in figures 6 and 7, which

1991.5, so that the constant shear regions next to the walls suggests that the zero flux condition on c is a meaningful

are excluded from the simulation. Two-dimensional spec- one.

tral elements are employed for the discretization, (K = k - c l odeling of Turbulent Flow Over a
12), of order N = 9, so that there are 97 collocation Backward-Facing SteR

points across the channel. The boundary conditions are The geometry for this flow and the corresponding spectral
prescribed u, k and c at the y-sides of the domain, while element mesh are shown in figure 8; this geometry is identi.
periodicity conditions in the streamwise direction (x) en- cal with the geometry used in experiments of Kim et al (10]
sure one-dimensionality of the mean flow. The simulation and in the computations of Avva et al [11]. The outflow
starts from an equilibrium state and integration proceeds length is taken to be twenty times the step height H. A
for a long time. Results of the mean quantities are pre- total of K = 92 elements of order N = 9 were employed in
sented in figures 6 and 7. As a next test we simulated the the discretization. The Reynolds number R. = F- is 1870
same flow but with the computational domain extended (or R - 45,000). In this simulation the computational
to walls. The boundary conditions at the walls are now domain includes theiwalls, where we impose the zero flux

no-slip for velocity, zero for kinetic energy, and Neumann condition for the disipation rate e; at the outflow Neumann

conditions are specified for all field variables. The inflow
e3.15 conditions match the measured profiles in the experiment

of Kim et al [10] and employed in the computations of Avva
et al (11]. Finally, the initial data are based on the results
reported in [11] and some initial perturbation.

8.5 Y1991.5 proile at Fig. 8 Spectral Element Mesh employed for the

Fig. 6 Mean velocity and eddy-viscosity profiles at simulation of flow over a backward-facing
R* = 1000 for the turbulent flow in a step
channel

In figure 9 we first present the results of this simulation
29f. 014 in the form of streamlines. In addition to the large re-

circulation zone shown in this plot eddies of smaller size
of opposite rotation appear at the step test section floor
juncture consistent with theexperimental findings (12]. To
the best of our knowledge no other simulation has resolved

such fine structures previously using a single or a zonal

modeling approach. Furthermore, the length of the recir-
culation zone (figure 9-10) is computed to be L = 7.3H
in close agreement with the experimental value (10]. Most

__.__..... studies todate fall short of predicting the correct value due

8.5 Y s.s to errors both in numerics and turbulence models. In fig-
ure 10 and 11 we plot all mean variables at a station very

Fig. 7 Turbulent kinetic energy (k) and dissipation close to the reattachment point. The eddy viscosity distri.
turbulent flow in a channel bution attains its maximum close to that point where the

turbulence intensity exhibits its extremum.
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Lar e-Eddy Simulations of Turbulent Channel Flow

In the last eample we employ the RNG subgrid-scale model
to simulate the turbulent channel flow at R. = 185. This
simulation corresponds to identical conditions as the di-
rect simulation recently reported by Kim, Moin and Moser
(1987) [13]. In our simulation we have used however 60
times fewer grid points. In particular, for this case we em-
ploy a global spectral discretization based on Fourier ex-
pansion in streamwise and spanwise directions, and Cheby-

Fig. 9 Spectral Element-RNG/k-c Simulation of shev expansion in the iubornogeneous direction (16 x 64 x
flow over a step at R, = 1870. The curves 64). The initial conditions are based on three-dimensional
are mean flow streamlines while color Tollien-Schlichting waves. The results of our simulation
represents turbulent kinetic energy
(red=max, blue=min). In this calculation are essentially identical with the results of the direct simu-
no ad hoc fitted parameters or experimenta lation as shown in figures 12 and 13, and in close agreement
input is used. The recirculation zone length with the expe
is 7.3 step heights in agreement with the riments [14]. The agreement extends ao to
experiments of Kim, et al (1979). The small higher order statistics as well as to flow structure and thevortices in the step, corner are observed streak spacing; the results of our simulations are plottedexperimentally too. in figure 14 as color contour plots of the utuating ve-

locity component at a plane close to the wall (here red
12,56 -. .414 indicates low velocity; blue high velocity). The mean .ep-

aration between streaks is A. 90 [3] in close agreement
with the experimentally observed spacing; all previous LES

/have failed to predict the correct value of streak separation

0 1[15].

/ 0

-0o.027 /.' 10

I3eo X 13,800

00 Y +0

Fig. 10 Mean velocity and eddy-viscosity profiles at €
R,= 1870'for the flow described in Figure 9

0,5 0.014

Fig. 12 Meani Velocity Profile at R = 185 of the
turbulent channel flow computed via
RNG-large eddy simulations -: 5.0 +
2.5tny+

0 13,DO x 3,80827

0 Y 1500

Fig. 11 Turbulentkihetic energy (k) and dissipation
rate (e)-'profiles at the reattachment point
(R, = 1870) (flow as in Figure 9)
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aforementioned computational requirements to flow simu-
3.0 lations at a Reynolds number of a few thousands. Progress

*in simulating realistic flows of engineering importance can

2.5 be made if reliable and well validated modeling techniques
are combined with highly.accurate numerical methods. In

2.0 the current work, we demonstrated how RNG methodol-
ogy can be used to represent all scales of turbulent flow

1.5 using for example a differential k - e model, or to repre-
0 -sent only the small-scale dynamics using a subgrid.scale

1.0- 0f 0 model. This methodology is very robust and can be ap-
0plied to a variety of flows as a totally prognostic tool of

0.5 0 analysis, since it requires no apriori known parameters or
any experimental input, which is typically the case with the

S0-60 currently used turbulence modeling techniques. A compu-
tationally efficient implementation of the RNG methodol-

y' ogy is obtained if it is combined with spectral or spectral
element discretization methods, which are used today pri-

Fig. 13 Turbulent intensities for the flow described marily in direct computations of transitional and turbulent
in Firure 12. Also shown are experimental flows. We are currently working in further validating our
results of Kreplin and Eckelman (1979) RNG/spectral element methodology in unsteady turbulent

flows (e.g. vortex streets) in complex geometries.
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DISCUSSION Author's Reply
by E.P. Rood

In the renormalization group approach,
For some applications a requirement is full turbulence closure is obtained without a

free surface flows near their intersection to priori experimental input. This is true for
predict with boundary layers or in the both free surface and other flows. However,
turbulent wake of a ship. What experimental in developing turbulence models for free
or other physical information is needed to surface flows, it may be best to "tune" the
develop an adequate turbulence model for such model using experimental observations of free
free surface flows? surface turbulence. It is hoped that many of

these questions can be answered in the near
future with detailed application of the
renormalization group models.
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A Flood Control of Dam Reservoir
by Conjugate Gradient and Finite Element Methods

M. Kawahara and T. Kawasaki
Chuo University

Tokyo, Japan

Abstract are several practical examples that
the human property at the upstream

A flood control of dam reservoir area was destroyed by the reflected
by the combined method of conjugate bore which seems to be caused by the
gradient and finite element methods dam gate operation. Thus, it is
is presented. For the numerical strictly necessary and practically
integration procedure, the two step important that the dam gate should be
explicit scheme originally presented controlled to secure the operation
by the authors' group was effectively that the water elevation of the
used. Using the numerical computation reservoir would be as small as
based on the imaginary river basin possible. Is it possible to obtain
and estimated hydrograph, it is seen almost the flat water elevation of
that the water elevation can be the reservoir during the flood by way
controlled by the discharge of the of controlling the dam gate? The
dam gate to obtain almost the flat answer in this paper is affirmative.
water surface. It is detected out The flood propagation through the
that the flow rate of the dam gate reservoir can be expressed by the
should discharge in advance before shallow water equation. One
the pea" value of the flood arrives dimensional linear equation with the
to control the wave propagation hydrograph as the upstream boundary
caused by the sudden close of the dam condition is used. This is because
gate. This paper presents the the present paper aims mainly at
strategy how to operate the dam gate presenting the numerical controlled
knowing the flood configuration method. It is simple to extend the
beforehand. present method to the two dimensional

case. The optimal control system can
be established introducing the water

1. Introduction elevation of reservoii s the state
function and the discharge of the dam

It is necessary to construct a gate as the control function. The
large dam to protect the human quadratic functional of the -water
property from a flood caused by heavy elevation and the control discharge
rain fall on the mountains. NorMall._is chosen as the p ,rformance
a reservoir is set up by the dam. The function. Because the hydrograph of
flood propagates through the the flood is given at the upstream of
reservoir from upstream -to. the reservoir as the time function
downstream. To protect the downstream over the interval to be analyzed, the
area, the gate equiped to the dam problem is resulted to the so called
will be closed. The bore would be quadratic tracking control problem.
generated sometimes in case that the Conventionally, the shallow water
capacity of the reservoir is not equation is descritized by the finite
satisfactory enough if the dam gate difference method or method of
would have been shut suddenly. There characteristics C % - C5. The
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discretization of the shallow water and water depth respectively.
equation is carried out by the finite The flood is given as the upstream
element methodc6).t7 in this paper. boundary conditions of mean discharge:
For the computation of the optimal
control, the conjugate gradient q = q o . (3)

method is effectively where superscripted ^ represents a
employedE03-C2.3. The Lagrangian function given on the boundary. The
function is introduced to express the flood control in a dam reservior is

constraints of the state equation. To assumed to be carried out by the
solve the time dependent equation for discharge decided by the optimal
the Lagrange function, the backward control of the operation of the water
integration should be introduced. To gate equiped on the dam. Thus, it is
do this, a two step scheme has been expressed that
originated similar to the forward two q = q on S, (4)
step scheme which was presented by

the authors' group in the previous where superscripted - denotes a
paper c6

3,
C, 3 . To determine the function determined by the optimal

amplitude of the direction vector, control analysis. The initial
the line search method is used. To condition are given as:
show the adaptability of the control
method presented in this paper,
several numerical examples are at t=to (5)
carried out. Comparing with the q = o
results obtained by the dynamic
programming technique, it is found The governing
that the present method is more equations (1) and (2)
suitable for the practical descritized by the X
computation because the computer core finite element method a b
storage in the present method is much about a piece of one
smaller than that in the dynamic dimensional element
programming. This paper detected out shown in Figure I can
a possibility that the control of the be described as Figure 1
dam gate can be performed in the follows.
manner that almost the flat water
elevation of the reservoir at the L gh gh ]flood can be obtained on the 3 Ih 2h2= 6
condition that the hydrograph of the L L + gh gh h
flood flowing to the reservoir is 2 t
known in advance.

L L +_1 1f = (7)

2. Basic Equations ; 3 2 q 0

The flood propagation behavior in The usual superposition procedure

a dam reservoir can be expressed by leads to the finite element equation
the linearized shallow water as:

equation. Consider one dimensional
channel with X coordinate and time t. [M][X(t))+[H][X(t)}
Denoting mean discharge and water +[A]{F(t)}+[B][U(t))=[0) (8)

elevation as q and r, one dimensional where

equations of motion and continuity (X(t)} = Iq(t)l (9)
can be written in the following forms: Mt))

aq + gh L = 0(i) in which q(t) and (t) mean discharge
t ax and water elevation at all nodal

a P a_q = 0  (2) points of the flow domain to be
a7 aX analyzed. The boundary condition (3)

where g, h are gravity acceleration is transformed to the term [A]F(t)),
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. (t)- ~ (10) following equations.(F(t)]

where q(t) denotes the discharge of (P(t)1=- OH
flood at the upstream point. The =([M]-;[H])T [P(t)]+[K]JX(t)J (16)
control term [B][U(t)) is derived
from equation (4), and fP(tr))={0 (17)

q The gradient of the performance(U(t)) - 0t (ii) function [J(t)) is given as:

where q(t) represents control aH
discharge applied at the point a-u)
corresponding to the dam. The initial =[RJ[U(t)J+([M]-3-[BJ)T (P(t)} (18)
condition can be described as follows:

The gradient of the performance
(t) (12) function is used to determine that

(X(to)} =, ,(t). (12) the convergence is obtained. If the
gradient comes to almost zero, the
optimal control [U(t)} can be
obtained.

3. Optimal Control Theory To obtain the optimal control
solution, differential equation (14)

The optimal control theory employed with (12) and equation (16) with (17)
in this paper is the quadratic must be solved. Moreover, equation
control theory. The problem can be (16) must be solved from tE to to
converted to determine an optimal because the initial condition (17) is
function [U(t)) that minimizes the given at the final time tr. To solve
performance function: these equations, the time marching

numerical integration scheme is
_i= ef introduced. The total time interval
2t t Sto be analyzed is divided into short

+[U(t)]T'[R]fU(t)])dt (13) time interval At by a plenty of time
points n. For equation (14), the

under the state equation: forward two step explicit method can
be applied as followsE

6 .C73:

X -[S]-M[H]X(t) For the first step:

-[M]-±[B]{U(t)] (14) X

with the initial condition [X(to)), at -
where [S],[R] are weighting matrices 2 2(MJI:H]{X(t)) (19)

and to, tr are starting and final
times respectively, and for the second step:

To obtain the optimum control, the
conjugate gradient method has been [X(t)" ±-=[M]-[M][X(t) )
used. To apply the conjugate gradient
method, the Hamiltoniam is introduced At[MJ'-EH]fX(t)n41'2 ) (20)

as: starting from the initial condition

equation (12). For equation (16), the
-(t)] [S]( r(t)] backward two step explicit method is

+[U(t)) T [R]U(t)]) used:
+-P(t)]E(-[M]-[HJ]X(t)] For the first step:-[S]--X[A][F(t)]

-[M]-- [B][U(t)]) (15) [P (t) / = [ ] ){P (t)-]

where (P(t)} denotes Lagrange +
multiplier. Euler equation and +[K][X(t))) (21)
transversality condition lead to the
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and for the second step: 1) Assume initial control function
Uo(t), t E[to,tt]

2) Solve [Xo(t))=[X(t:Uo(t))]
3) Solve (Po(t))=[P(t:Uo(t)))

+ 4) Compute {So(t)1=-[Juo(t)1
+[K]{X(t)n/ 2)) (22) =_([R][Uo(t))+([M]--[BJ)T [Po(t)))

5) Determine amplitude a,. by
starting from the initial condition minimizing J[U±(t)+ a±S±(t)].
equation (17). In equations 6) Compute (U±+ (t)}
(19)-(22), the lumped coefficient =fU±(t)1+ a±(SX(t))
matrix [M] is introduced to obtain 7) Solve {X± ±(t))=[X(t:U .x(t))}
the full explicit scheme. The mixed 8) Solve {P&., (t))=(P(t:U± 1 (t))}
coefficient matrix [M] is also used 9) Compute {J.± ,(t))
as: =[R]U± .. (t))+([M]--[B])T(p:. 1(t)I

10) If J,±+ x(t)<E then stop else L.:L x
[MJ=e[MJ+(I-e)[M) (23) 11) Compute

where e is referred to as the lumping =ju(t)1T(Ju(t) 2

parameter. 12) Compute {S±(t))
=-[J.J.(t)]+ A {S±-(t)]

Go to 5)
4. Computational 

Algorithm

The parameter e is a small number
The conjugate gradient method is which expresses the convergence

successfully applied for the allowance. The flow chart of the
computational algorithm. To express computation is shown in Figure 2.
the procedure of equations (19) and
(20) with equation (12), the
abbreviated form is introduced as:

5. Line Search Method
(X±1=X(t:U(t))I (24)

The amplitude a can be determined
where subscripted ± means the by minimizing J[U±(t)+ atSt(t)] where
function is the value in the Lth present position U and the search
iteration cycle and U±(t) means the direction S are both given. Determine
optimal control function assumed at the amplitude a that minimizes J(U)
the ±th iteration. Thus, equation by means of U+aS on a quadratic line.
(24) represents to solve equation Put g( a )=J(U+ a S), then it is
(14) with (12) by the procedure of converted to the problem of searching
equations (19) and (20) assumming the the minimum point of function g(a).
control function as Ut(t). Similarly, This algorithm is called as the line
the abbreviated form: search algorithm.

Three points Uc),
(PJ=[P(t:U(t))) (25) U(2),U( 3) in Figure

3 are called as the
is introduced to express the U-shape three J(U) J(Uca)
procedure to solve equations (16) points where Ucx% <

with (17) by equations (21) and (22) U(2 )< Uc3), J(Ucx)
assumming the control function as >J(U(2)<J(Uc ).
U±(t). Using those notations, the If the U-shape
computational algoritr.!, can be three points are UM 0(2) U(3)

described as follows, found, the minimum

point of J(U) can
get in between Figure 3

T section [Uc±,Uc3 ].
The value J(Uco)) is computed by
the initial point UcO). The

Figure 2 value J(U(±,) is computed by
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Uc3,=Uco)+ aS. If J(Uco))>J(UcX)), point is set for reference. The total
the direction is right. And the length and subdivisions are
amplitude a doubles the step size, represented in each computational
then J(U(2)) is computed by example. For -the weighting matrix, S
Ucz)=Uc(.)+2 oS. If J(Ucx))>J(U(2 ), was chosen as unit matrix because the
the amplitude a doubles the step size same weight was given to the water
again and determine Uc3), then elevation of all finite elements in
continue the same procedure. If reservoir.
J(UcX))<J(Uc2)), the U-shape three
points are found. If the U-shape 1) Test example No.1
three points are found, Uc...)
divides the section [U(n..2, U(,] For the computation, the reservoir
into 2:1(or 1:2). J(U) is solved by shown in Figure 4 is used. The total
the middle point between Uc,.2) and length L=40m and water depth 10m in
Uc n±). Comparing both sides, the the model is used for the test
even intervals of U-shape three example No.1. Numbers of total nodal
points are obtained. If the iteration points and elements are 151 and 150
of the three points approach is respectively. Total time intervals
complete, J(U) can be obtained by the 12sec. was divided into short time
parabolic interpolation of the three intervals 0.004sec. For the weighting
points. The minimum point of the coefficient R=1.OxlO-4  was used. For
parabola through three points is the lumping parameter e=0.9 is
given as follows; employed.

I (U2X,-U22) )J(Uc3,)+(U2 )-U23,))JUc,.)) U2. -U2X,= (U2)

2 (Uc(.)-Uc))J(Uc3 ))+(Uc 2 )-Uc3 ))J(Uc ))+(U 3 )-Uc.))J(Uc(2 ) (27)

Giving this point as the initial Specify the flow discharge at the
point, next iteration can be carried inflow point as the time dependent
out. The amplitude a gives a/10. And function
the U-shape three points are found
again. If the amplitude a is obtained q = (t) on S.
as small enough as less than
preassigned given value, the where (t) is shown in Figure 5. The
amplitude a is obtained, optimal control discharge can be

computed at the control point as

q = q(t) on S.
6. Test Examples

where q(t) is shown in Figure 6.
To show the validity and For information, the water elevations

adaptability of the control method at each point are also represented in
presented in this paper, two test Figure 7. Looking at these figures,
examples are carried out. One of them it is clearly understood that the
is the control of solitary flood inflow and the control flow are
propagating through a simple completely coincident except the
reservoir, the other is the phase lag. This fact shows that the
comparison with the results obtained control discharge can be obtained
by the dynamic programming. For the completely in the same form as that
computational model, the simple one of inflow. Namely, the optimal
dimensional reservoir as shown in control can be obtained by leaving
Figures 4 and 8 are used. The the gate of dam full open. This
boundary Sa. is called as the inflow simple result corresponds to the fact
point, at which the discharge of the that there is no need to control the
flood flow is specified. On the gate in case of this type of simple
boundary S. which is referred to as flood propagation. The fact that the
the control point, the discharge of computation was successful for this
the flow is controled. At the middle simple phenomenon suggests that this
of the reservoir, the observation computational method is also
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((2 (3)

-: OPTIMAL OUTFLOW

Si 0.-667c X 150 40m-. Sc -- :NORMAL OUTFLOW

S1 :() INFLOW POINT
0OBSERVATION POINT ( ]INFLOI POINT 4O)

SC: ( CONTROL POINT

Figure 4 Reservoir model-1

UJ

(I) INFLOW POINT (40M)

5.oo 2.00 4.00 6.00 8.00 10.00 12.00
TIMEISEC}

(2) OBSERVATION POINT (20M)
_ o

To.00 2.00 4.00 6.00 8.00 10.00 12.00 >0

TIME (SEC) hi

Figure 5 Hydrograph of inflow(model-l)

5-,00 2.00 4.00 6.00 8.00 10. 00 12.00

IIME ISEC)

(3) CONTROL POINT (O)
-- :OPTIMAL OUTFLOW (3) CONTROL POINT (0M)
-..... NORMAL OUTFLOW

To.00 2.00 4.00 6.00 8.00 1000 12.00 5%.o00 2.00 4.o O .o e .o 0 10.o 00 1.00
TlH£(SEC) TIflE(SEC)

Figure 6 Control discharge Figure 7 Water elevations at each point
at the control point(model-0) (model-l)

available for the more complicated divided into short time interval
control problem. 1.0sec. For the lumping parameter

e=0.9 is used.
2) Test example Ko.2 The computation has been carried

out specif ying the discharge at the
The control results computed by the inf low point as a function shown in

conjugate gradient method is compared Figure 9. The resulted control
with the ones by the dynamic obtained at the control point is
programming which was originally used represented in Figure 10. The dotted
for the s Cotrl crol by one of line shows the outflow at the control
the authors C the. For the computation, point without control. The solid line
the reservoir shown in Figure 8 is is the optimal control discharge
employed. Total lengh L is 3km and computed. The computed water
water depth is 60m. Total numbers of elevations at inflow, observation and
nodal points and elements are 31 and control points are illustrated in
30 respectively. Total time 10min. is Figure 11. The water elevation at
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every point is computed smaller than (31 FLOOD CONTROL POINT (OKM)
that without control, which is - :OPTIMAL OUTFLOW
expressed by the dotted line. The - N--:NORMAL OUTFLOW
same problem has been computed by the
method of the dynamic programming.
The rasulted control and water / \

elevations are represented in Figures
12 and 13. All results are completely _
coincident with the results obtained 0 /

by the conjugate gradient method." /
In case of the method of dynamic --

progranuming, 2.5 times as long
iiitervais as that of the conjugate
gradient method can be employed. 2.00 4.00 6.00 8.00 10.00

However, all of the intermediate TIME (MIN)
values of the computation must be Figure 10 Control discharge by conjugate

stored in this type of tracking gradient method(model-2-<l>)
problems. Thus, a large amount of - : OPTIMAL OUTFLOW
core storage capacity must be ----- :NORMAL OUTFLOW
required. Considering this, the (1) FLOOD INFLOW POINT (3KM)
method of the dynamic programming is
not suitable for the large scale ----
problem.

uJ

GATE 1 o.oo 2.00 4.00 6.00 8.00 0.00

TIME (MIN)

SI -o.1k.x 3o= 3-SC (2) OBSERVATION POINT (1.5KM)
S1 () FLOOD INFLOW POINT

(2) OBSERVATION POINT -
SC :(3) FLOOD CONTROL POINT -

Figure 8 Reservoir model-2 >
IJ
_J

() FLOOD INFLOW POINT (3KM) <. 2 .0 .0 .0 .0= /.00 2.00 4.00 6.00 0.00 10.00

TIME (MIN)

(3) FLOOD CONTROL POINT (OKM)

- -- - - - -

,oo 2.00 4.00 6.0o 8.0o 10.00 _

TIME (MIN) s ".oo 2.00 4.00 6.00 8.00 10.00

TIME (MIN)

Figure 9 Hydrograph of inflow(model-2) Figure 11 Water elevations at each
reference point(model-2-<i>)
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(3) FLOOD CONTROL PO]NT (OKM) 7. Flood Control

- :OPTIMAL OUTFLOW The flood control problem by a dam
-------NORMAL OUTFLOW based on the imaginal river basin and

estimated hydrograph using the
observed data is carried out as a

' C;' \practical example to show the
r practicability of the present method.
0 /The river basin used is shown in
l-o Figure 14 by water depth and width.

o -'The total length of the model is 30km
----------- "long. The maximum width of the

reservoir is 1350m and the upstream
.00 2.00 4.00 .0 . river is 50m wide. On the most

TIME (MIN) upstream side of the model the flood
Figure 12 Control discharge by the inflow discharge is specified and it

dynamic programming(model-2-<2>) is referred to as the flood inflow

- :OPTIMAL OUTFLOW discharge point. The flood control
----- :NORMAL OUTFLOW point is set on the most downstream

(1) FLOOD INFLOW POINT (3KM) side where the dam is assumed to be
equipped. The water elevation

S--- computed is expressed on the
Z referrence point at the center of the

model which is called as the
<- --------------- observation point.
W, Total numbers of nodal points and
c elements are 61 and 60 respectively.

Uo Total time interval used is 48 hours,
< . .. . . .00.. which is divided into short time-.6..00 2.00 4.00D 6.'00 8.0 0 1O.,0O

TIME (MIN) intervals 13.824sec. The steady state
computation has been carried out to
get the steady state water elevation

[ WB(t)). In the practical
(2) OBSERVATION POINT (I.5KM) computation, it is more suitable to

modify the performance function as:

irt

+{U(t))T [R]{U(t)])dt (28)
9 where the weighting matrix [S] is set

'b.0 00 2.00 4.00 6.00 8.00 10.00 unit matrix and the weighting
TIME (MINI coefficient for [R] matrix is R=1.O x

10- 7 . The lumping parameter is chosen
as e=0.9.

(3) FLOOD CONTROL POINT (0K) Specifying the flow discharge at
the inflow point as the time

- Idependent function:

= q=(t) on Sm

UJ where '(t) is shown in Figure 15, the
.1 optimum control discharge at the

control point can be computed as

0 0oo 2.0 4.o 6.00 8.00 10.00 q = q(t) on S
TIME(MINI

Figure 13 Water elevations at each
reference point(model-2-<2>) where q(t) is expressed in Figure 16.
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(1) (3)
FLOOD (F) FLOOD
INFLOW OBSERVATION CONTROL
POINT POINT POINT

15 km 15 km

5M 
GATE

WATER DEPTH 35m

, I

50m

T WIDTH 90Dm 1350M m

S. Sc
0.00 3.00 6.00 9.00 12.00 19.00 10.00 21.00 24.00 27.00 30.00 (km)

Figure 14 Reservoir model-3

(1) FLOOD INFLOW POINT (30KM) However, the uncertain oscillation of

the discharge can be found after the
o peak value of the flood, which is
o6 caused by the reflection of the wave
o by the dam. By the optimum control of

2300m3 /s the discharge, the maximum peak value
Z can be reduced. Moreover, the
t 0 oscillation of the discharge after

0 the peak value can be eliminated. It
o is important to note that the control

o of discharge must start before the
.. peak value of the flood will arrive
0to the dam.

The computed water elevations at
o the inflow, observation and control

points are illustrated in Figure 17.9. 00 12.00 24.00 36.00 48.00. The dotted lines show the computed
TI ME (HOUR) water elevations without control. At

Figure 15 Hydrograph of inflow the inflow point, which represents
the upstream area, oscillation of the

(model-3) water elevation can be found in case

of the flow without control. It is
In this figure, the outflow discharge detected out that there is a
at the control point without control possibility that the oscillation of
is also expressed by the dotted line. the water elevation can cause severe
An outlook of the uncontrolled damages to the human properties
discharge is almost conincident with around upstream area. For the water
that of the inflow discharge shown in elevation controlled at the dam, the
Figure 15 until the maximum peak upstream oscillation has completely
value arrives. The duration to arrive been eliminated. The variation of the
the peak value of the outlow water elevation controlled is smaller
corresponds to that of inflow, than that of uncontrolled. The water
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(3) FLOOD CONTROL POINT (OKM)
-- :OPTIMAL OUTFLOW - PM OF
---- :NORMAL OUTFLOW -- :OPTIMAL OUTFLOWo ... :NORMAL OUTFLOW

0
o (1) FLOOD INFLOW POINT (30KM)
0 II

0 
0

0 I <o 0

0 I

'. 00 12.00 24.00 36.00 48.00 %.00 12.00 24.00 36.00 48.00

TIME (HOUR) TIME (HOUR)

Figure 16 Control discharge
at the control point
(model-3-<l>) (2) OBSERVATION POINT (15KM)

elevations computed at every
ref errence point show almost flat z 0

water elevation excluding the
duration after the peak value of the
flood. LU

In the practical problem, it is jLU6
usually seen that the maximum 

ability

of the flow rate of the dam gate is LU

limited. In Figures 18 and 19,
control example of which maximum flow ------
rate is limited as 1000m 3/s is .0.00 12.00 24.00 36.00 48.00

illustrated. In Figures 20 and 21, TIME (HOUR)
control example of which maximum flow
rate is limited as 1500m 3/s is
illustrated. Figures 18 and 20 show (3) FLOOD CONTROL POINT (OKM)
the control discharge at the control
point. Figures 19 and 21 are the
computed water elevations at each E
reference point compared with the z ,

water elevations without control. In "-
these examples, it is also detected <
out that the water elevations can be U
controlled by the discharge of the j 0
dam gate. It is also seen that the
secondary oscillation of the water LU
elevation at the upstream has been <
eliminated.

M. 00 12.00 24.00 36. 00 48.00
TIME (HOUR)

8. Conclusion Figure 17 Water elevations
at each reference point

This paper has presented the (model-3-<1>)
optimum control method for the wave
propagation caused by the flood
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(3) FLOOD CONTROL POINT (OKM)
- :OPTIMAL OUTFLOW - :OPTIMAL OUTFLOW
------ :NORMAL OUTFLOW - -ORMAL OUTFLOW0 ------------------------------- NORMAL. OUTFLOW,

o (1) FLOOD INFLOW POINT (30KM)

o 
zo

IIIt
0i I

<-0 CcL
0 ii I , h t

0 0

10 I 1 I 2i "

0. 0 12.00 24,00 36.00 48.00 o. 00 12.00 24.00 36. 00 48.00

TIME (HOUR) TIME (HOUR)

Figure 18 Control discharge
at the control point
(model-3-<2>) (2) OBSERVATION POINT (15KM)
[outflow <= lO00m3/s]

through the reservoir set up by a z 5 It
dam. It is detected out that the o- ,.../
control of the dam can be effectively
performed by the conjugate gradient
method combined with the finite LJJo_J c
element method. Comparing with the U 6
dynamic programming, the computer X
core storage of this method can be
extraordinary reduced. For the < o
forward and backward numerical . 00 12.00 24.00 36.00 48.00
integrations in time, the two step TIME (HOUR)
scheme can be effectively introduced.
For the determination of the
magnitude of the gradient vector, the
line search method is shown to be one (3) FLOOD CONTROL POINT (OKM)
of the most efficient method of the
analysis.

Using the numerical computation
based on the practical basin and
estimated hydrograph, it has been
cleared that the water elevation can
be controlled by the discharge of the u 0
dam to reduce the peak value and to WJ
eliminate the secondary wave M

Upropagation toward the upstream of 1-

the dam reservoir. To control the <0 "' I I I -* j "

wave propagation generated by the T. 00 12.00 24.00 36.00 48. QO
reflection of the sudden close of dam TIME (HOUR)

gate, it is necessary to discharge

through the dam gJte in advance
before the peak value of the 'flood Figure 19 Water elevationsat each reference point
arrives. The strategy how to open and (model-3-<2>)
shut the dam gate can be determined
by the present method knowing the
flood configuration beforehand. 55



(3) FLOOD CONTROL POINT (0KM)
- :OPTIMAL OUTFLOW ____OPTIMAL OUTFLOW

SNORMAL OUTFLO NORMAL OUTFLOW

0

Zo Z0_

II'0

U_ 0 21

0; I VII
00

1- 0

DO I
I <

Th. 00 12.00 24.00 38.00 48.00 1bh 0 0 12.00 24.00 36.00 48.00

TIME (HOUR) TIME (HOUR)
Figure 20 Control discharge

at the control point
(model-3-<3>) () O S R A IN P IT (5 M
(outflow : 1500n3/sJ 2 BEV TON P IT (5M
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Numerical Simulation of Three-Dimensional Viscous Flow
around a Submersible Body

C-I Yang
David Taylor Research Center

Bethesda, USA
P-M. Hartwich and P. Sundaram
NASA Langley Research Center

Hampton, USA

Abstract region. A viscous-inviscid interaction procedure might be

A second-order accurate, imnplicit, high resolution up- once again inadequate because of the possible presence of
wind scheme has been Ubed to solve the three-dimensional flow separation in this region. Hence, an accurate compu-
incompressible Navm,:r-Stokeb equations in general curvilin- tational method for this problem should attempt to solve
ear coordinates for the steady-state computation of the flow the incompressible Navier-Stokes equations.
field around axisymmetric hull geometries at high Reynolds Aziz and llellums (2) proposed a vector potential vor-
numbers. A hybrid algorithm with relaxation in the stream- ticity formulation to solve the three-dimensional incom-
wise direction and approximate factorization in the cross- pressible Navier-Stokes equations. Because of its large stor-
flow plane is used to reduce the temporal splitting error. age requirements and the necessity to solve three Poisson
Three axisymmetric bodies with different stern shapes have equations at each time level, the method is not very popu-
been chosen for the present investigation to highlight the lar. The direct extension of time-dependent methods, both
boundary layer development and to pinpoint flow separa- explicit and implicit, developed for the compressible Navier-
tion in the stern regions of the hull geometries. Three- Stokes equations to incompressible flows is not possible be-
dimensional viscous grids of C-O topology have been gen- cause of the 'stiffness' of the physical problem associated
crated around each body using a transfinite interpolation with low speed viscous flow. To circumvent this problem,
technique. Turbulence is simulated using algebraic eddy Chorin (3) proposed the use of artificial compressibility
viscosity model of Baldwin-Lomax . The computed re- when solving the equation of continuity, thus introducing
sults are compared with the available experimental data an unsteady term to make the system hyperbolic as in the
for on-body pressure distribution and radial and axial ve- case of compressible flows.
locity profiles in the afterbody boundary layers with and
without propeller in operation. The computed results show In this paper, we compute complex flow fields around
close agreement with the ineasuiements in most cases. various axisymmnetric bodies by obtaining numerical so-

lutions of the incompressible Navier-Stokes equations in
I. Introduction primitive variable formulation. A hybrid second-order ac-

curate implicit high resolution upwind scheme is used to
The flow in the stern region of a submersible is char- solve the system of conservation laws in general curvilin-

acterized by the presence of a thick and possibly sepa- ear coordinates. Three axisymnetric bodies with different
rated turbulent boundary layer. There is an increase in stern shapes to highlight specific flow details in that region
the stern pressure drag and skin friction drag, called thrust have been chosen for the present study, primarily because of
deduction, due to the upstream suction produced by the the availability of well documented experimental results for
propeller when operating. Accurate numerical prediction these bodies (4,5,6,7). Body fitted three-dimensional grid
of the flow in the stern region of the hull both with and systems of C-O topology have been generated around these
without the propeller operating is important to evaluate bodies using an algebraic grid generator based on transfinite
the afterbody thrust deduction, thus limniting the expen- interpolation procedure. The computed on-body pressures
sive resistance and self propulsion model experiments in a together with axial and radial velocity profiles are compared
towing tank. Although several numerical algorithms have with the experimental data. In addition, the flow around
been so fu dcveloped f o coiimjutiG thC two and three the stern region of one of the bodies with apropeller in oper-
dimensional incompressible Navier-Stokes equations, most ation is computed. The propeller is simulated by imbedding
of them are prohibitively expensive for very high Reynolds body forces in a disk located at propeller plane as suggested
number flows typical in marine hydrodynamics. by Stern et a](8). Finally, in order to illustrate the ability

Several panel methods such as VSAERO (1) are used of this scheme to simulate a separated flow, the results of
in aircraft design and analysis practices. lowever, their a low speed -vortical flow about a 3.5 caliber tangent-ogive
true application in marine flows, particularly for coinput- cylinder at an angle of attack are presented.
ing the flow field in the stern region, is limited because of
the presence of fairly thick boundary layers in the stern
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II. Governing Equations and the Jacobian of the coordinate transformation is given
by

tion, the incompressible Navier-Stokes equation are written J = det xC yC z
in conservation law form for three-dimensional flow as Lxq Y11 zt)J

Qj + (E* - E) + (F" - F') + (G* - G 0) = o (1) The Cartesian derivatives of the shear fluxes are obtained
by expanding them using chain rule expansions in the C, , /

In Equation (1) the dependent variable vector Q is defined directions.
as The Jacobians of the inviscid fluxes E, F and G are

Q = (p, u, v, w), needed for the flux-difference splitting and for the implicit

and the inviscid flux vectors E*,FG* and the viscous algorithm. The Jacobian matrices in the different coordi-
sn the nsd flux vectors E ,',GGandathegivscous nate directions are obtained as the linear combination of
shear flux vectors E ,F, G are given by the Cartesian Jacobian matrices as

E* = (fu, U2 + Ps, , UW)T D = a1A* + a2B* + a3C"

F* = (/3v Uf, v, + p, vw)T

G= = (Olw, uw, vw, w2 + p)T where D = A, B, or C with A = -, B - -, C =
Ev' = Re-'(Or,rXj XZ)T  (2) , and (ata 2 ,a3) are the row vectors of the T matrix. For

the Jacobian matrix A, a, = Cx/J, a2 = (,/J, a3 = WJ,

F.'= Re-(,TxT,r 1 ) "  and so on. The Jacobians in the Cartesian coordinates
= Re - (0, rarz&,rzz) T  themselves are

The coordinates x, y, z are scaled with an appropriate char. 0 Pu 0
acteristic length scale L. In Eq. (2), the Cartesian velocity I 2 0 0
components u, v, wv are nondimnensionalized with respect to

the free stream velocity Vo,, while the normalized pressure W 0
is defined as p = (P - &)1pV)/. The kinematic viscosityiis assumed tohbeconstant, and the Reynolds number is [!Off !

defined as Re = - The artificial compressibility pa. F' 0 0 V u
rameter B monitors the error associated with the addition 5 2v 0
of the unsteady pressure term in the continuity equa-0

tion which is needed for coupling the mass and momentum 0 0
equations in order to make the system hyperbolic.8Gw 0

For largevalues of ior whenuthe solution of Eq. (1) has C3" = - 0wv

approached asymptotically a steady state, the continuity 0 0 2w
equation is accurately satisfied. However, the choice of fi
is also dictated by the important constraint of thle stiffness The eigenvahues of D are

of the partial differential equation as discussed in Ref. 9.Htence, fi = 1 has been chosen uniformly in the present A = diag (A1, A2, 3,X1) = diag (U - S,Ug + S, U,U)
computations. where U is the contravariant velocity component in the cor-

To develop the equations in a general curvilinear coor- responding coordinate direction given by
dinate system, a coordinate transformation of the form

U = amu +a 2v + aaw,
(= ((X,y,z), = (x,y,z) and q = i(x,y,z)

and
has beeni considered. Eq. (1) is rewritten in strong conser-

vation law form as S = [U2 + 2 (a+ + a+)]'12  = S(u,v,w,aia2,aa)

(Q/J)i + (E - Ev)C + (F - F,) + (G - Gt)n = 0 (3) The Jacobian matrices in different directions are diag-
onalized using a similarity transformation D = RAR -1 to

with obtain the eigenvalues of D. The rows of R- 1 and the
(E,F,G)T = (T] (E*,F*,G*)T columns of R are computed such that they give an or-

and thonornal set of left and right eigenvectors. The gener-

(E,F,G)T = IT) (E,Fv, G*)T alized similarity matrices R and R-1 are given by (Ref.0)
where

I [ fC(' 0 0 1
,T1 Z .Y%. 630+ uAi &1# + uA2  -a2 !3

1Z .1 + vAj a2P + v 2 al + -a

[6f+Wi 49+V2 -2 3
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and

Il a2  a3
R-1 a a2 a3  j
0 ( 2d + d2)/# -2 2/k - aids -2§ 2/k - a2dS -a3ds

( 2d3 + Id4)/P -2 2/k - aids -a 2d -20 2 /k - a3d6

where k =a, a2 + &3, atl-- +a etc. and Discretization of the Inviscid Fluxes

Consider a system of quasi one-dimensional, hyperbolic
dl = (ral - r21)/k, d2 = (r 32 - r22 )/k, d3 = (r41 - r21)/k, partial differential equations

d4 = (r 4 2 - r22)/k, ds = di + d2 , and d5 = d3 + d4  (Q/J)t + He = 0 (4)

Quantities such as ri represent the ith row and jth column where 0 =, ,or qi. Defining computational cells with
of the B. matrix and § = S(u, V, w, a) ,a2 1 43), their centroids at I = - and their cell interfaces at 14-:1/2,

In high Reynolds number flows, it is appropriate to a discrete approximation to (4) is written as,
make use of the thin-layer approximation. The justification
for such a simplification can be found in Pulliam and Steger
(10). Consequently, all viscous derivatives in the il and (-)AQ" + AIH =0 (5)

direction (along the body) are neglected. The viscous

shear flux G, (norial to the body) and its Jacobian can where At is the time step AQ1 = Qn+1 - Q, and A( ) =
be derived after Steger (11). That produces the coefficient [( )+1/2 - ( )t1-./2/A 0 . Superscript denotes the time level
matrices at which the variables are evaluated.

0 0 To construct an approximate Riemann solver for the

(Re. J)-I 40u, + 02n?1 initial value pioblem in Eq. (5), each variable is regarded
v - -V, + 02 Ily as an averaged state in each cell so that the flux difference0P w" + ?1 21 is preserved in each cell and Eq. (5) can be regarded as an

integral rather than a differential law. According to Roe's

and scheme (12), the flux at interface 1 ± 1/2 can be expressed[0 0 0 0in terms of the left and right travelling waves,

S= (Re. 0 Z22  32  Z42  Hit1 / 2 = Ht 4. (AH: 1 /2 ) (6)
OQ = e J 0 Z32  Z33  Z43 

1

0 Z42 Z4 3  Z44  Using (6) we can write (5) as

with (-j)AQ' + AH 1 / 2 + AH+1/2 = 0 (7)

= 02 + k + 3 ru2 =" + 27YVn + 7Izlu) Equation (7) relates the development of Q at the centroid

2.= +12 + 1 1 to tihe waves at tile interfaces according to their propagation
1 +3 directions. Defining a mean vadue matrix according to Roe

Z42 741 3 12+41 (12)
3 + +1 D11/ 2 = D(Q,,Q,+)

Z 43 = 12 Z-4 = o1t2 + a 2 so that
D1:h/,.Ai~h/2Q = AH11:1/2,

The inviscid fluxes , tile viscous shear fluxes and their Jaco- Using tile above we can write (7) in delta form as
bians just obtained in this section are ready for discretiza-
tion later. [(-L -(D _ /) A + + (D n) l12 Q

III. Numerical Flux Differencing [( 7 1 + 1

= - n )D "-( A_1 / ) _
It is well known that upwind schemes possess an in- (+8/) A+1/2Q + /2

herent solutionadaptive dissipation that eliminates the ad- where
dition and fine tuning of artificial dissipation terms for nu-
mnerical stability and accuracy required in schemes based = (RAR-),:1 2 = (R(A+ A-)t-l n
on central differencing. Il tile present approach the invis- -1 /2-1l/2)
cid Iluxes are discretized by using Roe's flux-differencing and
splitting concept (12) and the viscous fluxes are discretized (D 1 /2 )= ( A--),+/
by time central differencing techlique. We shall discuss the

numerical discretizatiol scheme in one dimension and as. (D+_/ 2)" - (RA+-1)1-/2
semble then together for three-dimensions. with

A: = (IAI ± A)/2.
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The construction of DI1/2 is accomplished in two where

steps. First, the analytic Jacobian D = OH/OQ is formed.
D is found to be a function of metric coefficients, of time and
parameter P, and of the state vector Q

f (A_ 11 2 VV/A 1 +1 1 2W,)±, for A 1 31 I 2 lW, 0
D = D(a,b,c,3,Q) rni 10, for A1:I2W,, = 0

where a,b,c are the metric quantities /J, ,/J, /J, Extending this TVD scheme to non-linear hyperbolic con-

etc. Second, the local values at 1 /2 , b±/2, C10/2, and servation laws, we obtain

Q', / are computed at interfaces and fed into D to form-
In addition, in order to ensure that the flux differ - (A +iAI+m/z (At, /WAI-1,2) , =

ences taken over the six bounding surfaces, (i ± 1/2,j,k), I

(i,j4 1/2,k) and (ij,k- 1/2) ofa three-dimensional cell -

at (ij,k) cancel out completely so that the present finite {A-,+1/2 - [(1 - wS.,=,1+1/ +t(1 +W)r+,+l/2J

difference formulation essentially becomes a finite voulme -

method, a special weighted averaging procedure has been
adopted (9), for example, {'At+I/2 + - + (1 +)A-,,

(IJik= [(ukbjY)(abkZ) - (ajbkY)(Cok6jZ)jj xQP-,1 - ~~)4" 1 m 2 1 ~ (1

where The extension of Eq. (11) to a nonlinear system of conser-
ak63y = [(bjY)k+1 + (8jY)k-1/2 vative laws is obtained in two steps. First, the nonlinear

with equivalent of Eq. (11) is formed. then it is multiplied P.

6j( ) = [( )+l - ( )j-,]/2 throughout from time left to get

The advantage of the delta form formulation is that [(. -(D+/, 2At+ 1I2 -D+_/2AI-/2 )] AQn=
the steady-state solution is independent of the time step LAt J

size At. Time justification for the accuracy of Eq. (8) as
the approximate Riemann solver for the present problem is (RK-R ')1 + 1 2 A+1 +1 2 Qn- (12)
given in Ref. 9. (RK+RL-1/2A1-1/2Q

n

In order to ensure that the present scheme has a high where
resolution capability, which is equivalent to preserving To-
tal Variation Diminishing (TVD) property for a nonlin- K 1  { 1 2  + ( 11/21

ear equation, it is necessary to construct a quantity sub-

ject to TV requirement. For a linear problem such as the ( 4
I
1 ))n

one described above, tihe TV of the characteristic variable 4

W = R Q can be forced to diminish in time. Assuming and
R,R and A to be constant and using the definition for C' = dia 1 2 03' ,04)1

the characteristic variables, the scheme given in Eq. (8)

can be rewritten as Discretization of the Viscous Fluxes

[-!J)] ± A A 1 I /I To discretize the viscous fluxes, the derivatives at the
Al (9) cell interfaces are approximated like

(t = 1,2,3,4) (U )j+ /2 = Aj+1 1 , etc.

The above equation comprises four scalar linear equations.
To enhance the accuracy up to third order, the characteris- wherever possible. Otherwise, they are computed from the

tic variables 14'" at the cell interfaces are reconstructed by central differences at the two nearest neighboring points,
using piecewise linear distributions as described in Ref. 9. such as

We then obtain a family of implicit TVD schemes (iq)j+jiz = 0.25 Kui+m - uj~1 )j+m + (u1 i - ujmh1

± AIM" = The above one dimensional discretization scheme can

L i be used to estimate the interface-flux function in multidi-

[Am- -{(1 - w)A- + (1 + w)A+  mensional problem. The discussions of the extension of the
n {(1 - +(+fluxes differencing and TVD schemes from one-dimensional

- O.)/4 AI/ 1 '12 ,' to multi-dimensional application can be found in Roe (13)
1 (10) and Yee (1,1). Our present strategy is to sum up all inde-

- [m + {(1 - w)in + (1 + w)A pendent discretizations of time flux derivatives in each coor-

x r ,i n,-1)/] At-m/2l, , dinate direction to form a three-dimensional formuation.
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Time Differencing and the Implicit Scheme and the iesidual on the RIS indicates the nonlinear up-
dating of the residual by using Q"+' whenever it becomes

The backward Euler time differencing of the three- availabe while sweeping in the C direction back and forth
dimensional conservation equations with the thkin-layer ap- through the computational domain.
proximation is Turbulence Modeling

t =[A (E.+1 ) + A (FL+I) + A,1(G, +l - G"+l1 For laminar flow comlutations tile coefficient of molec-

(13) ular viscosity p = /t, is obtained from Sutherland's law.

Linearizing it about time level n, we obtain Turbulence is simulated using the Baldwin-Lomnax algebraic
turbulence model. For turbulent flow computations the

+E (OF n  + (OGI - OG" . laminar flow coefficients are replaced by,[ +-- )A¢+ (-2-L)A + (2E- )AA

- (A(E") + A(F") + A,(G - G")] /i = Jl + /'t

The turbulent viscosity coefficient yi is computed by using
The left hand side is the implicit part and the fight the isotropic, two-layer Cebeci type algebraic eddy-viscosity

hand side is the explicit part of the fo mulation. The ex- model as reported by Baldwin-Lomax. In this formulation
plicit part is the spatial derivatives in Eq. 3 evaluated at it is given by
the known time level n ; its value diminishes as Ihe steady
state solution is approached. Hence , it is also called tihe = (11)inner Y < Ye
residual . The L2 Florin of tile residual is often used as 1 =  (It)oter Y > Ye
a measure of convergence of a solution. Discretize the in-
vist.,d and viscous fluxes according to upwind diffememcing where V is the local distance measured normal to the body
scheme and cential differencing scheme respectively in , surface and y, is the smallest value of V at which the val-
and y coordinate direCtion independently according to Eq. ues from the inner and oute regioni viscosities are equal.
(8) and then assemble thein together. Eq. (14) becomes Within the inner region, the Prandtl-Van Driest formula-

tion is used

-A7' 12 i+1/2 + A,+ 1
/
2 A.._/m2  (m)biter = 121WI

where I = ky[1 - e-(Y+/a+)] and jwj is the magnitude of
-B7+mlAj+1/ 2 BJ1 /-2 Aj-/ 2  vorticity given by

-(C- + Z)k+1/2AA,+1/ 2 + (C+ + Z)k-1/2Ak1/ 2 ]j"AQO

+es(Q") - +
(1,5) ay a O y x O

where ij, and k are spatial indices associate with the , ij
and ( coordinate direction. A':,B+,C1:,and Z are 4 xl and V+ = (y+ t,)y•
block matrices ( flux Jacobians) associated with implicit In the outer region, for attached and separated boundary
spatial differencing in the coordinate directions by evalu- layers, the turbulent Ascosity coefficient is given by
ating tie metric terms at cell interfaces in each direction.
Eq.(15) is solved by an implicit hybrid algorithm, where (2t)oumer K~cpFwakeF~e5(J)
a symmetric planar Gauss-Seidel relaxation is used in tihe Fwake =min(nazF,naxCwkYma UdJt/Fmaz)
streamwise direction ( in combination with alpproximate FIeW(Y) =[1 + 5.5(CJCeb/Ymaz) 6 J'-

factorization in the remaining two coordinate directions
and il. It is used to avoid the At 3 spatial splitting error In the above equation k and Gep are constants and
incurred in fully three-dimensional approximate factoriza-
tion methods. The hybrid scheme is unconditionally stable Fm+Ix = mAaxwlt(1 -

for linear systems and offers the advantage of being com-
pletely vectorizable like a conventional three-dimensional and pmaz is tihe value of y at which l",ax occurs. The quan-
approximate factorization algorithm. As a result, Eq. (15) tity Udf is time difference between maximum and minimum
becomes total velocity in the profile

[M-(B-)1+i2 Aj+12 + (B+)j-1/2Aj1/ 1]AQ UdiS = V/(2 + V2 + W2 )ma, - V/(Z2 + v2 + W2 ),.nj

= - Res(Qn, Q+l) The various constants in the model are given in Ref. 15 as

[M-(C- + Z)k+/ 2A+m/ 2 + (C+ + Z)k-/ 2A-l/ 2 1AQ n  A+ = 26, k = 0.4, IK = 0.0168,

=MA4
(16) and

Qn+I = Qn + AQn Cp, = 1.6, Cw, = 0.25, CKteb = 0.3

with I
M = -"+ (A-)i+12 + (A+)j-1l21.
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IV. Grid Generation A viscous grid with C-0 topology around the body is gen-
erated by a transfinite interpolation method. Grid domain

An algebraic grid generation procedure based on trans- extends to three body lengths both upstream and down-

finite interpolation technique has been used to generate stream of the body. Figure 2 shows a partial view of a

the viscous grid around the hull geometry. The three- C - 0 grid around a generic body. The grid size used

dimensional grid generated around the body is of C-0 type. for presented simulations is-01 x 25 x 4i in C (stream-

The C-0 gril is particularly needed to adequately resolve wise), il (circumferential) and . (normal) direction. In

the wake region. Details of the theoretical aspects of the the e direction, the grid is clustered near thebody with the
transfinite interpolation method and the various mapping smallest grid spacing 5 x 10- 4 of thebody length. In the
functions and their behavior in grid control is highlighted il direction, the grid is clustered near the bow and the stern.
in Ref. 16. The method is fundamenttally a two body grid Grid sizes used for all three segments (45°, 0 and 1800 )
generation plocedure. The stern shape could be either open are identical. Consequently, we can perform computations

or closed. A modified osculating interpolation function has based on three different grid densities. in- the t direction.
been used in the present program. The differences among the solutions-are negligibly small,

therefore, only the results based on the 900 segment will
V. Results and Discussion be presented here. In all our axisymmetric flow computa-

The hydrodynamic characteristic of the boundary layer tions, the mixing length of the-turbulence model has been

flow around the stern of a ship is quite different with and modified according to Huang et al (5).

without a propeller in operation. The action of a propeller A detailed analysis of the measurement accuracies is

produces suction that accelerates the flow upstream. As a not available. However, the standard deviations of mea-

result, the pressure and the skin friction drag around the sured data were estimated from repeatruns. The standard

stern increase and the thickness of the boundary layer de. deviation of the measured static wall pressure was less than

creases. The knowledge of the effective flow profile near the 5 percent of their mean values and the deviation of the mea-

propeller plane and the amount of the added drag is essen- sured velocities was less than 2 percent of the free -stream
tial for designing an efficient propulsor. in the past, exten- velocity (19).
sive efforts have been made to study the interaction between The experiments of flow over Afterbodies 1, 2 and 5
a propeller and a thick boundary layer experimentally and were carried out at Reynolds numbers of 6.60 x 10 ,6.80 X
computationally (4,5,6,7,8,17,18). For the reason of sim- 106 and 9.30 x 101 , respectively (based on total body
plicity, in most cases, axisymnetric bodies were chosen. At length). Figures 3, 4 and 5 show the comparisons of the
present, we perform the numerical simulations of flow over computed and the measured pressure distributions over the
DTRC Afterbodies 1, 2 and 5 without a propeller. In addi- surfaces for Afterbodies 1, 2 and 5, respectively. The body
tion the flow over afterbody 1 with a propeller in operation profiles are included in the figures in order to show the
is analyzed. The results are then compared with available relationship between-the pressure gradients and the stern
experimental data. The purpose of the simulations is to shapes. At the region near the end of the body where the
develop and validate a numerical scheme for analyzing the stern and the hub meet, the computed pressure shows a
complex interaction between bc, udary-and propeller. The sharp decrease followed by a equally sharp increase. Based
details of the afterbodies are shown in Fig. 1, where rmaz on some different numerical schemesi this peculiar feature
is the naximnum radius of the body, r is the radial distance has also been encounted by Chen and'Patel (18) and Lee et
measured from the body axis, x is the axial distance from al (20) in their computations. Chen and Patel attributed
the nose and L is the total body length. The afterbody such phenomenon to the rapid change of geometry near the
length to maximum diameter ratios of all three afterbodies hull.hub juncture as well as the upstream influence of the
are different; they are 4.308, 2.217 and 2.018 for Afterbodies complex pressure interactions in the tail region. A solution
1 2 and 5, respectively. here, the afterbody length is de- we obtained with a panel method exhibited the same fea.
fined is the distance between the end ofthe parallel middle ture, as long as enough panel resolution around the hull-hub
body znd the after perpendicular. Furthermore, Afterbody juncture region-was provided. Unfortunately, the experme-
5 has an inflected stern. The hubs of all three afterbod- ntal data lack the resolution needed to verify this feature.
ies are identical at the position where the propeller can be Figures 6, 7 and-8 show the comparisons between the
mounted. The different stern shapes generate a large data computed and the measured velocity components at sev-
base variation of stern flow suitable for-the purpose of val. eral streamwise locations for-afterbodies 1, 2 and 5, respec-
idation of the computational scheme. tively, where r. denotes the radius of body surface . For

Afterbody 1, the agreement is very good. The computa-
Flow over Axisymmetric Bodies tion predicted the development of the boundary layer very

Flow variables such as pressure and velocity comipo- well. For Afterbodies 2 and-5, the-agreement in general is
nents of an axisymmetric flow are independent of circumfer- good, except the radial velocity profiles which are less sat-

ential variation. They can be obtained through a set of de- isfactory. The agreement deteriorates as the measurement
generafed equlations based-only on two spatial-dimen!sions. location moves further downstteam The radial.,velocity
lowever, in order to validate the three dimensional formu- component is relatively small and is more difficult to mea-
lation we have just presented, full three dimensional com- sure accurately. For both Afterbodies 2 and 5, the maxi-
putations over three different segments of a body are per- mum difference between computed an'd measured values is
formed. The sizes of the segments are 450, 90 and 1800 . about 4 percent of free-stream velocity. The error bound of
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the measurement is 2 percent. The measured axial veloc- in operation at two streamwise locations are shown-in-Fig.
ities for Afterbodies 2 and 5 are progressively slower than 9 . The measurement locations are at x/L = 0.954 and
the computed velocities as the end of stern is approached, x1L = 0.977 . The agreement between the computed and
although the difference is small. Near the end of the stern, the measured. values is very good. The differences in pres-
the measured axial velocities for both Afterbodies 2 and 5 sure distribution on the afterbody surface upstream of the
show an inflection point which is not captured by the coin- propeller plane-are shown in Fig. 10. The results of the
putations. The pressure gradient of the stern boundary computation are to the same degree of accuracy as those
layer is directly affected by the fullness of the stern shape. reportedby Huangand Groves (7). The swirl velocity was
The stern of Afterbody 1 is the least full among all three also computed but due to lack of experimentaldata to com-
bodies studied here. It caused only a mild adverse pres- pare with, it is not presented here.
sure gradient in the boundary layer surrounding the stern
region. This may explain the reason why the simulation for Flow over Tangent-Ogive Forebody
Afterbody 1 is the most successful.

In each computation presented above, 220 iteration With the same numerical scheme discussed above and a
steps were taken. The L2 norm of the residual dropped modified turbulent model the flow over a 3.5 caliber tangent-
two orders of magnitude from 10' to 10-5 . 220 iteration ogive forebody was studied (21) at angles of attack of 200
steps were chosen since further iterations produced only in- and 300 and at Reynolds numbers in the range 0.2 -
significant variations. Each computation requires 17 CPU 3.0 x 106 . The purpose of the study was to investigate the
minutes on a CRAY-YMP machine. Reynolds number effect on low speed vortical flow and to

validate the numerical scheme, A C - 0 type grid was

Flow over an Axisymmetric Body with a Propeller generated for the purpose of computations. The grid size
was 97 x 40 x 91 in C (streamwise), (normal) 'and

Flow experiment for an axisymnmetric body with a pro- n (circumferential) direction. Fig. 11 shows a comparison
peller were conducted at DTRC by Iluang et al(4,6,7). A of the computed and the measured surface flow p'atterns
propeller was mounted on Afterbody 1 at x]L = 0.983 . at a Reynolds number of 0.8 X 106 (based on diameter)
The geometrical and hydrodynamic characteristics of the and an angle of attack of 200 . The lines indicate that
propeller are given in iuang et al (4) and Iluang and Groves the primary separations are in good agreement. Top views
(7). The experiment was performed at a Reynolds number show two distinct regimes in which the surface streamlines-
of 6.6 x 106 (based on body length). appear to collocate. Figure 12 sl:ows a comparison of-the

Numerically, the propeller effect is simulated by imbed- computed and the measured circumferential surface pres-
ding body forces in a disk of finite thickness lorated in the sure distributions. The Reynolds numbers are0.8 x 106
propeller region. The details of this type of formulation and 0.3 x 106 and the angle of attack is 300. The Reynolds
can be found in Stern et al (8). Distribution of body forces number effect is more pronounced on the leeward side, near
depends on the propeller's characteristics such as, thrust tie nose. The agreement is good.
coefficient CT, torque coefficient KQ, advance coefficient
J and radial circulation distribution G(r). The axial and VL Conclusion
circumferential body force per unit volume are obtained
from the following equations: The 3 - D incompressible Navier-Stokes equations was

= CTR2PG(r) discretized by the flux-difference splitting and the'implicit
fb itGrG high resolution schemes. A discretized system of -equa-

4AX f1 G(r)rdr tions was solved by an implicit.hybrid- algorithm, where

4KqR3G(r) a symmetric planar Gauss-Seidel' relaxation was used in
fb8 = time streamwise direction-in combination with approxima-

2 flp G(r)rdr tion factorization in the two remaining directions. The al-

where fb, and fbe are the body forces per unit volume in gorithmin is highly vectorizable and suitable for computation

the axial and circumferential directions, respectively, Rh on a modern supercomputer.

and R, are the radii of propeller hub and blade, respec- For the simulation of afterbody boundary layer flows,
tively, and AX is the thickness of the disk. The following this method is proven to-be effective. Inclusion ofthe bodly

propeller data were used in our computation: force propeller model poses no additional probledi. T." 83-
tain a converged solution with time propeller model included,

J = 0.370, KT = 0.227, Kq = 0.0453, CT = 0.370 it does not require more iteration steps'in comparison with

The computed body forces are then incorporated into the the case without including a propeller model. tbme;metlod

right hand side of Eq. 16 and fcrms a part of the residual. was also shown to simulate low speed vortica--flow with

Based on the identical grid size and grid distribution used good results.

previously, a computation was carried out for 220 iteration Acknowledgement
steps. The L2 norm of the residual dropped two orders of
magnitude from 10-

3 to 10-5 without suffering from any This study was supported by The Office of Naval Tech-
numerical instability. nology. The computing time of CRIAY.YMP was provided

From the results of the computation, the influence of generously by NASA Ames Numnerical Airodyk nic SiMu-
propeller action can be detected up to about two propeller lation (NAS) Program.
diameters upstream. The differences between axial veloc-
ity components Au=/V, with and without the propeller
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Grid Generatibn and"Flow Compultation for Practictal'$hip. Hull'Forms
and Propellers. Using the Geometrical- Method and the IAF S chemne

Y. Kodia
Ship ResearchInstitute,

To~kyo, Japan.

Abstract 'the-flow are discretize&iiid. 'comput ed, are becoming
increasingly popular [A[3]-[4]. Thg-ituthor :previously

Grid generation for ship hulls and-a propeller-blae computed the floW past a Wigley-hull using-the non- -

was-nade using the geometrical method, where an ini- conservation form of the-9S solver [6]. The pr~esent work
tial grid- is modified iteratively under-several geomet- is an extension of the previous work. The major cha ,nge
rical -requirements such as orthiogonality, smoothness, is in the use of the conservation form. The scheme
and clustering, is called the IAF scheme-[6], which is-widely-used:-for

Using the generated grid, -the computation of the .Computing comnpressible flows, Pseudo-compressibility
incompressible Navier-Stokes equations' was made for is introduced~n the continuity equation of the -incoffi.
flows past a flat plate and four diffrenit ship~huilforms prsi-efoi todro make the system of equations
using the JAF scheme and, the -BaldWin-Lomax zero- hyperbolic, -A conservative- 2nd-ordercentral differenc-
equation-turbulence model Th6 hull formschosen are A ings, are used for convection and- diffusion terms, and
Wigley hull and Series 60 (Cb"-0.6,0.7,AQ;8 huls. Prior 'the 4-th order numerical dissipation terms are expicitly
to the ship flow computation, the 'flow around a flat addad-to the equations to damp out high frequency- wig-
plate was corfputed, -wheie theAgreenment of.the corn- gles.
pitted -result with experiment was very good -ift terms Tedge facrco-optd eut fN
of the wall shear stress, displaerent thicknes,-hp Thler dsegeed ofth a uay of thepgrid rus of:NS

fatr n eoiydistribution. T- cops e, saeflow.safctdb-h qaiyo tegi se.Tee
factr, nd eloityT le -oin~itd~fow. fore, Wis important to b6-able to gendrate grids of-high-

past a-Wigley hull, whichiis not-vdr3: different- rom-tlie -q ialityj.in order to obtaitigobd computed,-results. -In
flat plate-result, because of its>-flne-hiill forfm, showed"

goo-~eeeit it epeimnt. heom uedflw e- pi -tpaper,agrid, genieiration-, met hod- called- the
poareft withe experime 0, nts.) Thull omu sowd geomietrical mhethod is used 'It is an extension of-the

pas Seris 6-(Cwith .1 the O.8 hbrlc coffiin values- method ,used by 'the author- previously [7] Using the
systematic change wtth bbckcefln vus. method, the grid on a propeller'blade an-d the grids
Thie computed Cb=0.64-esult-showed reasonable agree- ar6una;shiphlsa'&nied
ijient with-ekperiments. Jowe-Vir, -the agreement -be- -~ hls~gnrtd-

-tame poorer with increase in- tteCb vls(=o ) Although the use of'NS solvers greatly reducestlh-
need-for expeiimnental -infokpiations, a urbulence ni 1 0,

I. Thtrducii6 ~is- still needed,.for c oijg-high- Reynolds -Iib& --

- -fkw such as thosepast sh'plitills. The turbuleike miod-
Prediction of flow p shsipihullhas been an iin- els fidely used tqday-inenieeig Applct-n ae-

portant subject in ship hydrodynamics -because of its thdCebeci-Smith;-'CS) ier'lo.quatifi-turbulenc-jnodkl,
-ir.tical-impQ-rtna-cr -If onc zucceeds in accurate piro- 8,idtuk-tio-oiatioii i~~~] Ii~~ersn

didion of'tlie-ffow, one can get at resist~tce value t6,be paper the BAdwin Lornax (P3L)- zery- 'quatioj-turbut-
used -in pownkirit, and te wake field a the propjeller -lenc6 model derived byYriiking mdfcf,0 the

paetbeused in propeller performn~ce estimationi. CS model, ris.-used; TIhere, in -C'ontrattteoiia
A classical, approach to the above probldni is,(Ite CS model,, -the -necessity 'for flifg The- bdge -of t lie-

boundary-layer method [l.But recently, aided ~y bouridaiy-lay~er is avoidad. The mbdlis wkkbly used;
the rapid -de'-elopment of computer -hardware, ifiethiods f~t comput~ig-compresoble flows in 'tl- ficla'of-aprody..
called NS solveed, in %Ohlii the governing equations-of fiamits, aitdi' said to'be atccu( &i for~uii epjarate l'glws,
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but poor for separated flows. One of the objectives-of Coordinate transformation from the (x,yz) Carte-
the present work is to test the vHlidity of the tubulence sian coordinate system to the body-fitted , coordi-
Model for incompresible floivs past ship hulls, and to nate system is made to the governing equation eq.(2:1).
find the range of applicability of the model- by com- The transformation is assumed time-inidependent. The
puting flows past ship hulls with various degree of full- resulting equation is, again in conservation form
ness. Although further modification to the BL model
was published recently [10], the original BL model is q.(f) +G +ft =0 (2.3a)
used liere.

In Chapter 2, the NS solver is described, with dis- where
cussions on the conservation property, boundary con- F -F+ L G+-L-H
ditions, and the turbulence model. In Chapter 3, the J J J
geometrical grid generation method is described, where "'F + 7G+ "-H (2.3b)
the use of bi-cubic splines for representing a body sur- J J J
face geometry is explained. In Chapter 4, computed re- t = £ (F + + C' H
suits of flows past a flat plate, a Wigley hull, and Series J J J
60 Cb=0.6, 0.7, and 0.8 hulls are shown. In Chapter 5, J is the Jacobian, and all the x, y, and z derivatives of
conclusions are drawn. The flow past a propeller, which , r7, and C are expanded using the chain iule.
was originally planned, is not included in the present Numerical dissipation terms are added to the above
paper. equation to enhance numerical stability.

2. NS Solver
O ,()+ + fl¢w~q~ +q . +¢¢(),=0 (2.4)2.1 Governing Equations J +0

where woJs apositive constant. In order'that computed
The governing equations are the combination of the -results obtained-by solving eq.(2.4) satisfy the origi-

incompressible Navier-Stokes equations and the conti- nal eqiiation With'accuracy, these added terms mustbe
nuity equation. They are, in conservation form, small.

qt + F. + Gy + Hf = 0 (2.1a) 2.2,Dlj.cretization

where
'First, the -time derivative is, replaced by the time

[u [u '+ P-x1" [uv-r" 1 differencing. The PAdatime differencing form is used,
q= F = /- / 2 +pr,/ here.

P U - J Vw - "Y Oq, = A A1 A where Aq"'- qn+ -- n (2.5),

lA x: where qfl denotes q at timestep n. 6 is a-constant which
VW-r 1 (2.1.6) takes the value of'either 0 (Euler- explicit), 0.5. (Trape-uw i-- %(. zoidal), or 1.0 (Euler implicit). here 0=1.0 is adopted.

JW The fionlinear flukxteris, AF, AG, 4f1 are locally lin-
earized.in6tefr o.eape

where all the subscrits except those with r denote par- - - intohe form, for, example,,

tial derivatives. The 1st, 2nd, and 3rd components are +
x-, y-, and z- momentum equations. In the 4th compo- AF =, A~q+ A Aqj + A"Aq, +A AqC (2.6a)
fient, which is the continuity equation, 8 p/Ot is artifi-
cially added to give pseudo.compressibility,thus making where A = -F A f A" -, A (2.6b)
the sytem of equations hyperbolic. )3 in the equation is :8q = oq' A 84" (.)
a positive constant. The shear-stress terms - are ex- Then the governing equation becomes
pressed as follows.

Aq-+OAt[ Je( AAq + A(Aq + AAq*, + ACAqC)

=. + i'q)2u.., Tr.,= - + pt) (,u, + v.) +J(lA q "q,+BA~
Re ~Re + J (-q+-!&j+ 3?-l+ cA

= r; + vt)2v, ,~ r. = + vi) (w. +u,) (2.2) + J~(Cq+ C1 Aqf +C"q,+ Aq)

-r,, =("L + v)2w.,,= (- e - 1i) (v, + w) + w( Aqfjj( + A + Aq€(€€)]
Re= -ARt(e + 6,, + + w(q,( + q,, + q,,,)](2.7)

where vi is the kinematic eddy- viscosity.
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The mixed derivative terms such as O(AnAq)/O N = 9At[J( A+ 1 2 + Af€ 1/2) - 4w!]
are lagged to the timestep (n-1) and evaluated time- 0 = OAtW1
explicitly. Then the above equation can be approxi-
mately factored into -, r,-, and (-sweeps. The above set of equations form a system with'block
-swecp a pentadiagonal coefficient matrices, and can 'be effi-

{I + -[J--(A+ + ")Aq* ciently solved. The coefficient matices K, L, M,,,:and
0) w - 0 for Y7- or (-sweep are obtained by-replacing (A, A)

= -At[J(FP + 6, + ftc) + w(qf(4 + qun + q(¢¢C)]n with j,B, Bh) or (k,6, 6C) in the above equation.
As a consequence of the approximate factorizatioh,

-9AtJ[(A Aq,, + A(Aq¢)¢ + (BLAq + BCAq¢),, each line of block pentadiagonal system in any of. the

+(6'Aqf + &GAq,)(]jll (2.8) three sweeps is decoupled completely from others,:rand
therefore highly vectorized coding is possible.

rI-sweep The use of the differencing forms shown in eq.(2.12)
results in the global conservation of momentum and
mass in the discretized form. As shown in Fig. 2-1,

{I+OAt[J-(b+B i-)+w -4 ] }Aq* = Aq" (2.9) where the area covered by a discretized governing equa-
tion at a grid point is shown hatched, all the numerical

(-sweep flux terms are evaluated at halfway between the grid
points, and therefore cancel out when they are summed

{I+OAt[J-(6+6C _)+w-4]"}Aq" = Aq*" (2.10) up, thus the global conservation holds. The added nil-
a( 0( 0(4merical dissipation terms, having constant coefficients,

Aq" and Aq*" are intermediate variables defined as the cancel out when they are summed up, and therefore do

above two equations. I is a (4x4) unit matrix. After not affect the conservation property. However, there is

the above three equations are solved, the variable qn is execption in this conservation property. In the zone be-

updated using eq.(2.5). That is tween the boundary point and the halfway point next
to it, the conservation property does not hold unless the

q,+l = q + Aq" (2.11) boundary condition is made consistent with the conser-
ation property of the governing equation. In-the present

In order to solve eqs. (2.8) to (2.10), spatial differ- computation, this consistency is not satified, and ther-
enciation has to be approximated by spatial differenc- fore the conservation property holds not all the way
ing. Here the following 2nd-order central differencings down -to the boundary point but to the halfway point
are used. next to the boundary. The same is true to the nu-

merical dissipation terms, since they cannot find their
S + + (2.12) counterparts to cancel out near the boundary.

2.3' Boundary Conditions=t- - 4r('+ °j - E+' +E+
Fig. 2-2 (a),(b),(c) shows the grid topology and the

E+" is a shift operator in c-direction defined as location of the boundaries. The x-axis is in the stream-
wise direction, with x=0.0 at F.P. and x=1.0 at. A.P..

E+'%jq, ~k E qi+mO (2.13) The z-axis is in upward direction, and the y-axis is in the
lateral direction, forming a right-handed system. The

where (ij,k) are the numberings in -, rt-, and (- direc- grid system is in the negative y and negative z quarter.
tions respectively. Sinilar central differencing operators The grid topology is H-0. The -,tj -, and( - axes are
are used in 17 and ( directions. The non-staggered grid approximately in streamwise, girthwise, and normal-
system is used, i.e. velocity, pressure, and-eddy viscos- to-surface directions respectively. The star marks in
ity values are stored at the grid points. Substituting Figs. (a) and (c) are the point of mapping singular-
the differencing operators into eq.(2.8) results in ity. At. Upstream boundary, the uniform flow condition

is used. That is, q=(1,0,0,0)T and Aq=0. At Down-
KAq,._2 + LAq* 2, + MAqi + NAqi+ + OAqi+2  stream -boundary, zero extrapolation ifi C-direction is

used. They are qj=0 and Aqj=0. At (*-z) and (x-y)
[RIIS of (2.8)] (2.14a) symmetry plane boundaries, zero-derivative condition

K = OAtwI is used,, instead of an exact symmetry condtion. That
L = OAt[J(-!A,_/2 + A!_112) - 4 /] is, q,=O and Aq%=0. At Inner boundary, the solid wall

2  +6- w!]boundary condition is used. They are u=v=w=O and
M = I + OAt[J(- A,_j12 + ' + +/+ A1/) an approximate boundary ondition for pressure, which

-2+ I /2 A+/ 2 is pc=0 and Ap(=0. Finally, at Outer boundary, the
+GWI] (2.14b) uniform flow condition is used.
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2A 'Dirhulence Model 3.1 Body Surface Grid

The turbulence model used is t lie Baldwin-Lomax In the grid generation method, first the surface
(BL) zero-equation algebraic model, whose original grids at inner and outer boundaries are generated. The
form is the Cebeci-Smiih (CS) model. The kinematic inner-boundary usually corresponds to a body surface.
eddy viscosity vt is evaluated in the ,nner and outer lay- The body surface geometry is represented using para-
ers separately. metric bi-cubic splines. Then the grid points on the sur-
In the inner region, the kinematic eddy viscosity v,, has facecan be-shifted along-the surface according-to four
,the same form with the CS model, geometrical requirements, i.e., orthogonality, smooth-

ing, clustering, and minimum spacing. Fig. 3-1 shows

t. = 1" jw (2.15) a spline surface on--a Series 60 (Cb=0.6) hull, which
has been determined from. given offset points. Fig. 3-2

,with shows a surface grid on the same hull. Clustering has

been imposed toward bow and stern edges, as well as
1= kn[ - exp(-n+/A+)] (2.16) toward bottom and waterline edges. Orthogonality has

been imposed at all the four edges.

-
+ nR \/(2.17) The same method has been~applied to the surface

where wa is the vorticity and it is the'normal distance grid on a propeller blade. Fig. 3-3 (a),(b) show surface
wrothe wa I thericityan sth ormpu ati, dstne grids on a propeller blade before and after modifica-
from the wall. In the present computation, as shown tion. Clustering is made toward leading, traling, and
in Fig. 2-3, the normal distance i! is determined by tip edges, with various degree of clustering. Here all
projecting a vector connecting the point in concern with the points on the surface are allowed to move except
the root point on the same C-directiofline, onto- the for those at the four corners, and therefore highly flex-
normal vector defined at the root point. fo r geh e rat is f o si nh

In the outer region, the necessity offinding the edge ible grid generation is possible.

of the boundary-layer, which existed in the CS model, 3.2 Total Grid
is removed in the BL model. The eddy viscosity vto has
the following form. After the surface grid is generated, inatermediate

grid points, whidh are-the points between the inne& and
vt, = KC ,FklebmaxFm,,ax (2.! 8) outer boundaies are generated, by- simply connecting

the corresponding points on the innier-and outer bound-or 2na
vto = KCPk-FklebCWkUdif,2 n... (2.19) aries-with a straight line, and disributing points onit.

Fmax Then the initial giidismodfiediteratively under-the

with K=0.0168, Q, =1.6, and C,k =0.25. The smaller same geometrical requirements as those used in the sur-

value of the above two equations is taken. The quanti- face grid modification. The grid points on the bound-

ties Fma and nm,. are determined from the function aries are kept fixed.
The most im portant change since _ref.[11] is in the

F = n 1wj [1 - exp(-n+/A+)] (2.20)- combination 6f the grid point modifications. In the orig-
inal method, grid-points were shifted separately due to

The quantity Fmo is the maximum value of F that each modification requirement) whereas in the present
occurs in a velocity profile, and nn, is the value of n method the grid poins -are shiftedonly once in each
at that point. Ud,jf. is the difference btweeen maximum iteration as a result of the-combined shifts. The com-
and minimum velocity in the profile. bination is made with weights-which change locally ac-

cording to the local grid geometry. The parameter used
Ud,Jf = U, - Urn,, (2.21) to represent local -grid, geometrysis the aspect ratio of

a grid-cell. The value of the parameter varies greatly
where U,,,, is taken to be zero except in wakes. The depending on thelocation, since the grid is highly clus-
interinittency factor F1ceb is given by tered near the solid wall surface., Theminimum spacing

( requirement has been, modified. In the old version, ifla
rF~l~b = 1 + 5.5( (Ie max)

6  (2.22) spacing between two neighborifng'points in a certain di-
rection is smaller than a given, vaue, that spacinig- is

with QKtb= 0.3. made larger tothe given value-in that direction by~re-
distributing points along-tlrt directioiI-wi:lthitl tal5

3. Grid Generation length-kept unchanged. This requirement was found
to be too "active" in-some cases, especially near the

The grid generation method used is the geometrical solid wall boundary where the grid is highly-clustered
method. Since the method is described in detail in [11], in the normal direction. There -the re-distribution in
descriptions are limited here on-the modifications made the along-the-wall direction sometimes results in kinks
thereafter. in the other direction. Therefore in the present version
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the requirement has been changed to a "passive" one, using a highly vectorized code. At varied from 0.005
where, if a grid spacing is found to be smaller than a NTU (Nondimensional Time Unit) for-the Wigley hull
given value, the modification which makes the spacing case, to 0.601 NTU for the Series 60 Cb' 0.8 case. It
even smaller is made zero. took approximately 4 to 5 NTU to reach the steady

After the grid is modified according to the foure state. It corresponds to a day or two in the real time.
requirements, the final grid for high Reynolds num- The grid generation and post-processing were made us-
ber flow computation is obtained by re-clustering. ing interactive graphics on the Sun-4/260 engineering
Re-clustering is the process in which the grid is re- workstation with 32 MB main memory.
distributed, in a single sweep, in the normal-to-wall
direction according to a given minimumm spacing ad- 4.1 Flat Plate
jacent to the solid wall and a new given number of grid
points in that direction, making the information inher- Fig. 4-2 shows the flat plate grid. The grid was
ent in the original grid point distribution reflected in generated based on the Wigley grid at the (x-z) sym-
the new distribution. This process makes possible to metry plane, with y values made zero on the hull sur-

use smaller number of grid points and much larper min- face. The coordinates are nondimensionalized using the

imum spacing near the solid wall in the iterative mod- length of the flat plate. Transition switch in the turbu-
ification stage, thus making the grid generation much lence model has been suppressed, i.e. the flow is as-

faster and easier. No change has been made to the re- sumed turbulent starting from the leading edge.
clustering process. Fig. 3-4 (a),(b),(c) shows the gener- Fig. 4-3, 4-4, and 4-5 show respectively the wall
ated grid around a Series 60 (Cb=0.6) hull. The i=38 shear stress r,,, ,the displacement thickness 61 , and the

section shown in (b) is approximately at midship, and shape factor H. The solid lines are empirical curves [12]

the i=60 section is at the-stern edge (see Table 4-1).

4. Computed Results = = "(21ogioR. - 0.65) -23 (4.1)

4.1 Tested Cases and Parameters 61 = IE "8R0 7 8 61 ('1.2)

Computations were made for seven cases with five H = 1.3 (4.3)
different bodies. The bodies vary in the degree of full- where C ' is the local skin friction coefficient. They are
ness,-from a flat plate-to a Series 60 (Cb=0.8) hull. Ta-
ble 4-1 shows the cases and the parameters. There im, in good agreement.
ble and kmhare the nuberso gidt poinetes. nThream, Figs. 4-6 (a),(b), and (c) show logarithmic plot ofjm, and km are the number of grid point- in (stream- veoiytthestamselain.Theprcl

wise), q (girthwise) and C (normal-to-wall) directions. velocity at three streamwise locations. The empirical

The experiments with Froude number values (Fn) were curves are

made in cirulating water channels with free surface, and u+ U = n in sublayer
all the others were made using double models in wind ti"
tunnels. Followings are the parameters common to all = 2.541n(n ) + 5.56 in log region (4.4)
the computational cases: where u,,, is the friction velocity. They are in good,

ifp=16 iap=60 %,,m end = -0.5 agreement, both in the sublayer and the logarithmic

IfP = 0.0 
2
ap = 1.0 Z .downsrca, end = -2.0 regions.

Outer boundary radius = 1.0 p = 0.1 Fig. 4-7 shows the kinematic eddy viscosity v,
distributions.' They are nondimensionalized using-uw

where ifp and iap are the numberings in i at bow and and the momentum thickness 62. They fall on a sin-
stern (or leading and trailing for a flat plate) edges. As gle'curve. The straight line stemming from the origin
shown in Fig. 4-1, the minimlm spacing of grid points has slope value of x =0.41 [13]. The-horizontal line has
adjacent to the inner boundary (solid wall or symmetry the Value of 0.828, derived by comibining an empirical
plane) A i is determined as velocitydistribution with lj/u6=0.065, where 6 is (he

-boundary-layer thickness. The disagreement with the
Amni,: = Arnnliv' (z: _ 0.1) computed values seems-to come from-the ambiguity in

= AninI'V (0.1 < Z < 1.0) determining the boundary'layer edge.
= Amil., (1.0 <Z5 (41) 4.2 Wigley Hull

Am .05= V___(4.2)
The results shown in this section are mostly for

Co, ,iputations were made using the Stellar GS- Case 2 (see Table 4-1), the standard case for the compu-
1000 graphic workstation -with a vector processor unit tation of flow past a Wigley hull. Experimdntal results
and 32MB rnainomemory. The NS solver took approx- shown'for comparison in this section are all taken from
imately 40 secs (Cases 5,6;7),CPU time per timestep, ref,[14]. The flow is assumed laminar up to x=005, and
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turbulent thereafter, to be consistent with the experi- from [15] (Cb=0.6), [16] (Cb=0.7), and [17] (Cb=0.8).
ment, where the studs were placed at the same location. Fig. 4-17 (a),(b),(c) shows computed pressure contours
This applies to all the cases with ship hulls, for Series 60 Cb=0.6, 0.7, and 0.8 hulls. They are

Fig. 4-8 shows pressure contours on the hull sur- plotted at the same pressure values as those for the
face, (x-z) symmetry plane, P-nd (x-y) symmetry plane. Wigley case (Fig. 4-8). There are slight pressure oscil-
The flow is from left to right. The contour lines are lations just below the points of mapping singularity in
wiggle-free. In the previous computation (51, where the the wake.
non-conservation form was used, there were wiggles at Fig. 4-18 shows comparison of the computed~pres-
fore and aft ends of the hulll. sure distribution near the stern region on the Cb=0.6

Fig. 4-9 (a),(b),(c),(d) show wake contours at hull with the measurement [15]. The agreement is good,
x=constant sections, from midship (x=0.5) to down- though there is systematic deviation which increases
stream (x= 1.5). The contours at an x=constant section toward midship, and the adverse pressure gradient is
is obtained by interpolating the values at grid point 1o- greater in the computed result.
cations using parametric tri-cubic splines, which is an Fig. 4-19 (a) to (h) show the wake contours. The
extension of bi-cubic splines to three-dimensions. The agreement with the measurements are good in general,
computed values show good agreement with the mea- except in the wake. There the downward movement of
sured values. Fig. 4-10 shows the kinematic eddy vis- the low speed region near the (x-z) symmetry plane is
cosity vt contours at i=53 section (x= 0.95). The step- not captured in the computation. There are two possi-
wise change of vt in the girthwise direction occurs be- ble reasons for this failure. One is that the intensity of
cause the location of F,, in C-direction is determined the downwash due to the pair of longitudial vortices is
at either of the grid points, which are widely spaced in insufficient. The other is in the way the eddy viscosity
the outer region. is determined. In the wake, the normal distance n+ is-

Fig. 4-11 (a),(b) show the effect of changing pa- taken from the (x-z) symmetry plane. However, when
rameters on the wake contour at x=1.0. The figure (a) the flow near the stern is highly three-dimensional, the
shows the result with w = 5.0 (Case 3). The difference (x-z) symmetry plane is not necessarily suitable for this
from the w = 10 result is small, which implies that purpose, in contrast to the situation with the Wigley
the value w = 1.0 in Case 2 is small enough such that hull. There the longitudinal vortices are not strong,
the added numerical dissipation terms do not affect the and the flow in the wake remains similar to that of a
computed result. The figure (b) shows the result where flat plate.
the number of grid points in (-direction is doubled. The Figs. 4-20,4-21,4-22 showthe wall shear stress r, ,
difference is again small, which implies that the number the displacement, thickness 61, and the shape factor H
of grid points used in Case 2 is large enough. at three z=constant locations. There at z/D=0.8, the

Fig. 4-12 (a),(b),(c) show the wall shear stress r, separation occurs near the stern.
distributions at z/D= 0.2, 0.5, and 0.8 sections, where Fig. 4-23 (a),(b),(c) show the logarithmic plot of
D is the depth of the hull. The empirical curves are velocity at three streamwise locations. It is seen that all
the same as those in the flat plate case. The agreement the points adjacent to the solid wall are well within the
with the measured values are generally good. The 7. viscous sublayer as the turbulence model used demands,
values agree well with the flat plate values in-most of and that all the velocity profiles follow the logarithmic
the regions. distribution law in the inner layer. They suggest that

Fig. 4-13 (a),(b),(c) show the displacement thick- the Baldwin-Lomax turbulence model, a simple zero-
ness 61 distributions at z/D= 0.2, 0.5, and 0.8 sections. equation model, can be used for this type of flow. Fig.
The agreement is again generally good. The 61 values 4-24 (a),(b),(c) show the kinematic eddy viscosity vti
deviate considerably from the empirical flat.plate values distributions at the same three streamwise locations as
shown as solid lines in the figures. in the logarithmic velocity plot. The distributions are

Fig. 4-14 shows the shape factor H at z/D= 0.2, similar to those in the Wigley hull case shown inFig.
0.5, and 0.8 sections. They show tendencies similar to 416.
those of flat plate results, except near the stern. Finally, Fig. 4-25 (a);(b) show the wake contoursFig. 4-15 (a),(b),(c) show logarithmic plot of~ve- 1

Fig.4-1 (a,(b,(c)sho loarihmicplo ofye- for'the Cb=0.7 case (Case 6 in Table 4-1), and Fig. 4-
locity at three i=constant sections, i.e. i=25 (x= 0.07), 26 shows the wake contour- for the Cb=0.8 case (Case
i=38 (x=0.5), and- :-53 (x= 0.95). It can be seen 7). In the Cb=0.7 case, tj' -"'puted wakes still show
that logarithmic law holds in every case. Fig. 4-16 reasonable agreement with the measurements in those
(a),(b),(c) shows the distribution of the-kinematic-eddy streamwise locations. However, in'the Cb=0.2 case, tle
viscosity vt, the locations of which correspond to those
in Fig. 4.15. The tedency is similar to that of the flat agreement becomes poor. By looking atthe three com-

puted wake contours, i.e. the cases Cb=0.6, Cb=0.7,
plate. and Cb=0.8, a systematic trend is observed. In the

4.3 Series 60 (Cb=0.6, 0.7, 0.8) Hulls stern region, the wake near the bottom becomes thin-
ner than the measured one, and the wake in the mid-

In this section, the mem , d data shown are taken depth region becomes very thicki as the fullness of the
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ship hull (Cb) becomes greater. Clearly the tubulence [ 3] Sato,T. et al."Finite-Difference Simulation Method
model needs modification there (see Supplement). for Wave and Viscous Fows about a Ship", J. of

5. Conclusions SNAJ vol. 160, (Dec. 1986).

[4] Masuko, A. et al."Numerical Simulation of-Viscous
Flows past ship hulls were computed and compared Flow around, a Series of"Mathematical Ship Mod-

with measurements. The NS solver used is the IAF els", J. of SNAJ vol. 162, pp.1-10 (Dec. 1987).
scheme, where the pseudo-compressibility is introduced
in the continuity equation, in order to make the system [5] Kodama, Y."Computation of High Reynolds Num-
of equations hyperbolic. The accuracy and convergence ber Flows Past a Ship Hull Using the IAF Scheme",
of the computed results were tested by computing flows J. of SNAJ vol. 161, pp.25-3 4 (1987).
using different number of grid points, or using different [6] Beam, R.M. and Warming, R.F."An Implicit Fac-
amount of the added numerical dissipation terms. tored Scheme for the Compressible Navier-Stokes

The Baldwin-Lomax zero-equation turbulence Equations", AIAA Journal, Vol.16, No.4, (April
model was used. The validity and limitation of the tur- 1978).
bulence model was tested by computing flows past five
different bodies. They are a flat plate, a Wigley hull, [7] Kodama, Y."Three-Dimensional Grid Genera-
Series 60 Cb=06, 0.7, and 0.8 hulls. They vary in the de- tion around a Ship Hull Using the Geometrical
gree of fullness, from complete flatness of the flat plate Method", J. of SNAJ vol. 164, pp. 9-16 (1988).
to high fullness of the Series 60 C=0.8 hull. By com-
paring the computed results with measurements, the [ M8] Cebeci, T. and Smith, A.M.O."A Finite-Difference
turbulence model was found to be useful for fine hull Method for Calculating Compressible Laminar and
forms, such as a flat plate, a Wigley hull, and a Se- Turbulent Boundary Layers", 3. of Basic Engineer-
ries 60 Cb=0.6lhull. However, the agreement between ing, Trans. of the ASME, pp.523-535 (Sept. 1970).
the computed and-measured data was not satisfactory [9] Rodi, W."Turbulence Models and Their Applica-
for the Series 60 Cb=0.7 or 0.8 hulls. This suggests tion in Hydraulics", IAHR (1980).
that the turbulence model needs modification for such
flows where strong adverse pressure gradient exists and [10] Stock, H.W. and Haase, W."Determination of

three-dimensionality becomes important. Length Scales in Algebraic Turbulence Models for
The grid generation method called the geometrical Navier-Stokes Methods", AIAA Journal, Vol.27,

method was used to generate grid around those-ship No.1, (January 1989).
hulls mentioned above. The method was also applied [11] Kodarna, Y."Three-Dimensional Grid Genera-
to generate a surface grid on a propeller blade. The tion around aShip Hull- Using the Geometrical
body surface was represented using parametric bi-cubic Method", J. of SNAJ vol. 164, pp.9-16 (Dec.
splines, and the grid points on the body surface were 1988).
allowed to move along the surface, in order to meet
the requirements imposed, i.e. orthogonality, cluster- [12] Schlichting, H."Boundary-Layer Theory", 6th Edi-
ing, smoothing, and minimum spacing. tion, McGrawHill (1968);
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Table 4-1 Computation parameters

Case Body In I Jka co Re Experiment Ref.
I flst Plate 81 5 31 1. 4.01106 Re.1.7xl06 to l8x106 (121

2 Tlgley 81 15. 31 1. 4.0Ox108 Re.4. WO10 [14]
3 Willey 81 1S 31 5. 4.0O1106 Re-4. 5xi0

6  
(14]

4 11gley _LI I5 61 1. 4.1 0 OxI-Re.4. sx10
6  

*(14]
5S. 60 Cb.0.l 81 25 31 1. 1.71106 Re.. 110. Fn.0.i 211
6S. 60 Cb.0.7 81 25 31 1. 401106 J Re.x.g0.1 (15]
S.7 60 Cb-O081 81 125 131 1 . 2.1x1O IRe.2.1x10

6  
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n 30
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1 ___________________________________________ with the measurement obtained by Okuno [16], while
in Fig. 41-26 it is compared with the the mneasured re-

Vt ~ ('x=0.942 z/0=0.184 stilt obtained by Fukucla and Fujii [17]. The computed
~x=0.935 z/D=0.493 wake in Fig. A-1 shows reasonable agreement with the

UW2000 x=0.935 z/D=0.805 Okuno's measurement, whereas it'shows significant dis-

0 crepancy from the Fukuda's measurement in Fig. 4-26.
0 This clearly shows that measurements must be carefully

or Ao * validated before they are used in the validation of coin-
0 5 n/6 1015 putatious.

(c) i = 53

Fig. 4-24 Kinematic eddy viscosity i/j on a Series 60
(Cb=0.6) hull
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DISCUSSION Author's Reply
by C.M. Lee

I have tried to compute a ship-stern flow

I know that a few people in the past have with propeller effect, using the body force

shown the NS-Solver results for the DTRC body method. Though I got a converged result, there

forms. I am wondering if further progresses in was pressure oscillation, which is due to the

computational techniques for a fully appended use of central differencing. I have not yet

submerged body with propeller have been made. tried to compute flows with appendages. In
order to do that, I think a multi-block ap-

From the paper of Dr. Fujii this morning, proach should be used.

the CDF people in aeronautics seem to have

progressed to the stage that they can compute
the flow about a fully appended airplane. Have
you tried to include the sail and stern
control surfaces in your computations?
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Recent Developments in a Ship Stern Flow Prediction Code

M. Hoekstra
Maritime Research Institute Netherlands

Wageningen, The Netherlands

Abst ra t these features (Section 2) will suffice here as a frame-
work for the subsequent discussion of some aspects of

This paper is concerned with developments in a the method.
numerical method for the prediction of the steady Where the title of this paper promises the presen-
incompressible flow around the stern of a ship. The
method is based on a finite-difference discretisation of ration of recent developments, 'recent' is to be inter-
the Reynolds-averaged Navier-Stokes equations on a prete r in relation to thc time of appearance of the
boundary-fitted curvilinear grid. The attention will above references. The length limitations to whichbe focused on three aspects, viz, the choice of the this paper is subjected do not allow a presentatior of
velfocty variabl the boundaryviz choion the all changes that have taken place in the code sincevelo city varia b les, th e b ou n d a ry co n d ition s an d th e19 5 T h r f e t r e m a o i e s h ve b n s -global (outer) iteration process for the pressure field. 1985. Therefore three major items have becn se-
gloaout) istration wiloes fio the mpr ied lected for discussion here. They are: the choice of
Various illustrations will be given of the improved the velocity variables in relation to regular solution

fbehaviour neai grid singularities in the wake (Sec-
1. Intdutiom tion 3); boundary conditions and their numerical im-

plementation (Section 4) and a new global pressure
It is in the first place owing to computer hard- relaxation scheme (Section 5). Moreover, results of

ware developments that a computational simulation a representative application will be shown as an il-
of the ship stern flow field has become feasibJe. In- lustration of the progress that has been made (Sec-
deed, the availability of adequate computer facilities tion 6).
may be considered as a prerequisite for an accurate
calculation to be carried out. It is not a sufficient 2. Outline of computational procedure
condition, however. For some years already, the nu-mnerical simulation of the steady viscous flow around We are interested in a numerical simulation of the
a ship's simula-iunalfytuedsteadylviscousfffow around- behaviour of the flow around the stern of a ship, be-
a ship's stern - usually under neglection of fre.- stir- ing towed steadily through still water. Trhe free sur-
face effects - has been a prominent research topic. face disturbances created b the ship are assumed
Yet, something like a communis ,pinio on how a re- face d i tt lesi cae so the it is alowed
liable, efficient and robust code is to be constructed to be of little significance so that it is allowed to
has not been attained. It indicates that developing a replace the undisturbed free surface by a symmetry
suitable algorithm fur the solution of the Reynolds- phe. Thus, taking a reference frame moving with
averaged Navier-Stoks equations for incompressible the ship, we consider actually the double model offlows around complex body shapes is not plain sail- the submerged part of a ship, held fixed in a uniform
ing. flow directed from bow to stern. The flow domain isnow assumed to be unbounded and the fluid to be

At the author's institute, work in the field of stern incompressible. Threc subdomainsare distinguishcd
flow computation was initiated around 1980 and has as shown in Fig. 1, viz. the external flow zone where
continued steadily since. It has resulted in a compu- the flow beha-,es as being inviscid and irrotational,
tational procedure that has been applied with some the boundary-layer zone, covering the forward part
success to a number of ship forms-and axisymnietric of the hull surface, where first-order boundary-layer
bodies. The main features of the method have beer theory is supposed to provide an adequate description
outlined previously [1,2,3 and a brief recollect-on of of the flow; the stern-flow-and-wake zone which is of
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primary concern in this paper. In the latter zone we The local process refers to the solution of a sub-
solve effectively the Reynolds-averaged Navier-Stokes set of difference equations applying to all grid nodes
equations but we shall assume that a predominant having the same value of the main-stream coordinate.
flow direction exists. Among other things, it allows It is based on the Coupled Strongly Implicit Proce-
us to drop all diffusion terms associated with that pri- dure (CSIP) [5], an incorplete factorization scheme,
mary flow direction. The equations are supplemented and yields a simultaneous solatioih of all variables in a
by an algebraic turbulence model. The boundary con- cross-section of the computation domain. Iteration is
ditions will be described in Section 4. required both by the non-linearity of the differential

equations and by the incompleteness of the factoriza-
tion. The CSIP has been selected because we think
that a high degree of implicitness is desirable if not

- nnecessary for an efficient solution algorithm and be-
t.._ I cause it retains the coupling between the momentum

Iand the continuity- equations in the numerical solu-
HU .- tion.

The global iteration process involves the evalua-

Fig. 1. Division of flow field into three zones tion of the solution in repeated sweeps from the up-

stream to the downstream boundary of the compu-
tation domain. This process allows the influence of

The flow-governing equations are written in terms downstream occurrences to be felt by the upstream
of general curvilinear coordinates. The contravariant flow, an inherent property of the mathematical model
formulation of the momentum equations is adopted, used. To improve its convergence rate, each down-
which gives three relations expressing momentum con- stream sweep is followed by an update of the solution
servation along each of the three coordinate lines, of the pressure field in a reversed sweep as will be
The velocity components and the pressure are the explained in Section 5. A further enhancement of
dependent variables but a particular choice for the the computational efficiency is obtained by grid se-
velocity variables is made as described in Section 3. quencing, with which we mean that the grid used is
The continuity equation is solved in its original form initially very coarse in the mainstream direction and
and is not replaced by a Poisson equation for the is subsequently refined in two or three stages.
pressure as in Marker-and-Cell type methods.

3. Grid singularities
The equations are discretised on a boundary-fitted

curvilinear grid. It is a single-block regular grid of Fig. 2 gives a sketch of the computation domain as
NX * NY * NZ noles. The grid is partly non-ortho- it looks after the symmetry properties of the flow have
gonal but conceptually simple. All variables are de- been taken into account. In addition to the Carte-
fined on the grid nodes, in other words we do not sian reference frame x, y,z a curvilinear boundary-
apply grid staggering of one kind or another. That is fitted coordinate system 4, q, C is introduced. A trans-
convenient in many respects but it poses certain de- formed space can be imagined in which 4,q, C forms a
mands on the discretisation of the pressure gradients rectangular coordinate system and in which the hull
and the continuity equation which we are careful to surface is plane. The appearance of the 4,71,C sys-
fulfill to avoid 'checkerboarding' 14]. The discretisa- tem in physical space depends on the transformation
tion is second or third order accurate with the excep- relatioi.s between 4, 7, C and X, Y, z.
tion of the main stream pressure gradient which is of
first order accuracy. All derivatives with respect to PHYSICAL DOMAIN TRANSFORMED DOMAIN
the coordinate associated with the main stream di-
rection are modelled by upstream difference formulae Z

except the pressure gradient. Newton linearization is y
applied to the convective terms.

The solution is obtained iteiatively where the it- gh==¢,
cration sequence may be characterized as a multiple-
bwu% pj bpW'C-1latu'iig pILeU bb wlhit, takez lzaxhnumn- -
benefit of the existence of a predominant flow direc-
tion. In fact, two iteration cycli can be distinguished: (a)
the local (or iinr) and the global (or outer) iteration

process. Fig. 2. Computation-domain
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To simplify the grid generation procedure we have oriented physical velocity variables are used, so that
chosen 4 - x so that transverse sections in the phys- v and w are the ?I and ( component of the physical
ical space remain so in thc transformed space. An velocity. Then we must have v=O, w =finite along AD
orthogonal mesh is then constructed in selected trans- (Fig. 3), while w=O, v=finite along AB. It leads to
verse sections by a procedure which relics on confor- a conflict at A because v and w cannot both be zero
mal mapping although the final mesh is not conformal in A. Although this problem can be circumvented by
due to subsequent stretching 16]. By connecting these e.g. grid staggering, the accuracy of finite-difference
grids, the 3-D mesh is completed. It leads inevitably approximations is likely to be low in the vicinity of
to non-orthogonality of the 4, q and l, ines in a part the singularity due to the sudden changes of some of
of the computation domain, the variables.

However, before this task can be carried out it We alleviate the difficulty by a special choice of
must be decided where the four corners of the trans- th. velocity variables, which may be explained as fol-
verse section in the transformed space are to appear lows. The coordinate transformation near the grid
in the physical space. A glance at Fig. 2 will help to singularity in the wake tends to
recogni,,, that the choice is obvious in the upstream
part of the domain but less so behind the tern. Re- y + i(z - z,) = -id(R? + iC)' (1)
ferring to Fig. 3, the location of point A correspond- = 1? = is the grid cell aspect
ing with A' can be taken somewhere between B and where i a Vy22yi33l the spect
D or even coinciding with either of these points. In ratio, a is a proportionality constant while the singu-
practice the final choice is primarily governed by the larity is located at the point y = 0, z . Because
requirement that the c-lines must roughly be aligned of the relation (1) the singularity is called parabolic.
with the main flow. The points A arc therefore usu- Formula (1) is a well-known type of transformation
ally located on a straight line extending from the keel in potential flow theory. It can be used to transform
(cf. Fig. 2). a parallel flow to a corner flow. If the parallel flow

is supposed to occur in the physical space and is de-
scribed by a velocity potential

z
4D = VT(z - z,), (VT is constant),

D[ "- _C I we find with the aid of (1)

) = VT(Q 2 - R 2 72).

Thus
A z~z~ 042 ) aR2V

Z A' VB' V= = -2aRVT;04)
B V3= =2aV7( .

Fig. 3. Cross-section of physical (left) and trans- We see that the velocity components V2, V be-
formed (right) computation domain behind have nicely in the transformed space. They vanish at
hull the corner and increase linearly away from it so that

accurate discretisation is possible.
The coordinate transformation is singular in such

points: the Jacobian of the transformation vanishes. It is important now to recognize that V2 , V3 are
Singularities may also appear elsewhere on the bound- covariant quantities since 4) is a scalar. Apparently,
aries of the domain - e.g. along the waterline when covariant velocity components behave regularly near
the frame line of the hell does not meet the symmetry a parabolic singularity in contrast to physical or con-
plane (undisturbed free surface) at a right angle - but travariant components as can readily be verified. For
the mapping technique used excludes their occurrence example the contravariant velocity component V2 is
in the interior of the domain, in an orthogonal grid (as we have behind the hull)

given by
Grid singularities may deteriorate the accuracy of

the calculations or destabilize the iterative solution V 2 = g 2 = V2/g 22 = -2aRVzrl/g/
process [7]. This is particularly true when there is
a finite velocity in the singularity as is the case b-- and tends to infinity for 17 -, 0.
hind the hull. Suppose for example that coordinate-
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Formerly, we eml...yed the contravariant veloc- The remaining boundaries are artificial bound-

ity components directly as dependent variables in the aries and it is not immediately clear what are suitable

mathematical formulation. Denoting them by V'(i = conditions. On the outlet boundary only one condi-

1,2, 3), we define now the three velocity variables as tion must be prescribed, either for the pressure or for
the normal velocity (i.e. u) 19]. In view of our dis-

= V, ; v = 922V2 ; w = "/V
3  cretisation it is natural to choose a condition for the

pressure. A Neumann type condition is to be pre-
instead. Notice that v and w arc not strictly covariant ferred because it is less restrictive and allows some
velocity components. But the multiplication factors pressure variation over the outlet plane which may
for both V2 and V3 involve the Jacobian V (g22 

=  be important in view of the frequent occurrence of
Rv-'), which is sufficient to obtain regular behaviour longitudinal vortices in a ship's wake; the existence
near the singularity, of such vortices demand the pressure to be somewhat

If thle yz velocity comp~onents in the physical lower in the vortex core than in its surroundings.

spa~e must be determined from these variables, dif- Mostly we use a vanishing longitudinal pressure
ficulties are encountered at the singularity. There is gradient at the outlet plane, but sometimes a non-
no trouble, however, in evaluating them in neighbour- zero value, derived from potential flow calculations,
ing grid points whereupon the required values at the is preferred.
singular point can be derived by interpolation. A remark should be made here about the numer-

4. Boundary conditions ical implementation of the pressure boundary condi-
tion. In a space-marching scheme the discretisation of

The stern-flow-and-wake zone has eight bound- the streamwise pressure gradient involves a pressure
aries (Fig. 2): the hull surface, an inlet and an outlet value of the current as well as one of the preceding
boundary and the external boundary, the remaining global iteration, in our discretisation.
boundary surfaces being located in symmetry planes.
The terminology is intentional: the velocity compo- (p' / - Axi
nent iL is assumed to be positive on both the in and
outlet boundaries. On the other hand the flow may where n counts the global iterations and i is the

enter or leave through the external boundary. x-station index. When the solution on the outlet

plane at station xNX is to be determined, a value for
Like the Navier-Stokes equations themselves, the p + must be derived from the boundary condition,

Reynolds-averaged Navier-Stokes equations for incom- p, = pgrad say. One might feel tempted to simply
pressible flow require three boundary conditions on replace the pressure gradient as discretised above by
all boundaries [e.g. 8]. However, if diffusion along the the given boundary condition on the outlet plane:
coordinate associated with the predominant flow di-
rection is neglected, the equations exhibit Euler char- ( !+l - pNx)/AXNx = pgrad.
acter in that direction with a consequent change in
the boundary condition requirements. Three condi- It leads to unquiet solution behaviour near the out-

tions are still required at the inflow boundary, but let plane which eventually may deteriorate the global

only one condition must be imposed at the outflow convergence. The correct procedure is to apply the

boundary [9]. Neumann condition for the pressure for each iteration
level separately. Thus

It is obvious what conditions should be applied on

tile natural boundaries of the computation domain, (PPx.l - pN..)IAXNx = pgrad for all n
viz. the hull surface and the symmetry planes. On
the hull surface the no-slip and the impermeability which implies that the pressure gradient term in the
condition give us three Diricllet conditions for the c-momentum equation must be modelled on the out-
velocity components. On a symmetry plane there is let boundary as
one Dirichlet condition for the normal velocity com-
ponent and a Neumann condition for each of the two pgrad + (,n-l _p )

other components. i.e. h !,e discrtson nst inclde th d.... prcssurc chage. .

It is perhaps worth mentioning here that we im- with respect to the previous sweep.

pose the iull boundary conditions directly by calcu- The three conditions to be specified on the inlet
lating the flow down to the hull and not indirectly via boundary must, again in view of the discretisation,
the use of wall functions as an approximate descrip- apply to the velocity components. Dirichlet condi-
tion of the near-wall flow behaviour.
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tions may be chosen but since inlet conditions are be decomposed into a normal (vn,rt) and a tangen-
obtained either from usually incomplete experimental tial (vet) component. Keep in mind now that the
data or from thin-boundary-layer calculations carried part of f his basis flow covered by region I of Fig. I
out in an approximate grid geometry, they are often might be reproduced by a source distribution a 2 on
imperfect, leading to a non-smooth solution near the the boundary of the union of hull, zone 11 and zone
inlet plane. This is the reason why we mostly replace III, if the normal velocity (v,,,) would be used as a
the Dirichlet condition for v by a Neumann condition. boundary condition.

Let us next turn to the boundary conditions on The viscous flow calculations in zones II and III,
the external boundary. The old practice was to spec- with (v,,,,) as a boundary condition, will yield a dif-
ify the pressure and the two tangential velocity com- ferent normal velocity (v ..... ) on the boundaries be-
ponents. They were obtained from a potential flow tween the zones because of boundary-layer displace-
calculation for the bare hull, neglecting the displace- ment effects. The related adjustment of the external
ient effect of the boundary layer on the external flow might be calculated by using (V,,vis,) as a new

flow. Such conditions are good enough if the external boundary condition to yield a new source distribution
boundary is chosen far (several boundary-layer thick- a3 defined on the same boundary as 1 2. However, as
nesses) from the hull. But that is an unattractive op- will become clear in a moment, it is better to oper-
tion if one aims at computational economy because ate with Ao-2 = a3 - o-2, the correction of a2 due to
the mathematical model is then unnecessarily com- viscous-inviscid interaction. So we suggest to calcu-
plicated in a considerable part of the domain. On late A0.2, associated with a correction potential ,
the other hand, the conditions are evidently not ex- under the condition
act when the extent of the computation domain is
reduced. It may result in the formation of a weak On, - n'vic -)njPot

non-physical boundary layer on the external bound-
ary [9]. After a close inspection we have indeed found to evaluate the tangential velocity induced by them
ample evidence of its occurrence in our calculations and to add it to (Vt). The pressure follows from
in which we have always tried to use relatively small Bernoulli's law which completes the set of new bound-
domains. ary conditions for the next viscous flow calculation.

The process can be repeated until the solutions in theA remedy is of course to correct the boundary con- three zones match well enough.

ditions for viscous-inviscid interaction in the course

of the solution process. Stern el al. 1101 have corn- The advantage of operating with Ao-2 appears as
pared a procedure of that type with a large domain soon as further approximations are introduced. In
approach and found it to be effective for two rela- first-order boundary-layer theory the displacement ef-
tively simple test cases. Surprisingly, they applied fects caused by boundary-layer formation in zone II
the displacement body concep; to update the exter- has a negligible effect on the external flow. One may
nal flow; surprisingly because of the ambiguity in the therefore simplify the procedure by assuming that
definition of the displacement thickness and the ap- Ad 2 is non-zero on the external boundary of zone
proximate nature of the displacement body concept III only. The number of source panels required in a
in viscous-inviscid interaction studies. A more accu- practical calculation is thereby drastically reduced.
rate and unambiguous procedure is to use the normal Although we think the above method to be practi-
velocity on the external boundary resulting from the altu w e n teave tht be tiviscous flow calculations as a boundary condition for cable, we propose5 here an alternative that may lead to
repeated potential flow calculations for the exterior a more elegant procedure because it does not involve
of hullpo)ten-alflowad-wakeionfore. A xeraicr new potential flow calculations. Instead of prescrib-
oimhplentaton-mightow-asw foll . Aing fixed values for pressure and tangential velocity
imlflcnmentation might be as follows, components, we set the two tangential vorticity corn-

The potential flow around the bare hull may be ponents to zero and we let the pressure satisfy the
obtained by, say, a discrete source distribution on the Bernoulli equation on the external boundary in the
hull surface, the bource strengths arc found by im- viscous flow computations. It implies that two of the
posing the impermeability condition and they are de- three Dirichlet conditions are replaced by conditions

hloIeI hero by me. Their indction yields a it were of Neumann type. These conditions are exact on any
a first guess of the flow, being inviscid and irrota- external boundary, provided it is chosen in the effec-
tional in all three zones of Fig. 1. Moreover, it gives tively inviscid part of the flow. Viscous-inviscid in-
a certain velocity on the boundaries between zones I teraction should automatically be taken care of with
and 11 and zones I and IIl, respectively, which may these boundary conditions. As far as the author is
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aware, the use of vorticity boundary conditions in WITH DIRICHLET BOUNDARY CONDITIONS
primitive variable formulations has not been applied o-
earlier although it has been suggested by Roe 111. A WITH VORTICITY BOUNDARY CONDITIONS

One might wonder whether such conditions guar-
antee a unique solution. After all, the conditions are -

valid for any external potential flow while no informa-
tion on the velocity at infinity is conveyed by them.
How is the correct solution selected from the many
possible ones?

E
Although a rigorous analysis is difficult and has 0.

not been completed yet, we think that the new bound- U

ary conditions give the solution appropriate for un- 4

bounded flow conditions. It is clearthat an out- 0"
side influence, disturbing the external flow, such as
a nearby wall, would not be felt, except via the con-
ditions specified on the inlet boundary. But in the
absence of outside disturbances, the establishment of
a certain external flow is fully governed by what hap-
pens inside the stern-flow-and-wake zone (displace-
ment effects of boundary layer and wake); there is no
need for a communication of particulars of the exter- i
nal flow to the stern-flow-and-wake zone other than 0 4 8 12 16 20

that it is an irrotational flow. The conditions on the I TERAT ION NO.
inlet boundary make sure that we obtain the flow atthe correct Reynolds number. Fig. 4. Influence of boundary conditions on the

global convergence for the flow around the
At this moment, we have a limited experience Wigley hull

with the application of vorticity boundary conditions.
The test results seem to confirm that the correct so-
lution is obtained but unfortunately they have all
shown so far a reduced convergence rate. After a
while the global convergence is fully governed by the
changes on the external boundary which decrease very
slowly. An example is given in Fig. 4, showing global
convergence results for the Wigley hull. As a mea-
sure for the rate of convergence we use the rate of
decay of the maximum pressure change between suc- C)
cessive iterations anywhere in the computation do-
main. Besides two lines representing the results for a.
the old and the new boundary conditions, respec-
tively, a dashed line is shown indicating the maxi-
mum pressure change on the external boundary. It
is obvious from the figure that a grid refinement has
been applied between iteration numbers 3 & 4 and 6
& 7; the new boundary conditions were imposed on
the finest grid only. 1.,0

0.00 0.40 0.8 1.80 2.00
We may note that the slower convergence is not 2X/L

the result of a slow drift of the pressure level; the
pressure adjustments continue to be partly positive Fig. 5. Calculated pressure change due to viscous-
and partly negative. inviscid interaction
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To illustrate that viscous-inviscid interaction is iteration process, to be distinguished-from the local
automatically taken into account with the new bound- or inner iteration process needed to solve the block
ary conditions, we show a result of the calculated of equations associated with a certain transverse sec-
change of the pressure on the external boundary with tion.
respect to the data obtained from the potential flow
calculation around the bare hull. In Fig. 5 the pres- What will be called in this paper the 'basic method'

sure changes on the intersection of the external bound- to solve (2) is a Gauss-Seidel type iteration- process:

ary and the horizontal symmetry plane (undisturbed B is split intoa sum of a lower (L) and an upper (U)

free surface) for the flow around the Wigley hull are triangular part where the elements of L are identical

presented. The figure shows the typical effect of vis- with the corresponding entries of B while U contains

cous-inviscid interaction, viz. a pressure drop in a the upper diagonal of B only; the solution is updated

region in the vicinity of the stern bordered on both via
the upstream and the downstream side by a region L" = c -

of pressure rise. The slight increase of the pressure To enhance the convergence rate of this process we
change towards the outlet station has been verified have used earlier a source term in the c-momentum
in an axisymmetric flow case to be a consequence of equation, as originally proposed by Israeli and Lin
the inexactness of the boundary condition p. = 0; it 1121 and described for our application in [1]. It has
disappears when a slightly negative pressure gradient in many cases proved to be a useful artifice, but our
is imposed as a boundary condition. experience tells that it may have undesirable side-

We may conclude that the application of vortic- effects, particularly when used in combination with

ity boundary conditions is worth to be investigated an algebraic turbulence model. Notably in the ini-

further. The only deficiency that we have observed is tial phase of the calculations the source term may

the reduced convergence rate caused by it. Attempts assume appreciable values, generating a significant

to remove this deficiency have not yet been made, overshoot in the velocity profiles or provoking flow

however. As an aside we note that it is questionable separation. In the first case the turbulence model

whether with the alternative technique of repeated may show pathological behaviour in the determina-

potential flow calculations the matching accuracy can tion of the outer length scale, which deteriorates the

ever be as good as AC, = 10' - achieved in Fig. 4 global convergence. In the second case the required

after 17 iterations - in view of the use of two totally change of the discretisation formulae will have an in-

different discretisation methods for, respectively, the fluence to the same effect.

viscous and inviscid part of the flow. We have now abandoned the source term scheme

in favour of an alternative convergence accelerator
5i. Global relaxation with a superior performance. It is described below.

After discretisation and linearization, the differ- When an iterative process is used to solve a time-
ence equations for all grid nodes can be put together independent problem, it is often preferable to oper-
in a matrix/vector equation ate with a transient form of the mathematical model

and to try to find the steady state solution 113]. Fol-
AOb = b lowing this suggestion, we add a quasi-time deriva-

tive of the pressure to the a-momentum equation.
where A is a sparse square matrix, q is the vector of If for the sake of compact notation we consider the
unknowns and b is a known vector (but containing equations valid in a Cartesian coordinate system, the

previous iterates of the velocity components due to momentum equation for the dominant flow direction
the non-linear convection terms). Let the entries of becomes
A be grouped in blocks so that all entries associated C(u,V, W) + p, = pt (3)
with the unknown variables in a certain transverse

plane form a block. If such a block is represented by where £ is a differential operator incorporating the

one element of a new matrix B and a corresponding convection and diffusion terms but no 'time' deriva-

grouping is carried through for the vectors 40 and b, tives.

we get In the above Gauss-Seidel process the discretised
= c (2) x-momentum equation is

where B is a NX * NX square matrix with (in our
discretisation) four non-zero diagonals and 7P and c L9(u,v,u) +
are vectors of size NX. The iterative solution of this ( p - -)/A -- (p ' - p ')/At = RIIS (4)
system has been called in Section 2 the global or outer

93



where C& is a finite-differcnce analogue of £, RHSj A' = p - - 1 , Ap = p! - Pp-
is a known right-hand side which does not contain

variables at iteration level n and At is taken equal It implies that Api' is determined by a fraction
to Ax. Next, one may conceive a complementary (diminishing with distance) of downstrcam pressure
discretisation of (3): changes resulting from the basic method. Thus we

have incorporated the desirable feature of an infinite
£A(u,v,m)I + propagation speed of pressure influences in upstream

(pI+- (pt+- direction (a property of the continuum equations) in
i+1- PIl+i)/Az (- • - p )it = RtS, (I) the numerical scheme. In both the basic method and

such that half of the sum of (4) and (5) yields a dis- the Israeli/Lin source term scheme the propagation

cretisation of all terms of (3) at time (or iteration) speed is only Axi per iteration.

level n, provided that Readers familiar with the recent literature on so-
2 Ilution methods for the Reynolds-averaged Navier-
2(p,+i -p.-i) (6) Stokes equations in flows characterized by a dominant

flow direction will have observed that the predictor-
is considered as a new value for pn. corrector scheme introduced here has some similarity

From the combination of the formulae (4),(5),(6) with a procedure suggested by Davis et al. in [141.

above, a lpredictor- corrector scheme for the pressure The differences are essential, however. In [141 the two

is readily constructed. The predictor step is the basic discretisations (4) and (5) appear also but the solu-

method, the Gauss-Seidel scheme: tion process is continued with p+. That would be
all-right if the x-momentum equation stood on its

C4(u,v,w)' + (p? ) -pf)/Ax, = RHS , own but when it is coupled with other equations in
which the pressure appears as well it is a completely

giving new values n, vn,w" for the velocity compo- unsatisfactory approach. For At = Ax an essentially
nents and a first approximation p* to a new value unstable scheme results. Also for smaller values of At
of the pressure. The difference of (4) and (5) yields we have not been able to produce acceptable results
a simple algebraic relation to determine a fictitious with their method.
pn+ . The improved guess for pn is then obtained

from the mean of this P"+' and the old pressure p-'.
The latter operations may be combined in the correc- o BASIC SCHEME (GRUSS-SEIDEL)
tor step A SOURCE TERM SCHEME (ISRRELIAIN)

p7= (pi- + p!)+ (P + -pi'). (7) + NEW PREDICTOR-CORRECTOR SCHEME

Because of the appearance of pi+, in the right-hand

side, p' must be evaluated in an upstream marching
sequence. Thus the basic process of a sweep from
inlet to outlet station is followed by reversed sweep in
which an improved value for the pressure is obtained a.
via the simple algebraic relation (7). As a start for ,

this reversed sweep we have 0
_j

NX '= ANX

as immediately follows from the above formulae when
the mainstream pressure gradient is zero on the outlet
boundary.

It is easily verified by repeated substitution of (7)
that a pressure change at station x, can be expressed

as ITERATION NO.

p = ( [ki l + Fig. 6. Maximum pressure change between succes-
-~ sive sweeps in global iteration process tor

where three methods
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As an illustration of the excellent performance of Potential flow and boundary-layer calculations pro-
our proposal we give global convergence results for vided us with the non-trivial part of the boundary

,the flow around an axisymmetric body as obtained conditions. On the external boundary, conventional
by the basic scheme, the source term scheme and our conditions (prescription of tangential velocity corn-
new scheme in Fig. 6. In all three convergence curves ponents and pressure from the potential flow) were
two jumps appear which correspond each to a grid applied, while a zero pressure gradient condition was
refinement, being executed when ACp,,a: < 0.02 and imposed on the outlet boundary. The initial guess for
< 0.01 respectively. Most striking is the gain in con- the pressure field was obtained by assuming p,, = 0.
vergence rate with respect to the basic method which One of the aims of the calculation of the stern
differs from the new method by the correction step flow field is to acquire information on the velocity
(7) only. The more so because the correction step distribution near the location where the propeller is
is extremely simple, requiring a completely insignif- to be mounted. Let us therefore first have a look aticant amount of computation time. Similar results some contour plots of the axial velocity field near thehave been obtained for other cases. stern. Fig. 8 shows the comparison of measurements

6. Application and predictions in six transverse sections. In the mea-
surements, the flow disturbance caused by a support

Since the appearance of our earlier publications wire in the wind tunnel is clearly visible. When that
11,2,31, the number of applications of our method has anomaly is taken into consideration there is gener-
considerably increased. Some of these applications ally good agreement between both sets of data in the
were repeated calculations for 'old' test cases (e.g. outer part of the boundary layer or wake. Near the
Wigley hull, SSPA 720), others concerned new explo. hull, on the other hand, in the region just below the
rations. Among them were computations including a concave part of the frame lines, the measurements
representation of a propeller and/or a duct by a spec- indicate a much stronger retardation of the flow. S-
ified external force field. Instead of giving results of shaped iso-velocity contours show up which do not
some of those exercises or improved results for the clearly appear in the computed results.
test cases that appeared in previous publications, we
have selected for presentation some data obtained for Usually the formation of that kind of wake dlstri-a rather dlemanding test case: the tIS VA tanker. bution is connected with the development of a longi-

tudinal vortex. How well that phenomenon is repro-
What makes this hull form to a difficult case for duced by the calculations may be judged from Fig. 9.

flow computations is in the first place the fullness of It shows vector plots of the transverse velocity corn-
the hull (block coefficient = 0.85), implying a high ponents at various stations. From the measurements
viscous pressure resistance and presumably complex as well as the calculations only a part of the available
flow with a risk of boundary-layer separation, information has been plotted but such that the vector

The body plan of the hull is given in Fig. 7. A lengths are directly comparable.

2.74 in model of it has been subjected to detailed
measurements in a slotted-wall wind tunnel by
Wieghardt and Kux 1151 and a data tape with a part
of their results has been kindly made available to us.
On the basis of the geometry information provided on -

the data tape, a reconstruction of the hull shape was CK
carried out with our hull fairing system. Intermediate I
frame lines were obtained by spline interpolation.

Calculations were made at the Reynolds number '

of the measurements: RUn - 5*106. Neither the wind
tunnel wall nor the rod extending from the back of the
wind tunnel model were included in the simulation.
The lengthwise extension of the stern-flow-and-wake
zone was chosen as 0.5 < 2x /L < 1.65, where L is the
iength between perpendiculars arid x = 0 midships. Fig. 7. Body plan IISVA tanker
'1'J, results to be presented were obtained on a 45 *
49 ,29 grid.
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There is no clear evidence that the vortex for- Fig. 10 shows the girthwise pressure distribution on

mation is predi r ' to start at a wrong position but the hull at station 2x/L = 0.88 with an excellent

the vortex core seems to stay closer to the vertical agreement between measurements and calculations

symmetry plane than in the measurements, especially while the potential flow results deviate considerably.

when is taken into account that the measurements A preliminary exercise with vorticity boundary
are not truly symmetric with respect to the geomet- conditions on the external boundary indicated that
tic symmetry plane. This is in accordance with the the inclusion of viscous-inviscid interaction does not
stronger deceleration of the axial flow. bring about either a change in the near-hull flow to

The question remains what is the cause of the the extent required for a reconciliation of measure-

discrepancy in the axial velocity distribution. We ments and predictions. Still to be investigated are

may observe that there is little reason to suppose that the effects of grid refinement and of a variation in the

a gross misprediction of the pressure is responsible. turbulence model.
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Fig. 10. Oirthwise pressure distributions at station Fig. 11. Oirthwise skin-friction distributions at
2x/L = 0.88 station 2x/L = 0.88

It is not apparent from Fig. 8, but our results indi-
cate boundary-layer separation at two locations: in a 7. Concluding remarks
small region just above the level of the imaginaty pro-
peller axis, starting from about station 2x/L = 0.9, In this paper we have given a detailed description
and near the waterline (horizontal symmetry plane) of new developments in certain aspects of a computer

aft of station 2x/L = 0.97. In both cases the thick- code for the prediction of the stern flow field of a ship:

ness of the separation bubble is very small. Only an * We have explained how coordinate-oriented ye-
oil flow experiment for the visualization of the lim- locity variables may be chosen so as to maintain
iting streamlines could shed some light on the faith- a high numerical accuracy near the grid singu-
fulness of that prediction. However, the girthwise larity in the wake;
skin friction distribution at station 2x/L = 0.88, just
ahead of one of the separation regions, is in fair agree- * We have presented some results of our first ap-
ment with the experimental data [161, as Fig. 11 plication of a new set of boundary conditions
shows. on the external boundary of the computation

It may be concluded that many features of the domain, which allow this boundary to be cho-

experimental data are satisfactorily reproduced. In- sen close to the edge of the boundary layer and

dced, the present results are perhaps the most realis- wake;

tic ones among the few that have been reported so far * We have shown how the convergence rate of
for this test case. Yet, they can hardly be considered the global relaxation of the solution may be
good enough, if the available set of measurements is improved by an easy algebraic update of the
considered to satisfy high quality standards. Where pressure field after every iteration cycle.
our method has been set up with the idea that it
blhivuld givt. u1L1±lL by Iubultb frul a u.at Ik Morcovcr rcsults have been g*v'cn-of the application
the IISVA tanker, further improvements are needed. of the code to a difficult test case which indicate that
They are to be found in a fine-tuning of the turbu- the numerical scheme can cope with-the complex flow
lence model and the use of finer grids rather than in around a full tanker, although the correlation with
the numerical scheme. the available experimental data should be further im-

proved.
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DISCUSSION
by Y. Kodama

You assumed a predominant flow direction
and omitted a few terms. I'd like to hear your
opinion about the effect of those neglected
terms.

Author's Reply

The effect of those neglected terms on the
final solution is of no practical significance
in ship stern flows. They do however influence
the boundary condition requirements on the
outlet boundary.
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Computation of a Free Surface Flow around
an Advancing Ship by the Navier-Stokes Equations

T. Hino
Ship Research Institute

Tokyo, Japan

6 bstract is used together with the wall function method for the

The finite-difference solution method for the body boundary condition.

Navier-Stokes equations with nonlinear free surface con- The outline of numerical scheme is described in

dition is applied to the simulation of flow field with a Section 2. The numerical results for Wigley's parabolic
free surface around an advancing ship. The body-fitted hull and Todd's Series 60, Cb=0.6 are shown and com-

coordinates system is used in order to cope with a ship pared with measured data in Section 3 and 4, respec-

of an arbitrary hull form. The coordinates system does tively. The concluding remarks is given in Section 5.

not fit to the free surface geometry which must be de- 2. Numerical Scheme
termined as the part of solution in the time marching
procedure. The nonlinear free surface condition is im- 2.1 Governing Equations
plemented in the numeric.d scheme. The algebraic tur-
bulence model is used together with the wall function on The governing equations are the Reynolds aver-
the body boundary condition to simulate high Reynolds aged Navier-Stokes equations and the continuity equa-
number flow. The numerical results are compared with tion -for mean velocity of unsteady three-dimensional
the experimental data. incompressible fluid. They are written in dimensionless

1. Introduction form as follows;

A viscous flow field around a ship is strongly non- ut + uu. + vuY + wu,
linear even when the free surface effects are neglected.
When a free surface deformation is taken into account, - -P + (1/Re + vt)(u± + uy + us,) (la)
the geometry of free surface boundary should be deter-
mined as a part of solution by the nonlinear free sur- vt + uv, + vvY + Wv.
face condition and flow field becomes more complicated
in both physical and numerical aspects. A number of -

-py + (1/Re + vt)(v + vy + v22) (lb)
efforts -have been made to solve this nonlinear prob-
lem. Among them, the finite-difference solution meth- wt + UWX + VW1, + Wwz
ods for the Navier-Stokes equations with free surface = + (1/Re + vt)(w 2 + wy + w.2 ) - 1/Fn2 (lc)
effects [1,2] seem to be most promising because of their
generality. However, even the Navier-Stokes solvers for
double-model flow around a ship [3,4] have not been uZ + v!, + w,-= 0 (2)

established well in the case of turbulent flow simula-
tion because of various problems. There are much more (X, y, z) are Cartesian coordinates normalized by ship
difficulties to be overcome in the development of free length L where x is the free stream -direction and y is
surface flow solvers, such as the treatment of free sur- the lateral direction and z, the vertical direction, up-
face boundary condition, grid generation strategy and ward positive. (u, v, w) are mean velocity components
turbulence model. normalized by uniform flow Uo in (x, y, z) directions,

In the present paper, the finite-difference method respectively. t is time normalized- by L/Uo and p is
for the Navier-Stokes equations with nonlinear free sur- pressure normalized by pU,2, where p is the density of
face condition developed in Refereuce.[1] is extended to water. Re is the Reynolds number, UoL/v and Fn is
high Reynolds number flow simulation around an ad- the Froude number, Uo//T, where v is the kinematic
vancing'ship. Nonlinear free surface condition is iniple- viscosity of water and g is the gravitational accelera-
mented in the scheme. The algebraic turbulence model tion constant. vt is the dimensionless eddy viscosity.
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In Eqs. (1)-(4), subscripts, z, y, z and t mean the
partial differential. where q is arbitrary scalar quantity. , and so on

The body-fitted curvilinear coordinates system appeared in Eqs. (4)-(8) are the metrics of the grid.
(, , ) is introduced to cope with the body boundary
of an arbitrary form, where is the direction from fore 2.2 Basic Algorithm
to aft, r the direction from a ship or a center plane to The ba.s' algorithm is same as that of the MAC
the side outer boundary and 4, the girth direction from method [5]. The discretization is made in the non-
keel to deck. As same as the previous method [1], the med [5]. th isc riais ade in the
computational coordinates do not fit to the free surface staggered grid, that is, all variables are defined in the
shape, so they are not time-dependent. The coordinates intersections of grid lines. The present method is based
transformation is given as follows; on the time marching procedure and is divided into twostages.

On the first stage, velocity is updatd by the mo-
C= C(X,y,z)," i= (Xy, z), = 4(z,y, z),t = t (3) mentum equations (6). The forward differejnce is used

in time. The spatial differences are the third-order up-
The momentum equations (1) and the continuity stream difference by Kawamura and Kuwahara [6] for

equation (2) are transformed through Eqs. (3) as the convection terms, the second-order central differ-

ence for the pressure gradient terms and for the diffu-
u, + Uu4 + Vu, + WuC sion terms and the fourth-order central difference for

= -( 4 + q.0, + 4,0) + (1/Re + Vt)(V 2u) (4a) the grid metrics terms.
On the second stage, pressure on the next time step

V, + Uv4 + Vv, + WvC is computed so that the velocity field on the next time
step may satisfy the continuity condition. By taking di-

- -(Cs$ + 17017 + (Ac) + (1/Re + zt)(V 2v) (4b) vergence of the momentum equations (6), the following

Poisson equation for pressure is derived.
wt + Uwt + Vw" + WwC V20 = -xK K- " -CK¢

- + 7,0,, + (.0c) + (lRe + -)(V2 W) (4c) 9C
- ,ML4 %L, - (4MC (9)

x + rn-un + Guc + Gvi + 77,v,, + (Yvc -Dt

+&iwj + 1h.v, + (zwc = 0 (5) where

K = Uut + Vu,, + Wu( - (IRe + zt)(V 2u)

where (U, V, W) are the unscaled contravariant velocity L = Uv4 + Vv, + Wv( - (1/Re + Vt)(V 2v)
components and defined M = Uwj + Vw,, + Ww - (1/Re + Vt)(V 2w)

U = .u + 4v + &2 w (6a) and

D = .uf + t7. v, + (.uC + esve + %.v, + 4vCV = rt u + r~v + rhw (6b) +&wt + r7w, + (.w

W = (u + (Yv + ('W (6c) The right-hand-side of Eq.(9) is evaluated by the values

at the present time step. The spatial differences for

0 is pressure from which hydrostatic component is ex- K, L and M are same as that for Eqs.(6). The time
tracted; differential appeared in the last term is expressed by

the forward difference. Then D, divergence of velocity,
0 = p + z/Fn2  (7) on the next time step is set zero from the continuity

condition, while D on the present time step which is not
necessarily zero is evaluated by the second-order central

V is the transformed Laplacian operator and defined difference to avoid accumulation of numerical error[5].
The left-hand-side of Eq.(9) is evaluated by the second-
order central difference and solved iteratively by the

V-q = ( + + )q + (.' + rf + )q Jacobi method.
+((I + + 4,)q c The initial condition is still state, that is, velocity
+2( .q. + yqy + &z?,)qfj and wave elevation are zero and pressure is hydrostatic
+2(tl.(, + r' v + rn,4()qlc (8) in the whole domain of computation. The constant ac-
+2((.C. + (y + (.e)q¢ celeration is made by adding the inertia force to the

+ + , + &.)qf + (ri. + 7 + qsz.)q? momentum equation in x-direction. Eq.(4a), until the
+(4 + (yy + (..)qC inflow velocity becomes unity.
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2.3 Free Surface Conditions assumed to be located in the logarithmic region. From
q and the normal distance from the wall at j = 3, u.

When the effects of viscosity and free surface ten- is determined from Eq. (12). Then q at j = 2 can
sion are neglected, the free surface conditions consist of be calculated from u, and the normal distance of the
the following two conditions. One is the pressure con- point. Velocity at j = 2 is treated as the boundary
dition that means that pressure on the free surface is value in the velocity updating process. The direction of
equal to atmospheric one. The other is the kinematic velocity at j = 2 is assumed parallel to the wall. In the
condition that tells the fluid particles on the free surface accelerating period, the no-slip condition is imposed for
keep staying on it. velocity on the body. Pressure and wave elevation on

Because the grid points are not on the free surface the wall (j = 1) is set equal to those at j = 2.
in the present grid system, it is not easy to satisfy the By the use of the wall function, the minimum grid
free surface conditions on the exact location of the free spacing can be more than ten times as large as that in
surface. The pressure condition is implemented in the the case of the no-slip condition. In the present compu-
solution process of the Poisson equation for pressure. To tations, typical value of y+ at j = 3 is taken about from
give the boundary condition at the intermediate point 20 to 100. The computing time is reduced drastically
between grid points, the 'irregular stars method' used in by this procedure.
the SUMMAC method [7] is extended to the curvilinear
coordinates system. 2.5 Other Boundary Conditions

The kinematic condition is used to determine the
free surface shape in the time marching process. The On the inflow boundary, velocity is uniform flow
wave elevation is defined in the computational coordi- in x-direction after the acceleration and pressure is hy-
nates as drostatic with zero wave elevation. On the outflow and

side boundaries, pressure, velocity and wave elevation
= h( , rt) (10) are extrapolated with zero gradient from the inside.

The kinematic condition is written as 2.6 Turbulence Model

Turbulence model used is the two-layer algebraic

ht + Uh + Vh, - W = 0 on C = h (11) model by Baldwin and Lomax [9]. It is widely used in

the aerodynamic computations and also in the incom-

Eq.(l1) is transformed into the finite-difference form in pressible flow computation around a ship by Kodama
the same manner as that for the momentum equations [3]. In the present study, flow is enforced to be turbulent
(6). Velocity (U, V, W) on the free surface is extrapo- from the fore end of a ship. The free surface effect on
lated equally from the value at the lower grid points, turbulence is not included in the model. There has not

been any turbulence model that can be applied to the
2.4 Body Surface Conditions boundary layer and wake of a surface-piercing body like

a ship. Further investigation in both computation and
For the body surface condition, the wall function experiment is required to establish a turbulence model

approach is used to reduce the computation time. With under the free surface effects.
the no-slip condition, the minimum grid spacing in the
direction normal to the body surface should be small 3. Computation for Wigley's Hull
enough to resolve 'he viscous sublayer of the boundary
layer on the body. Because the explicit scheme in time 3.1 Computational Condition
is used, the time increment is limited by the CFL condi-
tion and should be also small in proportion to the grid The first computational results are for Wigley's
spacing. The total computational time to convergence parabolic hull. The waterlines and the frame lines of
would be too large for the present computer power. the hull geometry are defined by the parabolic lines.

The wall function used here is the general logarith- The computations are made with two, coarse and fine,
mic law, that is, grids. The grid generation scheme based on the geo-

metrical method is used.
q/u, = 1/K lny+ + B (12) The coarse grid is shown in Fig.la. The number of

grid points is 51, 20 and 18 in the ( , q, () directions,
where q is velocity magnitude, u, the friction velocity respectively. The H-O grid topology is adopted. The
and y+ the normal distance from the wall normalized grid points are clustered near the body and near the
by v/u.. The constants K and B are set 0.4 and 5.5, still water surface. The computational domain in the
respectively. dimensionless coordinates ( where z = 0 is the midship,

Following Chen and Patel (8], the two velocity y = 0 the center plane and z = 0 the still water level)
points( j = 2 and 3, where j = 1 is the wall ) are is
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Fig. la Coarse computational grid for Wigley's hull.

Fig. lb Fine computational grid for Wigley's hull.

ber is 106 in both computations. The acceleration is
made in the first 500 time steps. The dimensionless

-1 < x < 1, 0 < y 5 0.5, -0.5 < z < 0.0555 time increment is 0.0005 for the coarse grid computa-
tion. In the fine grid case, the dimensionless time incre-
ment is 0.0005 from I to 2000-th time~step and 0.0003

It should be noted that the domain includes the region from 2001-th time step for stabilization of computation.
above the undisturbed free surface, that is, z > 0. The
grid points below the still water surface is 51 x 20 x 10. 3.2 Accuracy Analysis
The number of grid points inside the fluid varies as the

wave field develops. The minimum grid spacing in rt The time derivatives in the momentum equations
direction is 0.001. (6) and in the free surface kinematic condition (11)

The fine grid shown in Figib has 100 x 20 x 38 grid are replaced by the forward one-sided difference, that
points in (C, q, () directions, respectively. The computa- means accuLacy in time of the present method is the
tional domain is same as that for the coarse grid, except first-order. For the spatial differences, the pressure gra-
that -0.5 < z < 0.036. The grid points under the free dient terms and the diffusion terms have the second-
surface is 100 x 20 x 30 and the minimum grid spacing order accuracy. The third-order difference is used for
in r-direction is 0.0008 in this case. the convection terms, in which the leading error is the

The Froude number is 0.25 and the Reynolds num- fourth-derivative term and does not affect the diffusion
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t=3. 0

=40

-5

Fig. 2a Time evolution of computed wave pattern around Wigley's h ull
with the coarse grid. Contour interval is 0.02 x 2gh/Ulol Dotted lines show
negative values. Top; 6000-th step ( t 3.0 )middle; 8000 th step (t =4.0

and bottom; 10000-th step (t -5.0)

t=2. 2

t=2. 8

t=3. 7

Fig. 2b Time evolution of computed wave pattern around Wigley's hull
with the fine grid. Contour interval is 0.02 x 2gh/UO2 Dotted lines show neg-
ative values. Top; 6000-th step ( t =2.2 ),middle; 8000-th step ( t =2.8
and bottom; 11000-th step ( t = 3.7)
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Fig. 3a Pressure distribution on hull surface, center plane and free sur-

face around Wigley's hull computed with the coarse grid. Contour interval is

0.02Cp. Dotted lines show negative values.

.. .......

Fig. 3b Pressure distribution on hull surface, center plane and free surface

around Wigley's hull computed with the fine grid. Contour interval is 0.02Cp.
Dotted lines show negative values.

terms of the momentum equations. The grid metrics sionless time is 5.0. The grid resolution seem to be not

are evaluated by the fourth-order difference. Numerical sufficient to get convergence. In the case of the fine grid

errors due to these finite differencing are the -function shown in Fig. 2b, on the other hand, the wave pattern

of the time increment and the grid spacing. has become almost steady at 1l000-th time step (the

Other factor that determines accuracy is conver- dimensionless time is 3.49). The waves far from the

gence. As for convergence of the Poisson solution for body in the coarse grid case are less steep than those in

pressure, the residual is typically O(10 - 4) after 20 iter- the fine grid case. The numerical dissipation dueto the

ations. In the time integration process of the present finite differencing error decreases the wave amplitude

method, the quantity that converges most-slowly is the when the grid spacing is large.

wave elevation. Therefore, convergence of the solution Fig.3a and 3b show the pressure distribution on

is examined by steadiness of the wave-patterns body surface , center planc and free surface inthe coarse

The comparison of the numerical results with the and fine grid cases, respectively. Pressure value on the

fine and coarse grids provides information concerning free surface'is identical to the' wave eleyation, because

grid density effect. Fig. 2a shows the time sequence hydrostatic component is extracted from static pies-

of the wave patterns around Wigley's hull' computed sure. Strong wiggles of pressure can be seen on the body

with the coarse grid. The wave pattern hasnot reached surface in the coarse grid case. That may be one reason

the steady state at 10000-th time step when the dimen- why the-solution has not converged. In the fine -grid
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Fig. 4 Perspective view of computed waves around Wigley's hull. Wave
height is three times magnified.

2*g*h/(U*U)
0.40

Computed

0.20 --- Measured

-0.5-04-0.3- - . .0 0.1 . .4 0.5 x/L

-0.20

Fig. 5 Comparison of computed and measured wave profiles on ship sur-
face of Wigley's hull. Fn = 0.25, Re - 106 in computation and Re = 5 x 106
in measurement.

case, however, the wiggles are limited in the restricted In Figs.3b and 5, stern wave generation which is not
regions such as near the fore end and the aft end or near clear in the previous computation for the low Reynolds
the free surface and their magnitude is small. number laminar flow (1] is simulated in the presenA

results. Stern waves are related to pressure recovery
3.3 Rat the stern region and this becomes higher as the

Hereafter, only the fine grid results are shown. Reynolds number increases.

Fig.4 shows the perspective view of the free surface Computed pressure distribution on body surface is
configuration, where the wave amplitude is magnified shown in Fig.6 together with the measured one [10].
by three times. Waves far from the ship hull cannot be Pressure patterns are in good accordance with each
seen clearly. The grid spacing is still too large, partic- other, except for the region of wiggles described above.
ularly far from the ship hull, to diminish the numerical These wiggles seem to-come from inappropriate treat-
dissipation effects. Fig.5 is the comparison of the com- ment of the boundary condition. Pressure recovery at
puted and the measured (101 wave profiles on the body the stern in the high -Reynolds number flow described
surface. Agreement is very well in wave amplitude and above is simulated well.
in wave length. The orgin-of wave making, apart from Figs.7 show the wake (u velocity) contours and the
the propagation of waves which is affected by the nu- cross flow vectors (v and wvelocity) at various stations,
merical dissipation, is simulated properly. The vertical velocity component appears b'-neath the
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Computed
0.1 0 -010

s- .........

Pp A

Measured 
A

0.1 0 -0.1 0 0

.7.

Fig. 6 Comparison Of computed and measured pressure distribution on A

ship surface Of Wigleys hull. Contour interval is 0.02Cp. Dotted lines show
negative values. Fn =0.25, Re -106 in computation and Re =3.4 x 106 in
measurement.

0,90.
// 

=

X=-O 5 (FP x=0 (midship)

0.9 0.9

x 0.3 x=0. 4

x.5(AP) x0.

Fig. 7 Computed wake contours and cross flow vectors at various stations
of Wigley's hull. 'Contour interval is 0.1 x u. Top left; x = -0.5 (F.P.), top
right; z = 0,(midship), middle left; x = 0.3, middle right; x = 0.4, bottom
left; x = 0.5 (A.P.), bottom right z-= 0.6.
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X.'= 3 x=O. 4

x=0.5 (AP) x=0.6

Fig. 8 Computed eddy viscosity distribution at various stations of Wigley's
hwui. Contour interval is 4.0 x 10-6vt. Top left; z = 0.3, Top right; x = 0.4,
bottom left; x = 0.5 (A.P.), bottom right x = 0.6.

Fig. 9 Computational Grid for Series 60, Cb=0.60

free surface. In particular, large upward velocity is seen The second result is for the practical ship hull lorm,

at F.P. station, which corresponds with the generation Series 60, Cb=0.6. The computational domain is

of bow waves. The wake contours at A.P. station seems
to be too thick though the corresponding measured data -1 < z < 1, 0 < y _5 0.5. -0.5 < z < 0.0384

is not presented. The improvement of the turbulence and the number of grid points is 100 x 20.x 38 which is
model and/or the wall fuuction approach is required. same as the fine grid case for Wigley's hull. The corn-

In Figs.8, the eddy viscosity distributions at var- putational grid is shown in Fig,. 9. The minimum grid
ious stations are presented. The discontinuity in the spacing in 1-direction is 0.0008. The Froude number is
distribution comes from the fact that the eddy viscos- 0.22 and the Reynolds number is 101 in this case. The
ity is determined line by line. The strong eddy viscosity acceleration is made in the first-500 time steps. The di-
regions spread widely near the free surface at x = 0.4 mensionless time increment is made smaller gradually
and 0.5 stations. This may he because the turhulence as the time step incresces, othervwisce the-computation
model is affected by the free surface motion and it does cannot be stable. From 1st to 1200-th time step, the
not have physical meaning. time increment is set 0.0005, then 0.0003 from 1201-th

to 2000-th time step, 0.00025 from 2001-th to 3000-th
4. Computation for Series 60, Cb=0.6 time step and 0.0002 after that.

4.1 Computational Condition 4.2 Results
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t=7.09

t=7.49

t=7.89

/ .. ...-,

... . ..... .-i.:

Fig. 10 Time evolution of computed wave pattern around Series 60 Con-
tour interval is 0.02 x 2ghlUJo. Dotted lines show negative values. Top; 31000-
th step ( t = 7.09 , middle; 33000-th step ( t = 7.49 ) and bottom; 35000-th
step ( t = 7.89 ).

The time evolution of wave patterns are shown in by three times. Fig.13 is the comparison of the com-
Figs.10. The wave field has not reached the steady puted and measured wave profiles [11] on the body sur-
state at 35000-th time step (the dimensionless time is face. The slight unphysical oscillation of wave elevation
7.89). It takes very large time to get converged solution is found in the aft part. The hull geometry of Series
for free surface problems by the time marching proce- 60 is more complicated, particularly in the stern part,
dure, though the use of the wall function approach 5on- than that of Wigley's hull and the grid lines around the
tributes to time saving to some extent. Improvement stern are more distorted. Numerical error due to the
of the numerical scheme is required to get- faster con- distorted grid causes the oscillation of waves. Except
vergence. One reason why it takes longer to get con- that, the computed result agrees well with measured
vergence in the case of Series 60 than in the case of data in wave amplitude and in- wave length.
Wigley's hull may be the difference of flow complexity. In Fig.14, the computed pressure distribution on
The hull geometry of a practical ship, such as Series body surface is compared with the measured one [12].
60, is more complicated than that of Wigley's hull and Pressure patterns are in good accordance with each
flow around the complicated geometry does not become other except for the slight wiggles of computed results.
steady in a short time. Free surface effects on pressure distribution beneath the

Hereafter, the numerical results at 35000-th time free surface, that is, the low pressure zone below the
step are shown, because the flow field near the ship can wave trough and the high pressure zone below the wave
be considered as almost steady. crest, can be seen in both computation and measure-

Fig. 11 shows the pressure distribution on body sur- mnents.
face, center plane and free surface. Wiggles of pressure Figs.15 show -the wake (u velocity) contours and
can be seen on the body surface near the fore and aft the cross flow vectors (v and w velocity) at various sta-
ends and near the free suface. Wiggles beneath the tions together wiih the imeasured data [121]. At the F.P.
free surface is partly due to the discontinuity of grid station, large upward velocity appears as well as in the
spacings near the free surface which comes from the case of Wigley's hull. The wake contours at the midship
constraint of the grid generation scheme. station becomes thin around the bilge circle in the mea-

Fig.12 shows the perspective view of the free sur- surement and this is well simulated in the computation.
face configuration, where wave amplitude is magnified A:-the A.P. station, longitudinal vortices can bee seen
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Fig. 11 Pressure distribution on hull surface, center plane and free sur-
face around Series 60. Contour interval is 0.02C.. Dotted lines show negaiive
values.

Fig. 12 Perspective view of computed waves around Series 60. Wave
height is three times magnified.

2*g*h/(UI'U)
0.40

- Computed

- - - Measured

-0.5 -0.4 - - .0 ' 1 0.2 0.4 0.5 x/L

-0.20J

Fig. 13 Comparison of computed and measured wave profiles on ship sur-
face of Series 60. Fn = 0.22, Re = 106 in computation and Re - 1.39 x 101
in measurement.
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Computed

02 0.o-05 -0.1, -0.125 *01 *0.0S 0 0.1
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Fig. 14 Comparison of computed and measured pressure distribution on
ship surface of Series 60. Contour interval is shown in figure. Dotted lines show
negative values. Fn 0.22, Re 10'o in computation and Re -7.7 x 106 in
measurement.
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top right; x = 0 (midship), middle left; z = 0.25, middle right; x = 0.4, bot-.
tom left; x =0.5 (A.P.), bottom right x 0.6.
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1025 A x=0.4

x=0.5 (AP) x=O.6

Fig. 16 Computed eddy viscosity distribution at various stations of Series
60. Contour interval is 4.0 x 10- 6vt. Top left; x = 0.25, top right; x = 0.4,
bottom left; x = 0.5 (A.P.), bottom right x = 0.6.

in both measurement and computation at the almost about two hours per 1000 time steps in the fine grid
same position. However, the computed wake contour is case.
thicker than measured one. At the section of x=0.6, the
positions of the longitudinal vortices are different from References
each other.
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DISCUSSION Author's Reply
by S. Ju

1. Along the line of mapping singularity,

1. In the wall function approach, y flow quantities, are not computed but set the
values of third grid points from the body average of values of the adjacent grid- points.
between 20 and 100 look too small, since y+ The present scheme does not use the no-slip
values of 2nd grid points from the body will boundary condition but use the wall-function
be less than 10 and in the region of laminar approach. Anyway, I don't have any difficulty
sublayer. on the bow or stern.

2. How the transition from the laminar to 2. The implementation of the linearized
turbulent flow is treated? free surface condition in the present scheme

is not impossible, but apparently the solution
Author's Reply becomes less accurate. We cannot compute the

wave-making resistance separately from the
1. Yes. The grid spacing near the wall in numerical results but, of course, we can

this calculation is a little too small. This compute total resistance. Please see the reply
should be improved in the future calculation, to Dr. Musker.

2.Though the original Baldwin-Lomax
turbulence model can cope with the transition, DISCUSSION
flow is assumed to be turbulent from the fore- by A.J. Musker
end of a ship in this computation.

I should be interested to know whether you
have made any efforts to calculate total

DISCUSSION resistance. The pressure contours appear to be
by R.C. Ertekin well predicted and you presumably also have

calculated data on wall shear stress. Perhaps
I would like to ask two questions, you could comment.

1) Because you are solving a symmetric Author's Reply
problem, and therefore, using the symmetry
condition on the center plane, the normal Pressure resistance and friction
vector at the point where the center plane resistance are computed by the integration of
meets the bow or stern is double valued or it numerical results as follows.

has discontinuous first derivatives. As a
result, the Jacobian of the transformation Ship Fn Re rp rp rT
matrix vanishes there. How did you cope with wigley 0.25 106 1.44xl0 3 3.73x10 3 5.17X10 3

this problem? Where were the stagnation points Series 0.22 106 0.41xi0- 3 4.13x10" 3 4.54x10"3
1601

on the bow and stern? Have you had any

difficulty with the no-slip boundary condition where rp - (Pressure Resist.)/ 1 pU2S
2

at these points? rF - (Friction Resist.)/ LOOS

2) I am surprised not to see any rT - rp + rF
comparisons with the care in which the linear
free surface boundary condition is supposed.
Why can you solve the nonlinear problem but
not the linear one? I don't also understand
why you can not calculate the resistance
experienced by the hull. After all, shouldn't
the objective of snch calculations be the
determination of power requirements? By the
way when I say the linear problem I mean the
linear (viscous) governing equations and
boundary conditions!
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Finite-Difference Simulation of a Viscous Flow
about a Ship of Arbitrary Configuration

M. Zhu, H. Miyata and H. Kajitani
University of Tokyo

Tokyo, Japan

Abstract under the influence of the free-surface.
The improved version of the WISDAM-II For the elucidation of the details of a

method, a finite-difference solution method turbulent flow a numerical approach by so-
for a three-dimensional viscous flow about a called large eddy simulation (LES) technique
ship of arbitrary configuration, is described. is often employed, see Mon and Kim, et al
A zonal method is used for the boundary-fitted (11] (121 (13]. Since a turbulent flow at high
coordinate system so that the boundary layer Reynolds number is composed of vortical
is sufficiently resolved with proper boundary motions of wide-ranged spectrum and small-
conditions on the body surface. The robustness soaled motions may also play an important
and the accuracy are improved by the role, the resolution of viscous motions of
Introducticn of a new difference scheme, high frequency is very important. They must be
Computations are performed for a flow about a directly solved or appropriately
Wigley hull at Re=10' and the appropriateness approximated in the numerical solution method.
of the zero-equation and the SGS turbulence With the aim of developing a LES-like
models are examined, technique for a flow about a body of complex

geometry with free-surface, a new finite-
difference method called WISDAM-11 is

l.Introduction developed, see Miyata et al [6]. A boundary-
A great deal of efforts have been focused fitted coordinate system, which moves at each

for the development of theoretical or time step owing to the deformation of the
numerical methods of solving the whole free-surface caused by waves, is employed and
features of the flow about a ship advancing the subgrld-scale (SGS) turbulence model is
steadily in the deep water [51 [6] (8]. Since incorporated following Deardorff (11]. This
the difficulties arise from the high Reynolds method seems to be very promising since it is
number viscous flow, its separation, its very close to the direct solution of the
interaction with the free-surface waves and so Navier-Stokes equation, and both the viscous
forth, we are still far away from the motion and free-surface motion are
completion of the method. simultaneously solved. However, the

However, methods so far developed have improvement of the robustness and the accuracy
already turned out to be useful for the is postponed to the future study.
partial explanation of the flow about a ship. The objective of this paper is twofold, one
One example is the TUMMAC-IV method by Miyata is to show the improved version of the WISDAM-
et al., which is currently used for the design II method and the other is to examine the
of the fore-part of the hull, see Miyata et al appropriateness of the turbulence models. In
I] (2] (3] (4). The success of this method is order to obtain sufficiently fine spacing in
mostly due to the fact that the wave length the boundary layer a zonal method is employed.
of the ship waves is sufficiently, long and can To attain sufficient robustness as well as
be resolved by the available grid system. accuracy the fourth-order accurate

For the numerical solution of a viscous flow differencing scheme combined with the
about a ship, mn, reearch activifles are -artificial dissipation of the fourth-
known. Larsson and his coworkers are derivative term is used- Both the zero-
developing a method of designing hull forms by equation model and the SGS model are used and
use of the integral method for the boundary compared. The movement of the free-surface is
layer, see Kim and Larsson [5]. Chen and Patel not considered in this paper.
have developed a partial-parabolic and a
fully-elliptic method for the viscous flow
about the after-body of a ship [7] (8]. 2. Grid system for a zonal method
However, it is still difficult to have Elliptic partial differential grid
satisfactory solution of the separated flow, generation system proposed by Thompson et
the streamwise vortices and the viscous flow al. (9] is adopted to construct a boundary-
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fitted curvilinear coordinate system similar the hull surface is called "fine grid". In the

to the previous study [6] both in topology fine grid system about 12 grid points of the

and in numerical process. The three- coarse grid system are subdevided into 40 grid

dimensional grid system has a H-H type points overlapping a region with the thickness

topology. Figure 2.1 illustrates the about 2y/B=0.4 from the ship hull. The,

transformation from the physical region D locations of the fine grid points is set so
(x 1 ,x 2 ,x 3 ) to the imaginary transformed region that they may accord with the grid points if

R ( I,
2 ,e 3 ), where the streamwise direction the coarse grid system. Therefore, at he

is approximately parallel to the el direction, boundary of two zonal regions called "zonalV

the lateral grid lines are approximately boundary" only metric discontinuity exists.

perpendicular to the ship hull surface are in Figure 2.2 illustrates the methodology of the

the t2 direction, and the grid lines parallel grid- refinement along the t'-grid lines and

to the girth line of ship hull is the V shows that the coarse grid points are at the

direction. The grid generation is conducted in same locations with the correspondent fine

a well-documented grid generation procedure grid points. Figure 2.3 shows a pair of the

[6] by solving the transformed Poisson coarse grid system and the fine grid system of

equation with Richardson relaxation method, a cross section of the ship. The flux

that is conservation across the zonal-boundary is on
the satisfactory degree, The details of the

02r+ pr k 0 boundary condition at the zonal-boundary will
8 ;.7W + a k = be described in the subsequent section.

where for convenieace, the notation of the 3. Computational procedure and algorithm

geometric coefficients is defined as Time-dependent Navier-Stokes equations in

rotational form and the continuity equation

are the governing equations. (6] [10]

gi = TMj8kt au 1= v-aurad(P +-1u'u) +u xw-vro1(w )

g = det(g 0 ) 
+ 2

gij l 
diY(u) 

= 0

where u is the velocity vector, t is the time,
P Is the pressure divided by the density, v is

the kinematic viscosity, and R is the net
contribution of the turbulent fluxes described

where T'j is the transformation matrix, glj in the following section. All of the physical

the covarlant metric tensor, and g') the values are defined in the regular grid system

contravariant metric tensor. a is the of the general curvilinear coordinates. Since

Kronecker delta and e the Eddington the vectors are expressed with

permutation symbol. contravarlant components, the governing

Since the elliptic grid generation system equations are written by using the notation of

used in the present study works for smoothing metric tensors as follows.

the grid distribution rather than for
clustering grid lines in the regions of = (p+ gklIII +g8'ekuw'
interest, a great number of grid points are 7t
required when a single grid system is employed
for a high Reynolds number flow. In the -vC lik-a(go)W')+ RU."
present study, a grid system, which Is

generated in the elliptic method with more
than 250,000 (170 x 30 x 50) grid points, g-81/2 (gl/211)=f0.

provides satisfactory resolution for the
viscous flow only at the Reynolds number 105.

In order to alleviate the grid-refinement
problems in the vicinity of the ship hull, where wi is the contravarlant component of

a zonal method is adopted in this study so vorticity vector,

that sufficient grid resolution is achieved
in the turbulent boundary layer of ship at the o'-4 0

Reynolds number 101. The zonal method is - 04u0

applied only in the *' direction. Therfore,
the inner zone with finer spacing Is located
in the vicinity of the hull surface and and Elk is a permutation third-order tensor

centerplane. In this study, the original grid defined as

system generated by the elliptic grid

generation procedure is called "coarse grid", A= g - 1/2C JA

while a finer grid system in the vicinity of
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The well-known MAC method is employed as then using the differencing scheme recommended
the computational procedure. The time by Baba and Miyata [23], the dissipation term
derivative term of Navier-Stokes equations is is obtained as follows
approximated explicitly by the forward
difference. From the mass conservation
condition, a Poisson equation is derived for QJU J It 4 !

the Bernoulli-like scalar field (6]. After
solving the Poisson equation Iteratively by
the Richardson relaxation method, a
correspondent Bernoulli-like field is given, where a is the factor for the artificial
The details of the computational procedure is dissipation term. Further details of the
described in (6], derivation are referred to Miyata, Zhu et al.

Since the zonal method is used in the [21] (22] and Baba and Miyata (23]. The
present study, the time increment for the fine derivatives of the convection term at and
grid system is set at one fifth of that of the near the boundaries where sufficient grid
coarse grid system for the safety ot the points are not available are approximated by
computational stability. Therefore after one one-sided upwind differencing scheme and
step of time-marching is conducted in the second-order centered differencing scheme
coarse grid system, five steps of time- with the artificial diffusion term.
marching are conducted in the fine grid The other derivatives are approximated by
system. The zonal-boundary conditions seem the second-order centered differencing schame.
to be of crucial importance In this algorithm The time derivative term is approximated by
and will be discussed in the subsequent the forward differencing scheme.
section.

The calculation is started with the flow
field of uniform velocity and constant
pressure. 5.Turbulence models

In the numerical simulation it is
considered that because of the machine

4.Differencing scheme ability of the temporary computer it is
The accuracy of the differencing scheme is impossible to calculate the turbulent flow of

very important in the finite-difference high Reynolds number without turbulence model
method, especially in the calculation of a except few cases of direct simulation of a
turbulent flow at a high Reynolds number. flow with very simple geometry. The choice
Since the dominant equations are written in of the turbulence model as well as the
the form with conjugate components of the computational procedure depends on the purpose
transformed coordinates, it is possible to of the simulation. Although the turbulent flow
adopt various high- order differencing is substantially unsteady , only averaged
schemes so far known for the Cartesian steady flow field is required in some of the
coordinates. The authors have employed the engineering problems. However, for scientific
third-order upwind difference scheme for purposes and in some engineering problems the
variable mesh system and suggested that one detailed unsteady flow should be simulated.
may change the factor of the fourth-order Many simulations of turbulent flow around ship
velocity differential derivative depending on hull conducted so far use Reynolds-averaged
the mesh size and the Reynolds number to Navier-Stokes equations and turbulence .models
compromise the accuracy with the stability such as algebraic turbulence model, K
since the third-order upwind scheme is equation, K-E model or their combination [8]
composed of the fourth-order centered scheme (14] (15]. It is a general approach in this
and the artificial dissipation of the fourth- area that when the solution of simulation
order derivative of velocity [21] (221. converges, the results are compared with the

In this study, the above scheme is used in experimental ones which are the averaged
the transformed coordinates. Although the data of the real physicl values. Some
convection term is in the rotational form, simulations have shown excellent agreement
the dissipation term is derived from the with the averaged experimental results. But
convection term in the gradient form. In the nobody so far answered several fundamental
curvilinear coordinates, the covarlant questions how the flow of the boundary layer
derivative of the contravariant velocity is deformed to develope into wake and how is
component is written by using Christoffel the transition from laminar to turbulent flow
symbol as on the surface of the forepart of a hull.

. aui kIn order to investigate into the
U5 =j + r jku fundamental physical features of the

Lurbuient flow around a ship, the authors
employ a zonal method near the ship hull

and the convection term In the gradient form surface, and on the other hand adopt a
becomes computational procedure with SGS turbulence

I model, the latter of which is similar to

uJS U + rLJkUJUk large eddy simulation and is called LES-like
procedure by the authors. Contrary to the
methods for an averaged flow this method' is
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supposed to resolve unsteady turbulent fluid where A is set constant at 26.0. The details

motions of smaller scale and it will provide of the formulation of subgrld-sale turbulence

useful information for the understanding of model are described in (6].
the fundamental features of the turbulence The algebraic turbulence model used in this

structure of the ship boundary layer. The study is a modified Cebeci-Smith type [171
present study from above-mentioned standpoint [18]. For the inner region of the boundary

will hopefully to throw a light to the layer the Prandtl-van Driest formulation is

research of this area. used as
In this study two turbulence models are

used, one is the algebraic turbulence f

model and the other is subgrid-scale
turbulence model. In order to exmamine the
possibility of applying the SGS turbulence
model to the turbulent flow around ship by
comparing the computational results of the two I =ky[- I e -Y

turbulence models with the experimental data.
Then the details of the physical features from
the computation are discussed. The
formulation of the subgrid-scale turbulence and for the outer region the Clauser's

model is essentially same with the previous formulation together with Klebanoff's

study by Deadroff-type (11] and is based on Intermittency function is applied as follows.

the eddy viscosity concept, that is to say,
the subgrid-scale stresses used in this study
are isotropic ones. The SGS eddy viscosity is C = UT"FKI ,

defined as

= (C. Jr) (2F" 7)". FK1b = [I + 5.5(y/b)6j

The correspondent boundary layer displacement

and the SGS stresses R # are written as thickness 8" and boundary layer thickness 8 in

the case of zero-pressure gradient are

determined by y.-x of the maximum point of the
root of the shear stress where the velocity

RU-uu Uu g,,,, - is defined from the law of the wall of the
Coles formulation [191

However, using this formulation of SGS FtOUI
turbulence model without any special treatment y [I-e-YL
near the ship hull surface, the turbulent

production may be insufficient and be diffused
out in the vicinity region inside the and the boundary layer thickness vand the
laminar viscous sublayer 112) [13]. This is atebnd thickness od s
because the essontial turbulence generation dispalcement thickness 8 are obtained as
near the hull surface is due to the , 1
inhomogeneous wall turbulence, which is
characterized by a mixing length of the
scale of sublayer thickness and of 1)
boundary layer thickness. The effects of the
curvature of a wall as well as the pressure
gradient should also be considered in the
turbulence models. However, they are postponed Also both the accelerated and the decelerated

to the future study. flows including separated flows are considered

In order to take into account the in this formulation of the modified Cebeci-

inhomogeneous effect of the wall turbulence in Smith model, see Stock and Hasse [173.

the subgrid-scale turbulence model, the
Prandtl-van Driest formulation is introduced
for the reduction of the turbulence scale near
th h ull surface -by multiplying the
subgrid-scale in the Smagorinsky eddy 6,Boundary Condition
viscosity by the exponential damping No-slip velocity condition is -implemented
function, that is, at the ship hull surface. In this study the

first grid point in the fluid region is set
inside the viscous sublayer, and the velocity

J= ziIe-Y/lA J at this point is interpolated by the velocity
profile of van Driest [181 given as
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2. Calculation in the fine grid (zone/+(8+ 2 1):

1+2--- + = 1 a. Calculate the momentum terms of the
cy +  Navier-Stokes equation by using the velocityof the fine grid (zone 1).

b. Compose the Polsson equation for the fine
1+ - grid (zone 1) and solve it under the zonal-

1+ KY+[I--e-Y/ ] boundary condition that the pressure at point
B (figure.6.2) Is set at the same value with
that at point B' in the coarse grid (zone 1).

c. Update the velocity at the fine gridwhere u* = u/u, and y" = y, u I/v. As shown in (zone 1) and update the velocities in the
Figure 6.1, point A is the nearest point and overlapping region of the coarse grid system.
point B is the second point. At each time-
step the friction velocity n the ship hull
surface is calculated so that the velocity at
point B satisfies the above equation. And
then the velocity at point A is interpolated
by the following equation. 7. Computed results

Computations are performed for a flow about
a Wigley hull at the Reynolds number (Re) 108

H(A uA qA with the algebraic turbulence model (modified
I 3 Cebeci-Smith model) (Case 1) or the subgrid-

Bf scale model (Case 2). It is noted that in the
computed results the viscous flow about a

where ul is the component of velocity along hull is not wholly developed but it is on the
tI grid line and ul is along V grid line, ti'ansltion stage, since the computations are
both of the lines are parallel to the ship continued only for T=1.2 (dimensionless time,
hull surface. And q is the velocity magnitude T=tUe/L, Us is uniform flow velocity and L is
at the grid point, which is calculated- by the ship length) in the Case I and for T=0.8 in
ordinary procedure at point B and by the the Case 2.
equation of van Driest's velocity profile at The grid system shown in Fig.2.3 is used and
point A. the number of grid points is 255,000 for the

At the other boundaries, the uniform stream coarse grid system and 340,000 for the fine
velocity is set at the inflow boundary and grid system. The smallest grid
zero normal-gradient condition is set at the spacing In the e2 direction about 0.005% of
side and outflow boundaries, the ship length. The time increment At is

The pressure is fixed at the bottom boundary 0.00005 for the coarse grid system and 0.00001
and zero normal-gradient condition of for the fine grid system, respectively. The
pressure are set at the other boundaries, factor of the artificial dissipation term a is

The zonal-boundary that connects two zones set at 6.0. The computations are conducted on
described in the previous section is placed HITAC S820/80 supercomputer with almost 20
along the e2 grid line. As shown in figure hours of CPU time. The vectorization ratio of
6.2, the velocities and momentum terms of the CPU time is 98% for both cases.
Navler-Stokes equation in the overlapping The pressure distribution on the ship hull
region of the coarse grid system are set at surface (x 3 =0.0) computed with the algebraic
the same values with those of the fine grid turbulence model is compared in Fig.7.1. The
system for the mass and momentum conservation, agreement with the measured results by Sarda
The algorithm of the calculation with the (20] is not very satisfactory since the flow
zonal-boundary is as follows. is not fully developed and furthermore in the

algebraic turbulence model used in this study
1. Calculation in the coarse grid (zone the displacement thickness of the boundary
2): layer is determined by the well-known Coles

a. Calculate the momentum terms o: the velocity profiles for the zero-pressure
Navier-Stokes equation while they are gradient (17] while the decelerated flow near
interpolated from zone 1 in the overlapping the after end of ship is involves large
region by using the updated velocity in zone pressure gradient. However it is noted the
2. overall flow field is approximately realistic.

b. Calculate the source term of the Poisson In order to examine the detailed flow field
equation in zone 2 and iterate the pressure comparison is made of the flow variables at
solution loop under the zonal-boundary two longitudinal location xI/L=0.8012
condition, which the pressure at the point (QI=l0) and xl/L=0.9218 (1=120), where the
A' (figure 6.2) is set at the same values viscous flow along the hull surface may
with the pressure at point A of the fine grid gradually develops and %hree-dir ensional
(zone 2). motions may become important. The data are

c. Update the velocity in the corse grid illustrated in Fig.7.3 and 7.4 for Case i, and
(zone 2). in Fig.7.5 and 7.6 for Case 2. All variables

are made dimensionless following 'the
equations described in the previous sections.
The distribution of velocity components,
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vorticity components, eddy viscosity of the promising approach.
coefficient and Reynolds shear stresses along For the numerical simulation of the detailed
the lateral el grid line are presented at two viscous flows on the hull surface we must be
vertical location x 3 =-0.0463 Q1=30) and x 3 = - very careful as suggested by the present test
0.0341 (3=35) while the water plane is at computations The zero-equation model ignores
x 3 =0.0 and the keel is at x3=-0.0625. some of the Reynolds stresses which may not be

The contour maps of u1 and GO indicate that sufficiently small in the real flow. The two-
the boundary layer is still developing and the equation model is said to be insufficient for
streamwise vortex is going to be formed in it. the separated flow. The subgrid-scale model
The thickness of boundary layer in Case I is may give excessive turbulence stresses when it
much thinner than Case 2. This is mostly due Is used in the grid system of which spacing Is
to the small magnitude of the eddy viscosity, not sufficiently small. The subgrid-scale
which may deteriorate the diffusive effect of model will be useful not only for the large
turbulent flow. It Is approximately one eddy simulation but also for the flow
seventh of the case of the subgrid-scale simulation of engineering purposes. However,
model. At the bottom of Fig.7.3 to 6 the the coefficients and scales for the model must
computed Reynolds shear stresses are shown. be carefully chosen.
Since their magnitude reaches the maximum This reseach is supported partly by the
value of 101 according to the measured results Grant-in-Aid for Cooperative Reseach of the
[20), the turbulent flow is not wholly Ministry of Education, Science, and Culture
developed in the computations. However it is and partly by the LINEC group of shipbuilders
shown that two components of the shear in Japan.
stresses which are not considered in Case I
are important in this flow field and hence the
use of the algebraic zero-equation model is
questionable.

The relation between the location of the
maximum shear and the boundary layer thickness References
is shown in Fig.7.2. According to Stock and 1.Miyata, H., Nishimura, S. and Masuko, A.,
Haase [17], the relation should be given by "Finite difference simulation of nonlinear
the linear equation 8=1.936Y. ,x. This waves generated by ships of arbitrary three-
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excessively enlarged by the subgrid-scale Phys., Vol.60, No.3 pp.391-436 (1985a)
model and on the contrary it is supressed by
the zero-equation model. This tendency is 2.Miyata, H. and Nishimura, S., "Finite-
amplified at 01=120 more than at e1=110. It is difference simulation of nonlinear waves", J.
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Abstract without need to ascertain the near field mutual influence of
the sources. The landmark paper by Eggers, Sharma, and

This paper presents a numerical method for calculating Ward [2] presents a comprehensive survey of different
the total Green's function for the wave resistance case of a methods of usip- the single-integral far field Green's func-
source in steady translation below the free surface. Starting tion to obtain the wave resistance.
with a representation of this function in the complex plane
given by Bessho a series of transformations of variables are In recent years, with the availability of ever larger and
used to reduce it to three real single integrals. The faster computers, -interest has been enlarged to -include the
integrands are regular and are entirely in terms of elenien- near field terms of the Green's function as well as a more
tary functions. Two of the integrals are even in the direc- accurate calculation of its far field behavior. An evaluation
tion of flow while the remaining integral is odd. The even of the near field terms would give a more accurate determi-
and odd integrals may also be conveniently expressed in nation of the source strengths for hull forms which do not
terms of the near and far field components. While the conform to thin ship theory as well as a more detailed defin-
method is applicable nearly everywhere (except for the well ition of the flow field and- pressure forces on or near the
known difficulties at the limiting cases when the source is hull. In the far field case, the use of modem day remote
located near the free surface or the field point is close to the sensing technology makes it of interest to assess the ship
source), computer time varies in the computation domain, wake for wavelengths which are significantly shorter than

those applicable to the wave resistance problem.
A computer code has been written to implement the

above method. Sample calculated results are given in Efforts at rendering the initial double integral represen-
several forms to show the accuracy and computer time tation of the Green's function amenable to numerical calcula-
requirements of the code. A series of line and contour plots tion usually involve expressing it as a series of single
are given to show typical shapes of the integrands at dif- integrals. Noblesse [3] gives several alternate single integral
ferent locations in the computation domain as well as to representations. A popular form is to express the Green's
exhibit the relative behavior of the various component function as two single integrals consisting of a near field part
integrals. N which is even -in thc flow direction x, and a wave distur-

bance part W which is defined only downstream of the
1. Introduction source. The near field part N has an integrand which is in

terms of the higher order derived exponential integral func-

For a number of decades, interest in the important tion. Noblesse [4] and Euvrard [5] have conducted detailed

Green's function for a submerged nonoscillating source mov- studies of the behavior of N and W, especially at limiting

ing at constant forward speed in fluid of infinite depth has regions of the computation domain.

largely centered on its far field characteristics. This was
both due to the greater simplicity of the far field evaluation In terms of actual numerical implementation, Newman
as well as its direct applicability to finding the hull resis- [6] has developed a procedure for calculating N in terms of

tance component due to wavemaking. The far field wave extensive sets of tabulated coefficients of Chebyshev or ordi-
pattern required only the evaluation of a single integral with nary polynomials. The coefficieits iake dfi four different

a regular integrand over a one-dimensional wavenumber sets of values, depending on the radial distance R from the

,?ace while the complete Green's function involves the addi- source. In the case of the wave disturbance part W, Nob-

tional calculation of a double integral with a singular lesse [7] and Newman [8] have developed procedures for the

integrand over a two-dimensional wavenumber space. The specialized case of the vertical xz centerplane while Baar and

applicability of using only the far field analysis to obtain the Price [9] implement a more general calculation for the entire

wave resistance was aided by the pioneering work of domain with the exception of the region near the free sur-

Michell [1] who showed that reasonable estimates of the face. In these studies, the computation region is again

source strengths modeling the hull surface for the case of divided into several regions depending on the values of x/z

thin ships could be obtained directly from ship geometry, or xlV/Yz + z2. In many cases, the solution is in terms of
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a series of functions, and there is often a delicate balance Image Sink
between the regions of convergence of near field and asymp- (X,Y, - Z)
totic expansions. Free Surface P" n Free Surface

Our paper presents a numerical implementation of a (x,y,z)
representation of the Green's function developed by Bessho Field Point .(X,Y,) Current U
[10]. By means of a series of ingenious transformations, he Source Point
succeeds in reducing the entire Green's function to a single
integral along a curved path in the complex plane. The y
integrand is regular and is entirely in terms of elementary
functions. This remarkable representation has been noted by
previous investigators [4,6] and has prompted Ursell [11] to z
give a more complete derivation, including the justification
of an important intermediate step. Our work differs from Figure 1. Definition of Coordinate System and Flow Configuration
previous numerical implementations in several aspects. Our
work is entirely in terms of integrals as opposed to the use 1
of expansions in series. Our implementation is for nearly Go = - lim dO S odk
the entire computation domain and for the complete Green's I" (-o 0

function as opposed to specialized domains or particular
parts of the Green's function. exp [-k(z +Z) + ik (x - X) cos 9 + ik(y - Y) sin 01 (2)

The paper starts with a concise statement of the critical k cos2 0 - 1 - ic cos0

points of Bessho's contribution. Then, a more complete
description of the derivation, as given by Ursell, is given in In the above equation, all length variables have been mace
outline form. One reason for giving this derivation is to dimensionless by multiplication by the factor g /U2 where g
point out the starting point for our numerical work, which is the gravity constant. Go represents an inverse double
occurs before the final single integral representation is Fourier transform over the two-dimensional k-0
reached. A detailed description is then given of the transfor- wavenumber space. The parameter e(>0) is added to
mations required to convert the original complex integrals to ensure that the radiation condition is satisfied at infinity.
three real integrals, two of which are even in x (Ge) and one Also, following Ursell, the terms (x - X), (y - Y), and
is odd in x (Go). The simple relationship between G, and (z + Z) appearing in Eq. (2) are simply replaced by x,y,
G, and the commonly used N and W is pointed out. Pecu- and z for the sake of convenience.
liar features of each of the three integrands are discussed,
and the procedures used for their integration are pointed out.
A special limiting process is used to obtain G, and G. on 2.2 Concise Statement of Bessho's Approach
the axis directly downstream of a source at the free surface.The variation of computer time requirements and accuracy .The usual way of simplifying the double integral
of the calculated results in the computation domain are dis- expression for Go is to perform an initial integration over kofuthed calulater results narhe copstto cen e or 0, thus reducing the double integral to a single integral.cussed. Numerical results are presented to check on the Thue integrand, however, is not entirely in terms of elemen-
accuracy of our procedure and to illustrate in graphical form tr fntions ho nt irer ders onen-
the behavior of the integrands and their integrated values. tary functions but contains the higher order derived exponen-
The paper concludes with a summary of the principal find- tial integral function E,(u) defined by
ings.EI(u 

J :Xd(3

2. Derivation of Bessho's Single Integral Representation

2.1 Initial Representation in Double Integral Form In Bessho's approach, the initial integration to reduce
the double integral to a single integral is not performed at

In this work, we will consistently follow the notation the outset. Instead, after a series of transformations of the
used by Ursell [11]. Figure 1 shows the coordinate system double integral, including changes of variables, deformation
used in our work, where x corresponds to the direction of of the paths of integration in the complex plane, expressing
the current flow U, y is the horizontal direction perpendicu- Go as derivatives of more convergent integrals, and inter-
lar to x, and z is the vertical direction positive downwards. changing order of integration, the double integral is finally
For a stationary nonoscillating source located at (XY,Z) the converted to single integral form by means of the following
Green's function G(x,y,z; X, Y,Z) at field point (x,y,z) is crucial equality
given by given b 

exp (imP) dm (4)G(x,y,z) = -L--c - +- o

where R1 = [(x-X2 + (y_Y 2 + (z-Z)2]'4  27ri exp (i P Q) (P > 0, Im Q > 0)
=-2riexp(iPQ) (P <0, ImQ <0)

R = [(x-XV + (y_-1' + (z +Z)211/2 0 (P. Im Q < 0)
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where P is real and Q is complex. Thus, the order of Actually, the integral Ao + Be can be more directly
integration is reduced entirely in terms of elementary func- simplified (without the need to use Bessel functions) by not-
tions. The following section gives a summary of Ursell's ing that the order of integration can be interchanged since it
detailed derivation and justificaticn of Bessho's approach. is absolutely convergent, carrying out the simple integral

with respect to m, and making the change of, variables
2.3 Summary of Ursell's Derivation w = eV in the resulting single integral to arrive at the same

result given above.
Using the equality

By making similar shifts in the paths of integration of
2= -cos0dO (5) A, (v=ia+ --'i+ w, wreal) and B,(v= ict-

0o 0d 2/2 
i + w, w real), the sumA 1 + B I takes the form

rewrite Go in Eq. (2) as the following sum of A and B 2

Go (x,y,z) = A(x,y,z) + B(x,y,z) (6) A +B,= llimj, dm dw

where A and B are now integrated from -r/2 to +ir/2
over 0. exp (-imp sinh w + imp sinh 3) + (single integrals

By introducing the following two sets of new variables m - 5sh (w + ia) - ( l e

m = k cos 0, tanh v - sin 0 (7) due to residues at poles crossed by the shifts) (12)

y = p sin a, z = p cos ct, x = p sinh13, R = p cosh13 (8) By interchanging the order of integration, Bessho notes
that the integral with respect to m is of the form given in

and writing A and B as Eq. (4) and thus the double integral is converted to a single
integral entirely in terms of elementary functions.

A = Ao + i "-L A 1, B = B0 + i - BI (9) Ursell points out that the double integral in Eq. (12)
OX ax does not satisfy the sufficient (but not necessary) condition

of absolute convergence in order to justify the interchange of
the following expressions are obtained for Ao, Bo, A,, and order of integration. His proof of the validity of the inter-
BI, change basically consists of extending Bessho's idea of gen-

erating derivative functions, shown in Eq. (9), to generate
Ao= - dmJ dvexp[-mpcosh(v-iot)+imx] (10a) the following still more strongly convergent integrals A2 and

0 - B2

Bo = -L 0 dm -_ dvexp[-mpcosh(v-ic)- imx] (10b) _L lim d d exp-mpcosh(v-ia)+ina
W 0 0 0-A (1 -i)(m-coshv -ie)

AI lim f dm f 00 dv exp[-mp cosh (v -i)'+imx] (13a)
A , - 0 0 - 01 m - cosh v- iE

(1oc)

B2 = --1 lim 0 dm5 dvexp [-mp cosh (v - i) - imx]
B, - dv exp[-mp cosh (v-ic)-imx] 7 (-o 0 - (l+im)(m -coshv+i)

S-o 0 - m-coshv+ie (13b)(lOd)(1)

The reason for introducing the new integrals A, and B I is which are related to A , and B I as follows
that they are more strongly convergent than the original
integrals A and B. a a

The double integrals Ao and B0 are simplified by A, ,

Ursell by making the change of variables v - ict - v, and
using equality (9.6.24) of Ref. [12] to convert the integrand Urseli proceeds to operate on A2 and B2 in a manner similar

in terms of the Bessel function Ko to Bessho's transformations of A, and B,. That is, once
again the paths of integration are shifted for

Ao + B 4 d Ko(mp) cos mx A2 (v = i + - 7ri + w, w real) and B2 (via-
Ir 0 2

1 7i + w, w real), and the resultant residue evaluated at
2 2 2

S(11) the pole of the integrand crossed by this shift (for some but
+77x 2  R not all m) where the pole V is defined by
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m + ic for B2  In either case, Eq. (17a) is expressed as the following sum
cosh V(m) = m - ie for A2  (15) of two single integrals

By making the further change of variables from m to V, as I I I(w, O)dw
given in Eq. (15), in the single integral resulting from the

residue evaluation, the following expressions are obtained
for A2 and B2, where each is given in terms of a single = 2i I exp[-p(sinh/-sinhw)sinh(w +ie)]dw (18a)
integral and a double integral 01 + sinh(w + i)

A2  -- lim dm I -dw + 2i exp p(sinho-sinhw)J d
7 "e-o0 1 -am 1 + sinh(w +ice dw (18b)

exp (-imp sinh w + imp sinh 8) (16a) The component single integrals (16b), (16d), (18a), and
m - i sinh (w + io!) - ic (18b) which together define A 2 + B2 form the starting point

for our numerical analysis and implementation. Ursell
proceeds to essentially sum these component integrals and

- 2i f-I-.dV exp(-pcoshVcosh(V-ir)+ixcoshV) perform the derivatives indicated in Eqs. (14) and (9) to
2 1-i cosh V obtain Bessho's representation of Go = A + B as a single

(16b) integral in the complex plane.

-:. dm dw To begin the compacting process, these four integrals
B2 

=  -llim 1 0 1 + im O dw are all expressed in terms of the variable u by letting

V = U + -wi in Eq. (16b), V = u--ira in Eq. (16d),
2 2

exp (imp sinh w - imp sinh /) (16c) and w = u - ict in Eqs. (18a) and (18b), resulting in
m + i sinh (w + ic) + ie

- 2i ~.~ V exp(-p cosh Vcosh(V-ioi)-ix cosh ) A2 +B2 =2i____CO__+_______+ i a +l +i coshV 2 2
(16d) d

1 +siu exp [(p sinh (u - ix) - x) sinh u]
where a is taken to be >O in Eqs. (16b) and (16d).

Ursell shows that the double integrals (16a) and (16c) + 2I+l* du exp-(psinh(u -ic) -x)] (19)
are absolutely convergent, and thus it is permissible to inter- + 12i50+1 , 1 + sinhu
change the order of integration. By writing -m for m in
Eq. (16c) the two double integrals can be combined into a In carrying out the differentiations /Ox indicated in
single form, with order of integra.tion interchanged Eqs. (14) and (9) it is important to recognize that the limits

of integration involve the variables ce and /. From the
1 f- dwj_ dm exp(-impsinhw+impsinhS) transformation Eq. (8), it is seen that
i (I - im) [m - i sinh (w + it)] act0 =8 0,1=pcs (20)T~X 8o cs x -a"x R

= -5 dw l(w,3) (17a)

Performing first the operations indicated in Eq. (14) on

The presence of the extra factor (1 - im) in the denomina- A2 + B2 to obtain A I + B 1 and then the transformations
tor makes the equalities given by Eq. (4) not directly appli- indicated by Eq. (9), using the result given in Eq. (11), the

cable for evaluating I(w,/). Instead, Ursell evaluates it by following complex single integrel representation for Go is

means of an elaborate contour integration, accounting for the obtained
residues due to the poles which are enclosed for O<w</3 2 a
and/3<w<o. Actually, Eq. (17a) can beput in a form to G°=A+B=-+i-(A, +B)=2 I
which Eq. (4) is applicable, by rewriting the denominator, X 2

as follows
50, 1 sinhuexp[(psinh(u-ic)-x)sinhudu (21).

I
(1 - im)[m - i sinh(w + ic)]

The above integration paths are not the same as those used
rby Bessho, shown in Fig. 2. In order to obtain the integrals

1 (17b) in the Bessho form, make the substitutions
sinh(w + ice) +1 M (w + ic) - x =b) x -X, X - p sinh b, u = -v, and note that Go()

n + i) Go(-cc), resulting in
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In the above, use has been made of the identity
cosh (IV) = cos V relating trigonometric and hyperbolic

00 7r cosines.
0L~ Carrying out the differentiations indicated in Eq. (14),

(0. 2 L2the following integrals are obtained for A1I + B,

=2i 5exp[-p(sinh3 - sinhw)sinh(w + Ice)] dw (23a)
0

2a -2 23-- 2b
101_____ ___________ _ 2 0 xp [- pcosrcos( - a) + xcos] dr(-b

Figu re 2. Bessho's Integration Paths +2i215W exp[ -PcoshVcosh(V - ics) + ixcoshVl dV (230)

G0(1.1z =- + + 21 exp[-pcostcos~r + a) - ixcosf] dr (23d)

+ 02 exp[-pcoshVcosh(V - ict) - LxcoshV] dV (23e)
sinh v exp [(p sinh (v - icr) - X) sinh v] dv (22) +2

The above equation is a result of the following considera-
3. Computational Implementation of Bessho's Method tions. Recalling from Eq. (20) that 00/ax =1/R, the

derivatives 0/ax of the variable limits of integration appear-
In this chapter we will present our computational ing in Eqs. (18a) and (18b) cancel each other. Recalling

implem..-atation of Bessho's method. As mentioned previ- from Eq. (8) that x = p sinh 13 the operation (1 - 0/Ox)
ously, our analysis starts from the four component complex applied to the integrands results in Eq. (18b) going to zero
single integrals given in Eqs. (16b), (16d), (18a), and (18b). and a removal of the denomninator in the other five integrals.
Through a series of transformations, we simplify~ and con-
dense these complex integrals to three real integrals, two of Proceeding similarly, using Eqs. (9) and (11), we
which are even in x and the other is odd in x. Taken obtain Go in the form
together, these integrals represent the entire Green's fuinc-
tion. Reference [13] describes the FORTRAN 77 computer 21+ ( 1 +B)=G1 +G 3 +G
program which evaluates these integrals. Go=R Oax ( I I+G 3+G

3.1 Simplification of Complex Integrals = 21 'sinh (w + Ir)

We start by making the change of variables =IV for
part of the integration of Eqs. (16b) and (16d) and then exp[-p(sinhp - sinhw)sinh(w + ic)] dw (24a)
rewrite each integral as two integrals with real limits of
integration, resulting in the following expression for

2 + B2+21 2 cosrexp[-pcostcosU -a) +ixcosridr (24b)
A2 + B2 = Eq. (I8a) + Eq. (I 8b)

-z xp-posco(~a)ixosj+2 cos rexp[ - pcos-cos(r + a) - ixcosr] d (24c)-2S x o o~ e xcsf d r (I6b. )0

+ 2O expf - pcoshVcosh(V - j a) + ixcoshvi dV (16b.2) +400 cosh Vsin(x coshV)

r Cex[ csrco~r+ c)- X os)exp[ - p cosh Vcosh(V - ia)] dV (24d)

+2 f0 2I + I cosr I6.1 In the above equation, the two integrals in terms of the vari-
able V have been combined into a single integral by using

+ if0 exp[-pcoshVcosh(V - ia) - LxcoshnldV (16d2) the well known identity e fcohV - e -Lrcohv = 2i sin (x cosh
OD I + icoshV
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In the following, we express the above complex 04f4 sin(x 1)cos(ywV ))e_,(wi+i)dw(29)integrals as the sum of real and imaginary pas, and con-(29)

sider only the real part. By means of a series of transforma-
tions, we reduce the resulting integrals to compact form. By making the further change of variables dw = sec2O dO,

we can transform G4 to the single integral, form-given in Eq.
3.2 Conversion to Real Integrals (13.3b) of Wehausen and Laitone 114]

Consider first G, given by Eq. (24a). By first expand- G /2 sin(xsec20cos0)cos(ysec20sin0)e-z sWCse c2OdO
ing sinh (w + ia) and then making the change of variables G4 =410 s
cosh w dw = dw', G becomes the following

(30)
G, =2S SInfX/P[Coscc cos(x since NIw2 + 1

0W2 +1 In our numerical computations we find it somewhat more
convenient to make the change of variables sec2O sin 0 = u

- yw Vw2 + I) + sin sin (x sin a w + 1 and use the following alternate form proposed in [2]

-yw 4w2+ l)e -AcOsaw+ZW' dw (25) G 4  4J sin(xs)cos(yu)e-' '-- dU (31)

Let us now consider 02 and G3 given by Eqs. (24b) I + F + 4U2  12= e
and (24c). By using the well known relationship where s(u) = 0.
e kix cOs " = cos (x cos ')i i sin (x cos r), the real part of L 2
these two integrals can be conveniently written out. By Adding the component integrals given by Eqs. (25),
making the change of variables r = - r' in G3, G2 + G3  (27), and (31), the resulting form for Go in real form is
can be written as the following single integral given by

G2+ 3r Go = G. + Gc + G = Ge + G.
G2~~~=j, + G3=2in1+corosxo/ 'wsZo~-Od (62

=2XP[Cosx a cos(x sna4 _+ 1
By making the change of variables l" = " + a/2, using 0 2 c 2  I
various trigonometric identities for the cosine terms, keeping
only the even functions of r (since the odd functions give a
zero integral), and (very similar to the final transformation - yw + 1 ) + sin ax sin (x sin cx + 1
indicated for Eq. (25)) making the change of variables
cos dr = dw, the integrand of G2 + G3 takes on a form -yw 4W2 + l)]exw0saw+P00saw2 dw (32a)
resembling that of GI given in Eq. (25)

aZ Ct

Co cos 2cos (coss 2L cos(x Cos " 1 W2)cos(xsin w)
G2+G3 = 4 0  2o 2 C (Co _W2)40 22 2

a-wsln I

2 sn (x cos -E w2 )cos (x sin -E w)-w sin _x isW 2 2

2 -- == si7os~ __w2 2 w) 2 i~cs..l .

-' P (C O S + - 2 w ') e 2 c s + - w d w ( 3 2 b )
sin (x sin 2" w)]e 2 dw (27)

Finally, let us consider G4 given by Eq. (24d). By +4 1O sin (xs) cos (yu)e s -I du  (32c)
making use of the identity cosh (V - ice) = cosh V cos
cx - i sinh V sin cx the real part of 04 is written as where s(u) is defined in Eq. (31), and p and cx in Eq. (8).

Since G, given by Eq. (32c) corresponds to the single
Cr4= c-. 1si I.cs.'A hrtr ll ato the'= ton'l Orc..-'s funtio given ;.-r " oi,.an pat a, ..1.. I nt,u A~ ..... g0n ~ .4',.'4~. -- b" "' O11j GO,, ,. i,: ..

the sum of G., and G, given respectively by Eqs. (32a) and

cos (p cosh Vsinh V sin c)e-Pch 2VcOscdV (28) (32b), corresponds to the double integral part. Equation
(32c) shows that G, is odd about x = 0 and has an infinite
upper limit of integration while Eqs. (32a) and (32b) show

By making the change of variables cosh V dV = dw and that the G, is even about x = 0 and has upper limits of
recalling Eq. (8), G4 becomes integration which depend.on the field point.
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The integrals G, and G, are also simply related to the 1 0__1._=-
commonly used near field and wave disturbance components - -.. . - : o. ,- .z-

N and W [4,6,9]. Comparison of the expressions for Go and 6

W shows that c c

E 2

W(x, y, z) = Go(x, y, z) + Go(Ix ly, z) (33) X,

Since W + N = Go + Ge, N is related to Ge and Go as fol- 2 \/
lows

-I /N~,y, z) = Go(x, y, z) - Go(Ix 1, y, z) (34)/

0.0 .2 4 6 20 1 0
3.3 Behavior of the Integrands INDEPENDENT VARIABLE U

It is of interest to investigate the behavior of the three Figure 5. Integrands for G.
integrands in different regions of the x, y, z computation
domain in order to derive effective integration schemes.
While the behavior of the integrand for the odd integral Go These figures show that the behavior of the integrands
is relatively well known, we do not believe that the varies greatly, depending on (x,y,z). Thus, it is not likely
integrands of the even integrals G. and G, have been previ- that any single integration approach will be optimum
ously considered, throughout the entire computation domain for a given

integral. It is this great divergence in behavior which has
Figures 3 to 5 respectively show the integrands for G, led previous investigators to consider only specialized com-

G., and Go at various (x,y,z) locations. In these figures, ponents of Go and to divide the computation domain into
the horizontal and vertical coordinates have been normalized several regions (4-9]. Our principal effort has been to deter-
so that the independent variable lies between 0 and 1, and mine minimum integration domains for the two integrals
the integrand lies between -1 and 1. which have theoretically infinite upper limits of integration:

Go and (as x/p - oo) G..

0 0 -Figure 3 shows that Gx has a smooth integrand for

// / I ~ small or moderate values of x/p, but at larger values, the
-III - . integrand seems to concentrate at thin strips at the left and

right ends of the domain of integration. This is due to the
Z 2fact that the argument of the exponential function in Eq.

-7/- 1\\ _- (32a), f(w)=-xcosnC w + p cosa w2  is zero at the
- .iends of the integration interval, w = 0 and w = x/p, andI takes on negative values in between. Noting that f(w) is

> Isymmetric about the midpoint of the interval, w = x/2p,
-6 /,.the following integration scheme is adopted for G,. First,

the limits of integration lying on either side of x/2p are
-2 0 determined by setting f(w) = -A, where A may be chosen-

0 0 2 4 6 6 2 0 to be suitably large, say, 20 (i.e., e-A = 2 x 10-9),
INDEPENDENT VARIABLE U resulting in

Figure 3. Integrands for G,
Aw = + :I- (x/2p) -4A/(pcost) (35)

20 Tp 2

NN

\ " / I / For cases where the term under the square root sign is nega-
~ tive, Aw = 0. Integration for G., is thus confined to the

''"I two strips Aw as follows
0 2I /

U 2_x /2pAg(w)ef()dw + IP g(w)ef(w)dw,- . y-. az- ' I Ipw
... 0 xl~p-Aw

-'-. Y-1. Z2_0 0 / = Ao [g(w)+g(-w+x/p)]ef(w)dw (36)
* I . 0 \

0 0 2 4 o 8 10 where g(w) are the trigonometric functions multiplying eI(w)
,NDEPE ND v ,~IE u in Eq. (32a) and the last equality results from the symmetry

Figure 4. Integrands for Gc off(w) about x/2p.
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The error incurred by using a finite upper limit uM in 1/Ix I as I x I -o o, we have derived in [13] the following
the integral for G., Eq. (32c), may be estimated as follows, expression giving the first order far field behavior in the
By neglecting the trigonometric factors, which have magni- neighborhood of the axis (x, 0, 0)
tudes less or equal to 1, and changing the variable of
integration from u to s, defined in Eq. (31), the error e is ,. ]Ee" A 2 ,
bounded by Go(x,y,z) sgn(x)2N/ Te-2/ + ') sin ( x

p 4(y 2 + z 2 )

S4JSS ej "'ods (37) + .+)+2 l . (sinx +sgn(x)cosx)e- (40)

2 2 lXI

w A c-hang of This equation generalizes, for the case of large x, -thewhere s 2  + . By making the change of expression given in [5] for the wave disturbance W for the

variables t s 2 , the above may be integrated by parts to specialized case z = 0. The above equation confirms the
give findings in [5] that the limit z = 0, y - 0 is singular, and

that (provided z * 0) the limit y = az, z - 0 is indepen-
2 e SsM 2 { d eS (38)sdent of a. Since the near field component N is well+Z sds (38) behaved, Eq. (34) shows that G, must show a similar

Z UM Z i d ubehavior.

where s d! (S2 - 1)-1/2 : 0. Therefore, it is We find it convenient to compute the values of G and
() ds G, for y = 0, z- 0. In this case, a = tan-i(y/z) = 0.

necessary to consider only the first term in deriving esti- The integral G, may be calculated in a straightforward
mates of the maximum error incurred by using finite values manner by setting z = 0 and then evaluating the well
of uM. By considering e and z to be given parameters, Eq. behaved integrand between the finite limits 0 and 1. In the
(38) may be solved iteratively for the required upper limit case of G,, the limiting process must be applied with some
um . Table 1 gives the calculated values ;f uM for care. In particular, taking care to preserve the previously
0 = (10- 3 , i0 - 4 , 10-6) and z =  (10., 1., 0.1, 0.01). noted symmetry of the exponential factor about the midpoint
Table 1 shows the manner in which UM increases with of the integration interval x/2z, the integral G, has the fol-
decreasing values of e and z. lowing limit

Table 1 - Variation of the Upper Limit of lim G (x, 0, z) = lim /z w e - xw+ w' dw
Integration uM in Go with Error Criterion Z-0 0 o

e and Source Submergence z

E z = 10. z = 1.0 z = 0.1 z = 0.01 =lim2 jX/2Z w + x/z- W e dw
10- 3  0.01 6.2 77. 880. z-00 2 +1 (X/z W) + I

10- 4  0.085 8.4 99. 1100.
10-6 0.60 13.0 140. 1500. 2 W e-xw+ (41)

02 1 W2+ I

3.4 L- Thus, Go may be conveniently calculated on the axisLimiting Behavior as p -- 0 (x, 0, 0) by adding Go, Go, and G,.

Use of the above error estimate appears to indicate that
uM - oo as 7 - 0. Yet it is well known [4,81 that 3.5 Computer Time Requirements
Go(x, y = 0, z = 0) is given by

Computer time depends on various factors, of which
the values of x, y, and z, the error criterion e, the type of

Go(x, 0, 0) = I W(x) = -21fYf(x), x > 0 (39) integral, and the integration rule are the most important.
2 The simple trapezoidal rule and the higher order Simpson's

rule were used to integrate each of the three integrals over a
where YI is the Bessel function of the second kind of order range of x, y, z, and e. The integration starts with an initial
one [12]. The existence of the limit shows that a higher partition of the given range into two intervals, andthen suc-
order error analysis, accounting for the oscillatory tri- cessively doubling the number of intervals until the
gonometric functions in Eq. (32c), would lead to a more integrated values from two successive iterations agree to
efficient procedure for the integration of G.. within the specified error e.

In order to obtain the complete function Go for We have found that on average, the use of Simpson's
(x, 0, 0) it is necessary to calculate G, and G, defined in rule for Ge(=G + G,) results in a computer time which is
Eqs. (32a) and (32b) as y - 0 and z - 0. Since Go exhi- 0.3 of the time using the trapezoidal .rule, while the
bits singular behavior in the neighborhood of this axis, it is corresponding ratio for G, is 1.5 [13]. These trends may be
necessary to use care in taking this limit. By starting with due to the fact that the (usually) smoother integrands of G,
Eq. (29) for Go, and neglecting terms which are well benefit from the parabolic fit through the points used in
behaved near the axis p = 0 and which are of the order of Simpson's rule, while the (often) oscillatory integrands of
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G. seem to be better approximated by the straight line fit of x/p) but tend to increase somewhat for Gc (more confine-
the trapezoidal rule. We realize that, based on the diverse ment of the exponential factor to a narrow region near
behavior of the integrands shown in Figures 3 to 5, the use w = cos(or/2)). It may be noted that in the analysis given
of different integration rules (for the same integral) based on in [9] for W, which is closely related to Go, the calculation
x, y, and z would result in even greater savings of computer is limited to values of y /z less than tan (86.40) = 15.9.
time. We have not, however, pursued such detailed refine-
ments. 4. Numerical Results

Figure 6 shows the average CPU time per field point We first present various checks which have been made
for G,, Go, and Go, respectively, using the Hewlett Packard on the accuracy of our formulation. We then present con-
(HP) 9000, Model 550 minicomputer for e = 10- 4 for vari- tour plots of the varos integrals to show their overall

ous intervals in the region 0.1 s x, y, z s 40. It is well behavior. Finally, we give line plots of these integrals to

known that for values of x, y, z near the origin (0, 0, 0) and show the finer details of their individual and relative
the axis (x, 0, 0) the behavior of Go is singular. For a given behavior.
x-interval, the figure shows two sets of numbers. The upper
set gives the average CPU time for a fixed value of y (indi- 4.1 Numerical Checks
cated on the vertical axis) and a uniform xz grid of field
points over the interval indicated on the horizontal axis. Newman [6] gives accurately calculated benchmark
The lower set of numbers gives corresponding results for a values of N(x,y,z) for the field points (R, 0,0), (0,R, 0),
fixed value of z and a uniform xy grid. Several runs were and (0,0,R) where R = 1, 4, 10. The last two sets are
repeated using f = 10-6 and these suggest that average most convenient for us to calculate and we shall discuss
CPU time is approximately tripled compared to the these first. For both of these cases x = 0, where G0 = 0,
f = 10- 4 results. Also, some runs have been made on the and Eq. (34) then shows that N = G. In addition, since x
Cray XMP/24 mainframe computer and the corresponding = 0, then x /p 0, the integral G. - 0, reducing the cal-
CPU times are typically 60 times smaller. culation to N = G. For an e = 0.0001, our calculated

values [13] agree with those given in [6] to at least four
decimal places.

x
0.1 y: (.02, .05; -) 1.0 (.05, .30; -) 10(.20, 1.3; _)40 The set (R, 0,0) provides a more thorough check on

0.1 z: (.02, .02; 1.0) (.10, .10; 1.5) (.65, .20; 2.3) the accuracy of our formulation since all three of the

integrals G,, G,, and G, would be involved. Unfortunately,
our upper limit of integration for G, - o as z - 0. We
perform this check in two ways. One way is for us to calcu-
late the three integrals and form N according to Eq. (34) for
small values of z. For an e = 0.001 and z = 0.01, we
obtain agreement to at least two decimal places with the

1.0 (.01, .05; -) (.05, .25; -) (.20, 1.0, -) benchmark results [13]. While this method is computation-
(.01, .10: .10) (.10, .10; .15) (.35, .20; .20) ally expensive and inefficient, it does show the stability of

our formulation as z - 0. The second and more convenient
method is to calculate N(x, 0, 0) with the aid of Eqs. (39)
and (41) for Go (x, 0, 0) and G, (x, 0, 0), respectively.
Using this approach, our results agree with those in (6] to
six decimal places for e = 10-6.

(.02, .10; -) (.02, .20; -) (.20, .40; -)

10 (.01, .25; .02) (.02, .25; .02) (.20, .45; .02) 4.2 Contour Plots

Figures 7a to d respectively show contour plots for the
component integrals G,, G,, Go, and N for the case of z =

40 (.01, .25; -) (.02, .20; -) (.10, .20; -) 0.1 over a 101 x 41 rectangular grid with 0 : x 5 50,
(.01, .25; .01) (.01, .30; .01) (.10, .45; .01) and 0 5 y 5 20. To illustrate the effect of z, Figures 8a

and b respectively show G, for.z = 0.1, and 1.0 for the
Figure 6. Approximate Computer Times same rectangular grid.

per Field Point for e = 10-1
Figure 7a shows that the largest waves of G, are con-

fined in a triangular region which does not extend to the x

Most of the computer time trends can be directly axis. Figure 7b shows that the wave pattern for G, is rela-
inferred from the expressions contained in Eq. (32) or tively simple, consisting of waves whose crests are nearly
shown in Figs. 3-5. One trend is that the overall sum of the parallel to the y axis. Figure 7c shows the f9miliar far field
CPU times for all three integrals tends to be a minimum wave patterns confined to the Kelvin sector. Figure 7d
around (1,1,1), which may be inferred from the smooth shows that the near field integral X has ,..oxour lines which
behavior of all the integrands at this point. Another trend is are nearly circular and asymptotically decay as 2/R.
the increase in CPU time with increasing x since this leads
to increasing oscillatory behavior of the integrand. With Figures 8a and b show the well known disappearance
increasing z, computer times decrease for G. (larger effect of the clutter corresponding to the short waves as z
of the exponential decay factor) and G, (smaller values of increases.
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Figue 7. Cotou Plt ofG,,z 0 1 Fgur 7d ConourPlo of , z 0,1

Figure 7b. Contour Plot of G~, z =0. 1 Figure 8a. Contour Plot of N, z =0.1

Figure 7. Contour Plot of G, z =0. 1 Figure 8a. Contour Plot of G,' z 10
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4.3 Detailed Line Plots 5 o r

Figures 9a and b respectively show line plots of the 3 0L

component integrals G , G, and G, at y = 0 and 4 for z II
= 0.1 and 0 < x - 20. To obtain a view of the behavior 1 0 I
of the integrals over a wider range of x, including upstream & I o
values, Figures 10a and b respectively show plots of Go at -
y 0and20forz 0.1and -100 5x 100. 10

-3 0

G, -10o -60.0 -200 20.0 60.0 0.0

2 3 1 AXIAL. DISTANCE X

Figure 10b. Upstream and Downstream Line Plots of Go. y -20

-- 0 Figure 9 shows that the relative behavior between the
Er component integrals varies with the location y. Figure 9a

-3 0 shows that on the x axis, y = 0, the even integral com-
ponent G, resembles the odd integral Go, while the com-

-____ ponent G, serves as a correction factor indicating the differ-S0 410ences between G, and G. At the off axis location y = 4,
AXIAL. DSN X, o ooo o Figure 9b shows that the reverse is true, i.e., now G,AXIAL. DISTANCE K resemble G, while G, tends to serve as the correction fac-

Figure 9a. Line Plots of G,, G, Go; y 0 tor.

Figure 10 shows the expected trend that Go - 0 far
5 0 -upstream of the source. This is a verification of our

GX approach in that the separate calculations of G, and G, do
3...0 C combine to give the required annulment far upstream. This

figure shows that the local disturbance is nonoscillatory,

0 .decays rapidly near x = 0, and then shows a slow but per-
-- - -ceptible decay far upstream.

-1 0

a J5. Conclusions
-3 0

A numerical procedure has been developed to calculate
- 0 , , I ,the complete wave resistance Green's function Go for the

0 0 4 0 a 0 il 0 1, 0 20 0 case of a nonoscillating source translating below the free
AXIAL DISTANCE X surface. The numerical implementation is based on the

Figure 9b. Line Plots of G2, G¢, Go; y --- 4 unique work of Bessho, who succeeds in representing Go as
a single integral in the complex plane. We have recast this
integral as three real single integrals G, G, and Go, where
G, + Gc corresponds to the double or even integral G, and
the third integral to the single or odd integral in the usual
representation of Go. By simple rearrangement, we can also

oZ  3 express our results in terms of the more physical near field
and wavelike components N and W. Computer time depends

10 on a number of f- tors, principally the submergence of the
L _ _ j source z, the required accuracy e, and the horizontal dis-

-1 0 tances x and y from the source.

-3 0 A number of checks have been performed on the accu-
racy of our numerical analysis and computer code develop-
ment. For field points located on each of the three coordi-

,00 0 20 0 0 Soo0 nate axes, our calculated values for , agree well with accu-
--60 10 0 rately calculated benchmark values. Our comparison for the

AXIAL DISTANCE X points on the x axis is facilitated by using specialized limit
Figure 10a. Upstream and Downstream Line Plots of Go, y = 0 expressions for y = 0, z - 0 for two of our three integrals.
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are given to shown the often dramatic differences in the nal of Ship Research, Vol. 31, No. 2, pp. 79-90, June
behavior of the integrands in different regions of the compu- 1987.
tation domain. Contour and line plots show the relative and
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ABSTRACT Several alternative numerical methods
have been developed foc evaluating near-field

The study presents a modified mathemati- flow about a ship, that is, flow at the hull
cal expression for the wave-spectrum function surface and in its vicinity. These include
in the Fourier representation of the wave finite-difference methods, e.g. Coleman [2]
pattern of a ship advancing at constant speed and Miyata and Nishimura [3], and the more
in calm water. This new expression is widely used boundary-integral-equation
obtained from the well-known usual expression methods, also known as panel methods. The
via several applications of Stokes' theorem latter methods can be divided into two main
resulting in the combining of the integrals groups, according to the Green function that
along the waterline and over the hull surface is used. These two groups of methods are the
of the ship. The modified expression for the Rankine-source method and the Neumann-Kelvin-
wave-spectrum function is considerably better nethod, which are based on the simple Rankine
suited than the usual expression for accurate (free-space) fundamental solution and the
numerical evaluation because the significant more complex Green function satisfying the
numerical cancellations which occur between linearized free-surface boundary condition,
the waterline and hull integrals in the usual respectively.
expression are automatically and exactly The Rankine-source method was initiated
accounted for in the modified expression, as by Gadd [4], Dawson [5] and Daube [6], and
is demonstrated mathematically and confirmed has since been adopted by many authors. The
numerically. Neumann-Kelvin approach has a long history.

A survey of recent numerical predictions
INTRODUCTION obtained by a number of authors on the basis

of the Neumann-Kelvin method may be found in
Near-field potential-flow calculations Bear [7]. This study and that by Andrew,

about ships advancing at constant speeds in Baar and Price [8] also contain extensive
calm water are routinely required for evalua- comparisons of the authors' own Neumann-
ting their hydrodynamic characteristics, both Kelvin numerical predictions with experimen-
in calm water and in waves, and for determin- tal data. An approximate solution, defined
ing the required propulsion and control explicitly in terms of the value of the
devices. Calculations of far-field ship wave Froude number and the hull shape, to the
patterns are also important in connection Neumann-Kelvin problem was proposed in
with wave-resistance predictions and remote Noblesse [9]. This slender-ship approximation
sensing of ship wakes. In particular, the was recently used by Scragg et al..[10] and
latter practical application requires the compared to both Neumann-Kelvin predictions
capability to determine the short divergent and experimental data in [7] and [8] and to
waves in the wave spectrum having wavelengths experimental data in [1] and [11].
between 5 cm and 40 cm associated with Bragg The aforementioned alternative numerical
scattering of the electromagnetic waves in methods for predicting flow in the vicinity
typical A. o,,omso sA i rcmote scnsing of of a ship are not all directly suitable for
ship wakes. No meaningful predictions of predicting the far-field wave pattern of a
such short waves can be obtained on the basis ship. More precisely, the finite-difference
of currently available numerical methods, method and the Rankine-source panel method
More generally, numerical predictions of the require truncating the flow domain at some
steady wave pattern at large and moderate relatively-small distance away from the ship
distances behind a ship are notoriously dif- and therefore can only be used for near-field
ficult and unreliable, as was recently made flow calculations. (However, these near-field
clear at the Workshop on Kelvin Wake flow predictions can be used as input to the
Computations [1]. Ship wave-resistance cal- far-field Neumann-Kelvin flow representation
culations are also known to be unreliable, considered in this study.) On the other hand,
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the Neumann-Kelvin theoretical framework is in terms of the speed and the size of the
equally suitable for near-field and far-field ship, the shape of the mean wetted-hull sur-
flow predictions. Indeed, the far-field face and the tangential velocity at the mean
Neumann-Kelvin flow representation is a hull surface. This expression is suitable
simplified particular case of the correspond- for use in conjunction with any, near-field
ing near-field representation. flow-calculation method, including boundary-

The problem considered in this study is integral-equation methods based on source
that of evaluating the steady wave spectrum distributions and other numerical methods in
and the wave pattern of a ship at moderate which the velocity vector is determined
and large distances behind it in terms of the directly on the mean hull surface rather than
near-field flow on the hull surface. The derived from the potential. It provides a
near-field flow thus is assumed known for the practical and reliable method for coupling a
purpose of the present study, which is con- far-field Neumann-Kelvin flow representation
cerned with the prediction of the steady wave with any near-field flow-calculation method,
spectrum and the wave potential behind a ship including methods based on the use of Rankine
stern within the Neumann-Kelvin theoretical sonrces or finite differences.
framework as was just noted.

This theory expresses the wave potential NEUMANN-KELVIN REPRESENTATION FOR
in terms of a Fourier representation, as is THE WAVE POTENTIAL
well known and is specifically indicated by
Eq. (3) in this study. The wave-spectrum (or As already noted, this study considers
wave-amplitude) function in this Fourier steady potential flow about a ship advancing
representation is defined by the sum of an at constant speed in calm water of infinite
integral along the mean waterline and an depth and lateral extent. Nondimensional
integral over the mean wetted-hull surface, coordinates and flow variables are defined in
This expression for the wave-spectrum func- terms of the length L and the speed U of the
tion is ill suited for aceurate numerical ship and the water density p. The undisturbed
evaluation because the waterline integral and sea surface is chosen as the plane z - 0,
the hull integral largely cancel out, as is with the z-axis pointing upwards, and the x-
shown further on in this study. Errors which axis is taken in the ship centerplane (port-
inevitably occur in the numerical evaluation and starboard-symmetry is assumed) and point-
of the waterline and hull integrals cause ing toward the bow, as is depicted in Fig. 1.
imperfect numerical cancellations between The Froude number and its inverse are denoted
these integrals and corresponding large by F and v, respectively, and are given by
errors in their sum. This fundamental diffi-
culty was recognized in [9] and in [121, F = U/CgL)i12 - 1/v (1)
where attempts to remedy it were presented.
However, these ad hoe approximate numerical where g is the acceleration of gravity.
remedies, based upon combining the waterline Within the so-called Neumann-Kelvin theo-
integral with the contribution to the hull retical framework, the velocity potential
integral stemming from the upper part of the 0( ) at any point g - (g, n, C <0) strictly
hull surface are not satisfactory. outside the ship hull surface is defined in

A conceptually simpler and numerically terms of an integral representation [9, 13]
more effective remedy is presented in this involving integrals along the mean waterline
study, in which a modified mathematical and over the mean wetted-hull surface of the
expression for the wave-spectrum function is ship. The integrands of these integrals
obtained via several applications of Stokes' involve the values of the potential 0 and of
theorem resulting in the combining of the its gradient at the mean hull surface as well
waterline integral and the hull integral, as the Green function and its gradient. The
This new expression for the wave-spectrum Green function may be expressed as the sum of
function is considerably better suited than three terms [14] corresponding to a Rankine
the usual expression for accurate numerical source/sink pair, a nonoscillatory near-field
evaluation because the significant numerical flow disturbance and the wave pattern behind
cancellations which occur between the water- the singular point in the Green function.
line and hull integrals in the usual expres- Likewise, the potential () may then be
sion are automatically and exactly accounted expressed as the sum of three terms, as
for, via a mathematical transformation, in follows:
the modified expression obtained in this
study. The fundamental advantage of the new 0() Q *S( ) + NM + W(0 (2)
expression over the usual one may readily be

appreciated from Fig. 4. where $g , *N and *W correspond to the singu-
Another interesting feature of the modi- lar source/sink term, the nonoscillatory

fred expression for the wave-spectrum func- near-field term and the wave term, respec-
tion is that it only requires the tangential tively, in the expression for the Green
velocity at the hull, not the potential, function. This study is restricted to the
whereas the usual expression requires the numerical evaluation of the wave potential
values of both the velocity potential and its W , which is the most comple" of the three
gradient at the hull. The modified expres- components in Eq. (2) and is dominant at some
sion thus defines the wave-spectrum function distance behind the ship.
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More precisely, the problem considered in THE SLENDER-SHIP APPROXIMATION

this study is that of evaluating the wave
potential *W( ) at any point (g, , < 0) The slender-ship approximation KO(t) to
behind the ship stern. It is shown in-[9] the wave-spectrum function K(t) is defined in
and (131 that the wave potential may be [9] as the sun of a line integral Kw(t) along

defined in terms of the following Fourier the ship's mean waterline w and a surface
integral representation: integral Kh(t) over the ship's mean wetted-

hull surface h, as follows:
00 2 2 2

Q)- (2/) J exp(v p ) cos(v upt) K0(t) =Kw(t) +Kh(t) , (8)

Im exp(iv 2p) K(t) dt , (3)
where the waterline and hull integrals are

where p is defined in terms of the Fourier given by
variable t by the relation K 2 w (E++_)nx2ty U (a)

p(+t) 1/2(4) y
( t Kh - v2 fh exp(v 2 p2z)(E +E_)n, da . (9b)

and K(t) represents the wave-spectrum func-
tion defined further on in this study. The In these expressions, E+ represent the
wave potential *W(W) in Eq. (3) is expressed trigonometric functions defined as

in terms of a familiar Fourier superposition 2 2
of elementary plane wa-es propagating at E+ - exp[-iv p (ux ± vy)] , (10)
angles 8 from the ship track given by where u and v are given by

tane - t . (5) u - 1/p and v - t/p ; (11a,b)

The amplitudes of these elementary plane-wave
components are essentially given by the func- it may then be seen from Eq. (4) that we have
tion K(t), which may thus be referred to as
the far-field wave-amplitude function or as 1 > u > 0 and 0 < v < I (12a,b)

the free-wave spectrum function. The wave-
spectrum function K(t) contains essential for 0 < t < , with
information directly relevant to a ship's 2 2
wave resistance and wave pattern. In partic- u + v 1 . (13)

ular, the wave resistance, R say, experienced
by the ship is defined in terms of the wave- Furthermore, w and h represent the positive

spectrum function by means of the well-known halves of the mean waterline and of the mean
Havelock formula wetted-hull surface, respectively, as is

depicted in Fig. I where h = s + b with s -
R/(pU2 = 0 [K (t)]2 p dt . (6) hull side and b = hull bottom. Also, dl is

0 the differential element of arc length of w

The wave-spectrum function K(t) in Eqs. and da the differential element of area of h.
(3) and (6) may be expressed as the sum of Finally, n = (nx, ny, nz) is the unit vector
two terms [9], as follows: normal to h and pointing outside the ship,

and t n (tx, ty, t, - 0) is the unit vector
K(t) =K0) + Kt (7) tangentow and pointing toward the bow, as

0 t)is shown in Fig. 1.
where K0 represents the (zeroth-order) The hull bottom of a typical ship is a
slender-ship approximation and K the nearly horizontal surface, so that we have
Neumann-Kelvin correction term in the nx = 0 on b, but nx is usually significant on
Net.aann-Kelvin approximation K0 + K . More the hull side in the bow and stern regions.
precisely, the function K0 + K corresponds However, the hull side of a typical ship is a
to the usual linearized Neumann-Kelvin nearty vertical surface, i.e. we have nz = 0
approximation, in which the nonlinear terms on s. It is therefore convenient to express
in the free-surface boundary condition are the hull integral as the sun of integrals
neglected. These nonlinear terms yield an over the hull side and the hull bottom, and
additional term in the expression for the to modify the hull-side integral into a form
spectrum function K, defined by an integral involving the source density nz instead of
over the mean free surface [9,13], which is nx by using Stokes' theorem in the manner
ignored here. The slender-ship approximation shown in [13]. The slender-ship approxima-
Kb is defined explicitly in terms of the tion K0 (t) may then be expressed in the form
value of the Froude number and the hull / *(.
shape, whereas the Neumann-Kelvin correction , 0 (t w(t) +w r *, ,¢4)
X also depends on the value of the potential
* at the mean hull surface. The functions KO where the functions Kw*(t), K ,(t) and Kh*(t)
and K are considered in turn, beginning with are defined as
the slender-ship approximatin K0 . K* Iw (E++E_)(nx 2 -u 2 )y dt , (15a)
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Kw' . u2 fw' exp(v 2p2 z)(E++E )t di , (15b) fied expression (14), and the modified hull-" side integral in Eq. (14) is less important

K * = -iv2 u f exp(v2 p2 z)(E +E )n da than the original hull-side integral in Eq.h- z (8) as was already noted.

+ v f exp( 2 p2 z)(E+E_)nx da . (15c) The modified expression for the slender-b da ship approximation K0 (t) defined by Eqs. (14)

In the foregoing modified expression for and (15a,b,c) thus is better suited for accu-
the slender-ship approximation K0 (t), the rate numerical evaluation than the usual
function Kw*(t) represents a modified water- expression defined by Eqs. (8) and (ga,b) for
line integral with source density (nx2-u2 )ty large values of v2 p2 , that is for small
instead of nx~ty in Eq. (9a). Furthermore, values of the Froude number and/or large
the function Kwt(t) corresponds to a line values of t - tan0. However, significant can-
integral along the waterline-like curve w' cellations may be expected to occur between
separating the hull side s and the hull the line integrals Kw* and Kwi in Eq.(14) for
bottom b, as is shown in Fig. 1; the unit relatively large values of the Froude number
tangent vector t - (t, ty, tz) to the "lower and small values of tanD. More precisely,
waterline" w' points toward the bow. Finally, the term -u2 (E++E_)ty in the integrand of the
Kh*(t) represents a modified hull integral top-waterline integral Kw* defined by Eq.
consisting of the sum of an integral over the (15a) and the integrand u~exp(v2 p2 z)(E++E_)ty
hull bottom b and the hull side a, with of the lower-waterline integral Kw , defined
source densities given by nx and -iun z , by Eq. (15b) may nearly cancel out if
respectively. The latter source density is exp (v2 p2z) = 1, that is for small values of
null for a wall-sided ship and, more v2 p2 d where d is the ship draft.
generally, vanishes in the limit t + , as It therefore is useful to express Eq.
may be seen from Eqs. (4) and (11a). The (14) in the following form:
hull-side integral therefore is generally
less important in the modified expression K0 (t) = K,(t) + K'(t) , (17)
(14) than in the original expression (8). In
particular, the hull-side and hull-bottom where the functions K,(t) and K'(t) are
integrals in Eq. (15c) are null for a wall- defined as
sided ship with a flat horizontal bottom
(i.e., a strut-like form), for which Eq.(14) fw (E + +Z
thus expresses the slender-ship approximation 2 22 2
K0(t) as the sum of two line integrals. For nx-u+uexp( pz)]ty di 8
large values of v2 p2 . (sec26)/F2 , the trig- 22
onometric functions E± defined by Eq. (10) K' - u2  w' exp(+_pz)(E+E-)ty d
oscillate rapidly. The dominant contribution 22
to the modified waterline integral Kw* in Eq. - u2 w exp(v2 p2 z)(E++E )ty di
(14) therefore stems from the points, if any, 22
where the phases V2 p2 (ux ± vy) of the trigo- - iv2u fs exp(v2 p2 z)(E++E-)n da
nometric functions E± are stationary. These 2 2
points of stationary phase are defined by the + V 2fb exp(vpz)(E++- )nx da * (18b)
conditions udx ± vdy - 0, which yield the

relations In the integrals along the top waterline w in
Eqs. (18a,b), z is to be taken equal (or,

ut ± vt - 0 tx - v ,t = u ; (16a,b,c) more generally, approximately equal) to the
x Y y vertical coordinate of the point (x,y,z) on

the latter two relations can be obtained from the lower waterline w' . in such a way that
Eq. (16a) by using Eq. (13) and the identity the integrals along the lower waterline w'
tx2 + ty2  1. and the top waterline w in Eq. (18b) nearly

The term u2 in the integrand of the modi- cancel out.
led waterline integral Kw* defined by Eq. In the simple case of a strut-like hull

(15a) stems from the integral on the hull form we have nx - 0 on the hull bottom b and
side in Eq. (8), as may be seen by comparing nz a 0 on the hull side s. Furthermore, the
the alternative expressions for the function lower waterline w' is identical to the top
K0 given by Eqs. (8), (9a,b) and Eqs. (14), waterline w except for a vertical translation
(15a,b,c). We have nx - -t along the top equal to the ship draft d, and z in the
waterline of a wall-sided ship; Eq. (16c) integrals along the lower and-top waterlines
therefore shows that the term nx2-u2 in the w' and w in Eq. (18b) is equal to -d. For
integrand of the modified waterline integral such a simple strut-like hull we then have
Kw* vanishes at a point of stationary phase K'(t) - 0 and Eq. (17) yields KO(t) w K*(t).
for a wall-sided ship. This result indicates The modified waterline integral K* defined
that the waterline integral and the hult-side by Eq. (18a) thus provdcoa cract expres-
integral in Eq. (8) cancel out in a first sion for the slender-ship approximation Ko in
approximation (specifically, within the the special case of a strut-like hull form.
stationary-phase approximation) for a wall- For a simple hull in the shape of a strut
sided ship. The major contributions to these the alternative expressions for the slender-
two integrals thus are combined into the ship approximation K0 defined by Eqs. (8) and
modified waterline integral Kw* in the modi- (17) become
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Ko(t) - K(t) + K (t) - K,(t) , (19) of the depth of the hull side a. The upperhull side can be approximately defined by the

where the hull integral Kh in Eq. (8) was parametric equations x - a(t) + z a(t) and
replaced by the hull-side integral Ks since Y b() + z O() for -6(i) < z < 0 , where 4
we have nx - 0 on the horizontal bottom of a represents the arc length along the top
strut. The real and imaginary parts of the waterline w defined by x - a(g) and y - b(l),
functions Kw(t) , K,(t) and KO(t) = K*(t) are and a - ax/3z and a - ay/Dz are the slopes of
depicted in Fig. 2 for 0 < t - tane < 5 the hull surface at the waterline. The con-
(corresponding to 0 < 0 < f9P) for a specific tribution of the upper part of the hull side
strut-like hull form at three values of the to the hull-side integral in Eq. (18b) can
Froude nunber, namely 0.1 (top row), 0.2 then be expressed as an integral along the
(center row) and 0.3 (bottom row). The stru top waterline w, which can be grouped with
considered for the calculations presented in the top-waterline integral K* defined by Eq.
Fig. 2 has beam/length and draft/length (18a). In this manner the dominant waterline
ratios equal to 0.16 and 0.07, respectively, integral K* is modified by including the con-
and consists of a pointed bow region 0.2 < x tribution of the upper part of the hull side
< 0.5 with parabolic waterlines, a straight to the hull-side integral in Eq. (18b),
middle-body region -0.3 < x < 0.2 and a whereas the remainder K' is modified by
rounded stern region -0.5 < x < -0.3 with restricting the integration in the hull-side
elliptic waterlines, integral to the lower part of the hull side.

The top row of Fig. 2, corresponding to This modified remainder K' thus is expo-
the small value of the Froude number F equal nentially small for large values of V2 p2 

=

to 0.1, shows that the function K0 is signif- (sec 2 0)/F2 and can only be significant for
icantly smaller than the waterline and hull- small and moderate values of v2 p2 . The hull
side integrals Kw and K. in Eqs. (19) and bottom b, the lower part of the hull side s
(8). This numerical result is in accordance and the lower and top waterlines w' and w in
with the previously-established theoretical expression (18b) for the remainder it' may
result that the major contributions to the then be approximated by using a relatively
integrals Kw and Ks cancel out for small val- coarse discretization, whereas a finer
ues of the Froude number. The function K0 , discretization may be used for representing
especially its real part represented by a the top waterline w in expression (18a) for
solid line, is also appreciably smaller than the dominant waterline integral K* . The
the functions Kw and Ks in the center row of modified form of the top-waterline integral
Fig. 2 corresponding to F = 0.2 and, to a (18a) including the contribution of the upper
reduced degree, in the bottom row correspond- hull side to the hull-side integral in Eq.
ing to the fairly large value 0.3 of F. (18b) can easily be derived from Eq. (18b).

The integral Kw,(t) along the lower
waterline w' in Eqs. (14), (15b) and (18b) is THE NEUMANN-KELVIN APPROXIMATION
also depicted in Fig. 2. The top row of this
figure, corresponding to F = 0.1, shows that The correction term K in Eq. (7) for the
the lower-waterline integral Kw,(t) is negli- Neumann-Kelvin approximation K0 + KO to the

gible in comparison with the function KO(t) wave-spectrum function K is defined by the
K*(t) for all values of t due to the expo- sum of a waterline integral and a hull-
nential function exp (v

2 p2 z) in the integrand surface integral [9,13]:

of the lower-waterline integral Kwt . How-
ever, this integral is significant for small K,(t) - Kw(t) + KW'(t) + KH(t) (20)

and moderate values of t - tanO in the center
and bottom rows of Fig. 2 corresponding to where KW(t) and KW'(t) are the waterline
F - 0.2 and 0.3, respectively. integrals and KH'(t) the hull-surface

For typical hull forms Eq. (17) expresses integral defined as
the slender-ship approximation K0(t) as the
.sum of the modified waterline integral K*(t) KW  

f w (E++E-)(txt+Sxs)t di , (21a)
defined by Eq. (18a) and the remainder K'(t) 2 y
defined by Eq. (18b). The remainder K'(t) KW' i2p fw (E++E) t di , (21b)
may generally be expected to provide a rela- K (2 2 y
tively small correction to the dominant KH p) fh exp(v2P z)
waterline integral K*(t). In particular, the
integrals along the lower and top waterlines (E+n++E_n_)o da . (21c)

w' and w and the hull-bottom integral in Eq.
(18b) decay exponentially due to the exponen- In the foregoing equations E are the trigo-
tial function exp(v 2 p2 z) in their integrands. nometric functions defined by Eq. (10). The
These three integrals thus are negligible for functions n± in Eq. (21c) are defined as
sufficiently large values of v2 p , for which
the major contribution to the remainder K' n± - -nz + i(un ± vn ) (22)

stems from the upper part of the hull side in
the hull-side integral in Eq. (18b). In Eqs. (21a-c) and (22), t = (tx, ty, 0) is

It may thus be useful to divide the hull the unit vector tangent to the waterline w

side into an upper part -6 < z < 0 and a and pointing toward the bow, as was already

lower part z < -6 , where 6 is some fraction defined, s a (Sx, sy, sz ) is a unit vector
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tangent to the hull surface h and pointing KW ' and KH ' cause imperfect numerical cancel-
downwards and n = (nx, ny, nz) is the unit lations between these components and corre-
vector normal to h and pointing outside the sponding large errors in their sum. Numerical
ship, as is shown in Fig. I. Finally, *t and errors in the sum K can be especially diffi-
*s in Eq. (21a) represent the components of cult to control because the-errors associated
the velocity vector V in the directions of with the numerical evaluation of the hull
the unit tangent vectors t and s to h, integral KH' and the waterline integral KW +
respectively. KW' are not necessarily comparable (due to

Numerical evaluation of the waterline and differences in the errors associated with
hull integrals in Eq. (20) is a seemingly numerical integration over hull panels and
simple task, given the value of the potential waterline segments). The usual expression

on the mean hull surface h + w ; in partic- (20) for the Neumann-Kelvin correction Kt in
ular, the integrands of the integrals defined Eq. (7) thus is ill suited for accurate
by Eqs. (21a-c) are continuous functions. nunerical evaluation. A modified mathemati-
Nevertheless, accurate and efficient numeri- cal expression in which the cancellations
cal evaluation of these integrals requires between the waterline and hull integrals KW +
careful analysis because the trigonometric KW' and KH ' depicted in Fig. 3 are automati-
functions E± defined by Eq. (10) oscillate cally and exactly accounted for, via a mathe-
rapidly for large values of v2 p2 , as is the matical transformation, is presented below.
case for typical values of the Froude number By using Stokes' theorem in the manner
F I/v and of the Fourier variable p2 = I + explained in [131 we can combine the water-
t2  sec2 0, and because the potential t in line and hull integrals KW' and KH' defined
the integrands of the waterline and hull by Eqs. (21bc) into a modified hull integral
integrals KW' and KH' in Eqs. (21b,c) is mul- KH , as follows:
tiplied by the large numbers v2 p and (v2 p)2 ,
respectively. More precisely, we have 102 < K H(t) - KW'(t) + KH'(t) , (23)
v4 < 104 for 0.1 < F < 0.32 and p2 > 10 for
0 > 720; values of (v2 p)2 as large as 105 where the modified hull integral KR is given
thus are possible. The waterline and hull by
integrals KW' and KH ' in Eq. (20) may then be 2 2 2
expected to be dominant and to largely cancel KH - iV2p fh exp(v p z)(E+a++E-a) da (24)
out, as is shown in Fig. 3.

More precisely, Fig. 3 depicts the func- with
tions K , KW + KW' and KH ' for 0 < t < 10
(corresponding to 0 < 0 < 850) for the simple a+ = nz3/Dx - nx /Dz
hull form considered previously in Fig. 2
with an assumed simple mathematical expres- ± iv(n X /3y - n y Wax) . (25)
sion for the value of the velocity potential
* at the hull surface. Specifically, the By substituting Eq. (23) into Eq. (20) we may
potential in Es. (21a-c) is taken as * - F2  then obtain the following modified expression
exp(v2 z) cos[v (x-1/2)-3n/8], which corre- for the Neumann-Kelvin correction Kt):
sponds to an elementary plane progressive
wave. This simple hull form and assumed sim- K (t) = K w(t) + KH W (26)
ple expression for the potential at the hull
surface are used for the calculations pre- The functions KW' , KH ' and KH are depic-
sented in Fig. 3 because they permit accurate ted in Fig. 3. This figure shows that the
nunerical calculations (the required integra- waterline and hull integrals KW' and KR' are
tions can be partially performed analytical- considerably larger than the modified hull
ly) and they are adequate for the purpose of integral KR . Although the latter integral
numerically illustrating the essential prop- is identical to the sum of the integrals KW'
erties of the several alternative mathemati- and KH ' , it clearly is preferable to evalu-
cal expressions for the Neumann-Kelvin ate KH directly by means of Eqs. (24) and
correction KX examined in this study. Figure (25) rather than as the sum of the integrals
3 corresponds to a value of the Froude number KW' and KH ' defined by Eqs. (21b,c). The
equal to 0.15. It may be seen from Fig. 3 modified expression for the Neumann-Kelvin
that the function K is considerably smaller correction K(t) given by Eqs. (26), (21a),
than the waterline and hull integrals KW + (24) and (253 therefore represents a signifi-
KW ' and K1 ' . In particular, the waterline cant improvement in comparison with the usual
and hull integrals KW + KW' and KH ' do not expression given by Eqs. (20) and (21a-c). It
appear to vanish in the limit t + = (0 + is shown in [13] that the cancellations
900). Significant cancellations therefore between the waterline integral KW' and the
occur between the waterline and hull hull integral KH' depicted in Fig. 3 can be
integrals in Eq. (20). These significant explained mathemattcally for a wall-sidcd
cancellations occur for all values of 3 but ship form by performing an asymptotic analy-
are especially notable for large values of 0, sis in the limit v 2 p2 + - similar to that
corresponding to the short divergent waves in presented previously in this study for the
the spectrum. slender-ship approximation K0 .

The errors which inevitably occur in the The functions KW , KH and K in the modi-
nurerical evaluation of the integrals KW + fied expression (26) for the Neumann-Kelvin
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correction are depicted in Fig. 3. It may be are tangent to curves which approximately
seen that the waterline integral KW and the correspond to waterlines and framelines and
modified hull integral Kg are appreciably they point toward the bow and the keel,
larger than their sum K0 , especially for respectively. The vectors t and s thus are
large values of t. Significant cancellations roughly (but not necessarily exactly) ortho-
therefore still occur between the waterline gonal. At the mean free surface, the vector
and hull integrals in Eq. (26). Further mod- t is tangent to the top waterline (and we
ifications of the expression for the function thus have tz - 0) in agreement with our pre-
K, defined by Eqs. (26), (21a), (24) and vious definition.
(25) are thendesirable for numerical Equations (31a-c) yield
calculations. These modifications are now
presented. n /Dz-n D/ay =

By making use of Stokes' theorem and a y

classical formula in vector analysis we can (nytz-nzt y) t + (n yS-nz y s (33a)
obtain [13] the following alternative expres-
sion for the Neumann-Kelvin correction K: n zD ax-n x3/Dz =

K (t) - KW (t;C) + K (t;C) , (27) (nzt -nt )4t + (nzsx-nxs) s , (33b)

where Kw(t;C) and KH(t;C) are the modified nx 8/Oy-n y8/ax =

waterline and hull integrals defined as (n t -n t )f + (n s -n s )f (330

KW= fw(E+a++Ea_) d , (28a)xy x t xy x s
W 2 fBy using Eqs. (33a-c) in Eq. (29b) we may

K = iv 2 fh exp(v2p 2 z)(E+A+-E A) da . (28b) express the amplitude functions A+ in the
H -form

The amplitude functions a+ and A± in Eqs.
(28a,b) are given by I t x SlA±

a± - (ixt t + s 0s)t ± u(v - Cu)30/at , (29a) [(v-Cu)t x ; (u+Cv)ty - iCtz ]3/as

A+ = (Cu - v)(ny80/az - n z /ay) - [(v-Cu)sx ; (u+CV)Sy - iCSz] */t (34)

± (Cv + u)(n 8/Ax - n80/8z) The components Os and Ot of VO along the
Z X unit tangent vectors a and t and the veloci-

+ iC(nx a/Dy - n 8 /3x) . (29b) ties 8/as = V0.s and 80/at - V.t are
x yrelated as follows

In the foregoing expressions, C is an
arbitrary complex function of t which may be 80/as = s + C t S (35a)
selected at will. Equations (27), (28a,b)
and (29a,b) thus define a one-parameter fam- 0/at = 0 + e 0s 0 (35b)
ily of alternative mathematically-equivalent 2
expressions for the Neumann-Kelvin correction s . (8 /as - c a0/at)/(O - e ) , (35c)
K0 in Eq. (7). 2

The velocity components 8¢/ax, o/ay and 0t . (8 /at - c 38/8s)/(1 - e ) , (35d)
a8/az in Eq. (29b) defining the amplitude
functions A± in Eq. (28b) can be expressed in where e is defined as
terms of the components Ot and Os of the
velocity vector VO along two unit vectors C = t • s * (36)

t . (tx , ty, tz) & s - (Sx, Sy, sy ) (30a,b) An asymptotic analysis [13] indicates
that the modified waterline and hull inte-

tangent to the hull surface. More precisely, grals Kw(t;C) and KH(t;C) in Eq. (27) vanish
we have VO = n 80/an + t *t + s Os , which more rapidly than the corresponding integrals
yields KW(t) and KH(t) in Eq. (26) if the function

C(t) vanishes in the limit t + , that is if
80/ax - nxa3/3n + tXt + s s , (31a) we have

W/-y 8y0/an + tyOt + Ys , (31b) C(t) + 0 as t + • (37)

80/az - nz0/an + tz t + S , (31c) An obvious choice for the arbitrary function
C(t) that satisfies this condition is

where /an is the velocity component along
the unit outward normal vector n to the hull C(t) - 0 * (38)
surface defined as

The corresponding expression for the Neumann-
n = (t x s) /I t X s (32) Kelvin correction Ko may be written in the

form
The vectors t and a to the ship hull surface
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K (t) -Kw" (t) +Kil It) (39) the functions KW* and KH* in Eq. (44) aref depicted in Fig. 3. It may be seen that the

where the waterline and hull integrals it" functions KW* and KH* vanish more rapidly
and KH" are defined by Eqs. (28a,b), (29a), than the functions KW and KH for increasing
(34) and (38). values of t. In this respect, the functions

The functions KW and KH in Eq. (26) and KW* and KH* are comparable to the functions
the functions KW'' and KH" in Eq. (39) are KW" and KH" also depicted in Fig. 3.
depicted in Fig. 3. It may be seen that the However, the functions KW* and KH* and -the
functions KW'' and KH" vanish more rapidly functions KW" and KH" are significantly
than the functions KW and KH for increasing different for small and moderate values of t.
values of t, in accordance with condition More precisely, the functions KW"' and KH"
(37). The cancellations occurring between the are appreciably larger than the functions KW
waterline and hull integrals KW and KH  for and KH , as was already noted, whereas the
large values of t thus are significantly functions KW* and KH* are comparable to,
reduced in the alternative expression (39), indeed somewhat smaller than, the functions
which is therefore preferable to expression KW and KH for small and moderate values of t.
(26) for large values of t. However, the Figure 3 shows that the cancellations which
functions KW" and KH" are appreciably occur between the waterline and hull integrals
larger than the functions KW and KH for small KW and KH in Eq. (26) are reduced signifi-
values of t, and significant cancellations cantly for the modified waterline and hull
thus occur between the waterline and hull integrals KW* and KH* in Eq. (44). The lat-
integrals KW" and KH" for small values of t. ter expression for the Neumann-Kelvin correc-
Expression (26) therefore is preferable to tion K therefore is preferable to the former
expression (39) for small values of t, where- one for accurate numerical calculations.
as the reverse holds for large values of t. In summary, the waterline and hull

The amplitude functions in the integrands integrals KW + KW' and KH ' in the original
of the waterline and hull integrals in Eqs. expression (20) for the Neumann-Kelvin cor-
(26) and (27) can be shown [13] to be nearly rection K and the modified waterline and
identical for small values of t if the-arbi- hull integrals KW* and KH* in the alternative
trary function C(t) satisfy the condition expression (44) are depicted in Fig. 4 for

the simple case considered previously in Fig.
v - u C(t) << 1 as t + 0 • (40) 3 and for three values of the Froude number,

namely F - 0.1 (top row), 0.2 (center row)
This condition ensures that the waterline and and 0.3 (bottom row). The function K is
hull integrals in Eq. (27) are nearly identi- also represented in Fig. 4. This figure
cal to the corresponding integrals in Eq. shows that the spectrum function K$ is sig-
(26) in the limit t + 0. The large-t and nificantly smaller and vanishes much more
small-t conditions (37) and (40) are satis- rapidly with increasing values of t than its
fied if the function C(t) is selected in the components KW + KW ' and KH ' in the usual
form expression (20), as was already observed in

Fig. 3. Large cancellations therefore occur
C(t) - u v X(t) . (41) among these components and Eq. (20) is ill

suited for accurate numerical calculations,
Condition (40) then becomes v(l-u X) << I as notably for evaluating the short divergent
t + 0. Equation (13) shows that we have waves in the wave spectrum corresponding to
v(l-u 2X) - v3 as t + 0 if the arbitrary func- large values of t. However, Fig. 4 also
tion X(t) satisfies the condition shows that the modified waterline and hull

integrals KW* and KH* in Eq. (44) are appre-
X(t) + 1 as t + 0 . (42) ciably smaller than the original waterline

and hull integrals KW + KW ' and KH', and are
An obvious choice for the function A(t) in fact comparable to the function K .

satisfying condition (42) is Although the-alternative expressions (20) and
(44) are mathematically equivalent, the modi-

X(t) = 1 . (43) fied expression (44) clearly is considerably
better suited than the usual expression (20)

The corresponding expression for the Neumann- for accurate numerical calculations.
Kelvin correction K may be written in the
form CONCLUSION

K (t) = KW*(t) + K *(t) , (44) In expression (2) for the velocity poten-
W 11 tial of steady flow about a ship, the wave

where the waterline and hull integrals KW* potential *W(Q) at any point g - (, <,S 0)
and KH* are defined by Eqs. (28a,b), (29a) behind the stern of the ship is defined by
and (34) in which C is replaced by uv , that Eq. (3), where v and p are given by Eqs. (1)
is and (4), respectively, and K(t) represents

the wave-spectrum function. The latter func-
C(t) - u v = t / (1 + t2 ) . (45) tion is defined by Eq. (7) as the sum of the

slender-ship approximation K0 , which is
The functions KW and KH in Eq. (26) and defined explicitly in terms of the Froude
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number and the shape of the hull, and the boundary-integral-equation methods based on
Neumann-Kelvin correction term K ,which source distributions and other numerical
also involvep* the potertial at the hull. The methods in which the velocity vector is
wave resistance of the ship, is defined in determined directly rather than derived from
terms of the wave-spactrum fiiictin by means the potential. It provides a practical and
of the Havelock formula (b). The Fourier robust method for coupling a far-field
variable t int Eqf,, (3) and (6) ib related to Neumann-Kelvin flow representation with any
the angle e of propegatloc of *-he free waves near-field flow-calculation method, including-
in che ship wave pattern by the relation methods based on the use of Rankine sources
t - tanO, as is given by Sq. (5). or finite differences.

The slonder-ship approximatiop K0 in Eq. For large values of t - tanD, the major
(7) Is defin-d by the usual expresnion given contributions to the integrals over the ship
by %qg, (8) and (9a.b), or by the alternative hull surface in Eqs. (18b) and (28b) stem
modified oxpression dcfined by Eqs. (17) and from the upper part of the hull surface in
(18a,b). The latter expressiun defines the the vicinity of the mean waterline w due to
spectrun funct t- K0 as The aum of a mrdified the exponential function exp (v2 p2 z). These
integrul K* aling the ship waterline is and a hull integrals, and consequently the spectrum
remainder K' . It the special case ot a functions K0 and K4 , may then be approxi-
strut-like hull forr, the remainder K' is mated by waterline integrals for large values
null and the modified waterline 'itegral K* of tanO, as has indeed been shown in this
provides an axa.P:. expression for the slender- study for the special case of a wall-sided
ship approximeLta Kr . hull. This asymptotic approximation can be

The Neumann-ielviu correction K4 in Eq. extended to ship forms having flare, and
(7) is defined by the usual expresston given refined by retaining the first few terms in
by Eqs. (20) and (21a-c) or by the alterna- the asymptotic approximation. A detailed
tive modified expression given by Eqs. (27), short-wave asymptotic analysis has been per-
(28a,b), (29a) and (34). This alternative formed and will be reported elsewhere as it
expression involves an arbitrary complex is important for evaluating the short diver-
function C(t), and thus defines a one- gent waves of interest for applications to
parameter family of mathematically-equivalent remote-sensing of ship wakes. Simplified
expressions for the Neumann-Kelvin correction approximate expressions for the wave spectrum
K4 in Eq. (7). In particular, the first functions K0 and K, defined in terms of sin-
modified expression, defined by Eqs. (26), gle (one fold) integrals along the ship axis
(2la), (24) and (25), obtained in this study (or waterline) can also be obtained in the
is a special case of the general expression long-wave limit by expanding the exponential
given by Eqs. (27), (28a,b), (29a) and (34) function exp (v2 p2z) and the trigonometric
corresponding to the choice C(t) - t. function exp (iv2 pty) in Taylor series.
Analytical and numerical considerations led These long-wave approximations will also be
to the particular expression given by Eq. reported elsewhere. The short-wave and
(44), which corresponds to the choice C(t) long-wave asymptotic analyses mentioned above
uv defined by Eq. (45) where u and v are may also suggest alternative choices for the
given by Eqs. (lla,b). Figure 4 shows that arbitrary function C(t) in Eqs. (27), (29a)
the mathematical expression corresponding to and (34) to that defined by Eq. (45).
Eq. (44) is considerably better suited than
the usual expression (20) for accurate numer- ACKNOWLEDGMENTS
ical evaluation because the large cancella-
tions which occur between the waterline This study was funded by the Office of
integral KW + KW ' and the hull integral KH ' Naval Research under the Applied Hydrodyna-
in the usual expression (20) are automati- mics Research program at the David Taylor
cally and exactly accounted for, via a mathe- Research Center.
matical transformation, in the new expression
(44) involving the modified waterline and
hull integrals KW* and KH* .

Another interesting feature of the new
expression for the Neumann-Kelvin correction
Kt given by Eqs. (27), (28a,b), (29a) and
(34) is that it only requires the tangential
velocity at the hull, not the potential. Z
whereas the usual expression given by Eqs. y
(20) and (21a-c) requires the values of both n f
the velocity potential and its gradient at

the hull. The new expression for K4 obtained W
in this study thus defines the wave-spectrum -

function K0 + K4 in terms of the speed and
the size of the ship, the shape of the mean

wetted-hull surface and the tangential veloc-

ity at the mean hull surface. This expression
is suitable for use in conjunction with any
near-field flow-calculation method, including Fig. I - Definition Sketch
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Fig. 2 - Comparison of the usual expression KO Kw + Ks and the alternative modified expression
K0 = K* for the slender-ship approximation K0 to the wave-spectrum function K(t) in the special

case of a simple strut-like hull form. The real (solid line) and imaginary (dashed line) parts

of the functions Kw (first column on left), Ks (second column) and K0 - K* (third column) are
depicted for 0 < tan0 < 5, co'responding to 0 < 0 < 79, and for three values of the Froude
number F, namely 0.1 (top row), 0.2 (center row) and 0.3 (bottom row). The integral Kw , along
the lower waterline w' in Eqs. (14) and (1Sb) is also depicted in the column on the right.
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wave-spectrum function K(t) for a simple strut-like hull form and an assumed simple expression
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Ship Wave Ray Tracing Including Surface Tension
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Abstract velocity vector. To simplify the problem, Ursell consid-

The aim of this work is to clarify the validity of ship ered only rays passing through the disturbance, though

wave ray theories at and near the ship's surface. As he admitted that his assumptions are questionable

previous numerical investigations have led to ambigu- there. Inui and Kajitani (2) used this approach for waves

ities due to a breakdown of the ray analysis near the near a ship's bow, with the " double body flow " as the

bow and stern stagnation points, we shall take care for basic non-uniform flow.

the surface tension effect in order to milden such defi- Keller (3) derived Ursell's results from a more formal
ciencies; then the wave length never surpasses a positive approach, tacitly assuming pertinence and uniform va-
minimum length which is attained at the boundary of lidity of his ray theory up to the ship's water ine; he

a finite waveless zone around a stagnation point. It is even concluded for certain ships that rays must origi-
found, however, that the ray equations degenerate at nate from the double body flow stagnation points only.

these boundaries, and that rays can be traced into the Yim[4] evaluated this approach numerically, but due to
far field only if their starting point is selected outside a zero wave length at these points he had to start ray trac-

finite belt surrounding the waveless zone. ing using values at some distance. For certain rays car-

For a class of bi-circular prismatic struts of infinite rying transverse waves he observed that they re-entered

downward extent we investigate two alternative formu- the hull; to avoid this, he introduced- some mechanism

lations of the free surface condition and their iniplica- of reflection.

tions for the ray geometry. For low speeds we find in Brandsma [5) investigated a class of bi-circular forms
both can.es an increase of the Kelvin wave cusp angle due with varying entrance angle. Even with "backshooting"
to capillarity. We extended the ray tracing to capillary from downstream, he failed to find rays due to trans-
waves ahead of a blunt bow. verse waves originating at the stagnation points; he

Introduction therefore concluded that no transverse-waves can 6mi-
anate from the bow.We shall demonstrate analytically

The wave field at a point far away from a ship in that the rate of change of the wave front angle along
stationary motion is well represented through Kelvin's the ray together with the change of ray diree-

pattern, found in a wedge-shaped region, with only a tl.n has a factor as inverse distanoe from the

finite number of wave components, given through wave stagnation points. Thus it demandis more detai-

length, wave front angle and complex amplitude. The led analysis to clarify the validity of Kel-

first two are constant along straight lines (character- ler's ray theory near the.stagnation points.

istics) through a hypothetical origin, conceived as the
locus of a point- disturbance. Through our present investigation we want to clarify

whether the inclusion of surface tension effects can im-
Observations suggest that under local modifications prove the situation at least to the point that ray theory

such a wave model may be adequate even near a ship; can give some qualitative information about the wave
Ursell [1] hence generalised this approach for waves due pattern geometry in accord with experimental observa-

to a point disturbance in a slightly non-uniform flow. tions for not so slender ships. We selected the class of
rom a set of physical assumptions, ie replaced the bi-circular struts and thus have even the case of a blunt

intensity and direction of the uniform flow by the lo- bow included.
cal components to obtain an analoguous spatially vary-
ing "dispersion relation" between wave angle and wave 'Otherwise rays could be extended-to the domain far

number; from a partial differential equation he obtained ahead through backward tracing, at least in case of a
"rays" along the resultant of the local flow with a group submerged disturbance.
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The underlying analysis was presented by Eggers [6], The neglect of gCWo.-, (the second term of a formally

where two alternative appoaches were considered : (A)' divergent Taylor expans )n) leads to the approach (A)'

based on the conventional surface condition (A) of slow investigated by Maruo, which was developed from the

ship theory, supplemented for surface tension following "conventional" approach (A) underlying the ray analy-

Maruo[71 and (A+)' based on a modifiLd free surface ses of Keller, Yim antI Brandsma. Let us now consider u

condition, derived by Eggers[8] from certain invariancerequremnts or ave esitane, aainsuppemeted and v as slowly-varying (i.e.locally constant) quantities
requirements for wave resistance, again supplemented and let us disregard effects of ph~ase and of amplitude,

for capillarity effects. In both cases we obtain zones as they are of no concern for investigations on ray ge-

around the stagnation points where no steady waves can tmey ae of he form

exist; at their boundaries, only waves of minimum wave

speed, with wave front orthogonal to the double body I Oc e( k - iS) with S = S(z,y) (3)
flow, can occur. If we start rays from these boundaries
rather than from the stagnation points, we apparently represents a wave with wave number vector
have a well defined initial value problem, even for blunt
bow forms., VS - {k1 ,k2} {k cosO;ksinO} (4)

In our computational investigations, we could con- if ki and k2 are also slowly varying. Here 0 is the angle
firm Maruo's experimental finding that capillarity ef- of C against the x-direction, Let us define the speed
fects can be significant even if the model speed exceeds ratio q and the flow angle 63 through u Uq cos/3 and
the minimum wave speed considerably. v' Uq sin/3. Then 7- 0 - /3 is the angle of k against

Iowever, we found ourselves confronted with some the flow direction. In accord with Brandsma and Yim,
instability phenomenon. Due to the strung rate of we have selected the orientation ofr such that cos7 is
change of the wave angle along the ray near its origin, non-negative,i.e. k is * ". opposite to the propagation

the wave length re-approached its minimum value after of a wave stationary to the ship.-

a short time and the analysis broike down. To find rays
which can be continued into the far field, we had to se- -U 1
lect the starting point outside some "belt of short-livity" q v

surrounding the waveless zone. u0 x-direction
Derivation Of Dispersion Re,ation And 0low t

Ray Equations From Free Surface Conditions.

For simplicity, we shall restrict ourselves to a 2-D k = VS

flow around prismatic struts of infinite vertical exten-
sion. Let us consider a velocity potential of the form Fig.1 Sketch for flow angle /3 and wave angles 0 and 7
U114 + Up, where U stands for the far field uniform (both shown with negative values, typical for the
flow in the +x direction, U1, represents the "double starboard side of the bow).
body flow" (unbounded in the upward z-direction) and
U'p is the lowest order wavy potential. With u - Inserting (3) into (2) leads to

vr, , -U1, , with 4- (1 U2 
- -v

2)/2g and
Dr(X,y) (u(,). (vC,)y, o for z = 0 has to satisfy (kucos0 + kvsin0)2 = gk + g~rk2 + rk3  (5)

2 
2 +2 Denote o as the phase velooity with direc.-

u2WX + 211VWXY + V +X + tion C-coo G ,-sin 0 . If we consider station-

=2g(Cr. W -(yW)+ D,(X, ([) ary waves only, c must balance with the proje-
ction of the basic flow 4.u,v'J in the direction

(see Eggers [10]); for inclusion of surface tension, a term of c, ie. c= u cos i + v sine = Uq oos . :4uu-

r.Sp,, has to be added on the l.hi.s. (see Maruo f71). ation (5) thus leads to the "disperSion rela-
tion"

Seeking for wave-type solutions, we concentrate on
the homogenous part of above d.e.; we further disre- c Vgk + 96 + Kk (6)
gard the (amplitude modulating)3 terms with tp and Equation (5) may equivalently be expressed as
p. Hence we consider the "modified approach" (A+)'

2.. . I .. I - _ v, , ) = 0 ( 71

u + 2uv o + v m -g(, ( + Vy ) = - I - oP, -9Wz . " . ."_2 
lp

2  % -, ( I'

(2) Noting that k, = Os, ; 2 = O-S., we may consider this
as a partial d.e. for the function S(x,y) for which

2Quiterecently,this approach has been justified under 'Note that the term gC appears only under (A+)',
new arguments by van Gemert[9). not under (A)'; it may remind us of c = v1 for waves

-See Longuet-IHiggins and Stewart fl1l and [8]. on shallow water of depth I.
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"characteristic stripes" (i.e. characteristic curves in the = -2 (F. cos 0- F= sill 0)/2
{ ,y,k1 ,k 2}-space) can be found from the equations cos0 sill0)/2

dx = OF dy = OF dl dk2  + cu, sin 20 - cvo cos 20 (18)d 1 
=  'T -F; -=- ry (8)

which define a curve parameter r. Undo. multiple use where we have used u, -- -vt ut v,, for our 2-D basic

of above relations, considering that flow. In a similar way we obtain'

c2  dk c2  dk dk.
O(uki + vk 2 ) = o(uk- +vk2 ) = (k9 " 'k " - dr2

Ok, Ok2  = ((g(,). cosO+ (g(,), sinO)/2

=(ck) O c g - cu.cos 20-cvu sin 20 (19)

Ok, 8o = c sina (o) From equs.(12) and (13) we call easily confirm the gen-

(where c, - d(kc)/dk is in accord with the concept of eral result

group velocity related to Uq cos 7 as phase velocity), we tan( , a) - v -= u - c, sin0
find dz u- cg cos0 20

(with a defined as the ray angle against the double
body flow) which contains the choice of approach onlyc = -( / c) = -kg+ kgc + k3  
through the explicit expression for c.. We may thus re-

S. 2 g(, +2kK call Ursell's observation that the ray direction is along

- - cF +29C.+3kt ) 2(1+ 2 )(C2 ) the resultant of the basic flow and the "group ve-
locity" taken along the wave normal vector -, and

We obtain that this does not require asymptotic analysis such as
the principle of stationary phase (see discussion to[8) 0

dx OF -kc 0 kc
T = -=2.r k- uk + vk OkT uk, +vk 2

- j (kc-ukl)= (u-ccosO) (12)

In a similar way Cat

dy 2 q
dr Tc(v - cg sin0) (13) ca Uq

rom (6) we find

O(kc) k 0 (14)

a c FcTFig.2 Ray direction as resultant of basic flow

and thus and c along direction of -r
(with angle a against flow ditection).

dkl = kc 0 kc
d"- uk= -+ vk 2 OX uk "+- vk 2

"- 0 - uk Restrictions For The Wave Parameters.2 (k

2- -. " ( kg( - uk, - vk 2 ) From the dispersion relation (6) we have

2 ((uu. +vv,)/2+c(u cos 0+v. sin 0))(15) c2 = g/k + gC, + Kk (21)

F -((uu v +vvv)/2+ c(ur cos -v v sin 0)) (16) 5The terms with g(, (missing under approach (A)')

reflect the statement of Longuet-Iliggins and Stewart
Then we find the rate of change of the wave angle 0 from (11) that short waves superposed a long wave shorten

kc2 dO kC2 d k2  when climbing, increasing their length again when
- arctan - (17) descending.

2 d 2 T 1T 0 or later use, we have introduced in Fig.2 an "ac-
Cr (k, dk2  k Aition transport velocity" cat along the tangent to the ray

= 2k di d5 direction.
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A minimum of c is found at k = / 7t giving

C1m% UV( q2)/p2= (Iq 2 + 2p 2 )/2 (22) , v..

where c,, = .- is the minimum velocity of capillary- P-Cm/U-O.6 ..
gravity waves and p - c,/U is a dimensionless param- (u- o. 5, IS r-

eter of surface tension. We introduce a dimensionless 3 01 .

wave length A - g/(kU 2 ); then (5) is equivalent to -". ,.

q2 co s2 = A+ (1 -q 2 )/2+pP/4A (23) < ................. I ....... ,.,,, ...."

In a plane of the variables q2 and A , for p constant, " ... -
(22) represents a family of hyperbolas between the
asymptotes A = 0 and A = A, (1i + 2cos 2 7)q 2 - 1/2. " ..

We are interested in the branch with A > 0; (other. Al.

wise,we would have an increase of the wave flow down- ,.
wards, see(3)). Solving for A, we obtain ............ / .

A= (l+2cos 2 -7)q2 -i l (21) cc - .C.. .2 .4 ,. ,.!
2 2 3

Fig.3 DWnahi D of Adinittod Waves for p"0 46(I. e.
Sq - l - (2p2/(2 cos32 t + 1)q2 - 1))2 (25) -0. 5 m/s)

Sq is real only for q2 > (1 + 2p2)/(2cos 27 + 1) >
(1 + 2p2 )/3; this implies that in the zones around the
stagnation points where q2 < (1 + 2p2)/3 no steady For gravity waves with q2 > I + V/32 this implies
waves can exist.

The upper sign of the root corresponds to gravity A> Alm -(q 2 -1) (1 + j - 3p /(1 - q2)) /2 (30)

dominated waves (A = A.); the capillarity dominated
waves (A = k, lower sign) are better described by 7  One may observe that this limitation is automatically

met if I7 1< ir/4 with dA/dq2 > 1/2 + cos 27 > 1 then

A p "  2 2 (26) (see Fig.3). One may note that for any 7 we find fron
4 (1 + 2cos 2 -)q2 

- 1 l+, ( (22),(25) and (5)

For any 7, confluence of the two roots occurs for (c/U) 2 = A, + A, + (1 - q2)/2 (31)
A = p2/2 corresponding to the mrinimum of c found All the above restrictions can be visualized through a
earlier (21). For the range (1 + 2p2 )/3 < q2 < I + 2p2  display of the dependence between the wave front an-
the angle 7 is restricted through gle 7 and the ray direction angle a with p and q held

1 (1+ 2p2 ) constant. Rom a geometrical interpretation of (19), in-

1712 arccos q2 (27) yoking the sine theorem of elementary trigonometry (see
Fig2.), we find

(under approach (A) , 1 15 arccosp, independent from
q2 ). Beyond this range, for q2 > 1 + 2p2, the minimum sina = sin(7-a) = sin7 (32)
of A. is no longer p2/2 but the value corresponding to C9  Uq cal

7 = Z. Then we have and hence

A9 > q-1 1+ (28) tan c sin sin 27 (33)
- 2 2 2 2 cosy - Uq/c = 1 + cos 27 - 2c/c4

If we accept the argument that stationary waves can- Setting p =O,1,11, we have c./c = 1/2 in accord with

not propagate into areas where cg/c is negative, the do- Kelvin's results; we find that I a I will increase with 17

main of admitted A values is further restricted (see(11)) up to some maximum ak = arctan (1/v'8) and then fall
through uii" to zuro with -1 = 4r/2. We may observe that for non-

2cc, q2 + 4A >0 zero p, unless q2 > 1, a approaches zero only together
A + 1 - 4A (29) with f, as cos - will remain positive. Thus an outgoing

'The relevant analysis has been established and pro- ray (a > 0) can turn inward again only if the wave

foundly discussed by Crapper (13] for the non-modified front normal changes from inward (-/ < 0) to outward

approach (A)' at the "caustic" (in the terminology of Yim [17]) under
a maximum of the wave length due to 7 = 0.
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One may consider the range of negative a in order to ately near the stagnation point for pointed bows) and

have -/ positive. If we exclude here those parts of curves trace a curve from there with dy/dz = tan(fi + ak)
where a turns positive due to c. 5 0 (only for q2 > I thia should define sorte cusp line.
under (A+)'),we may observe that a as an odd function
will in general have opposite sign to 7.

Let us refer to the range for which Ia is increasing
from zero with I 7 I as to that of transverse waves and
define : e maximun value attained for a in this range

as the modified Kelvin angle aa.. Then we find that for
q2 < I -- 2p each curve for gravity dominated waves 9oo
turns under horizontal tangent ( with a = 7r/2 +- 7) into .. / 0

one for capillarity dominated waves, so that after tan a
changad sign due to increase of c/c > 1 for such waves, [92 0.5 (near bow)

7 falls off to zero again with the ray finally normal to/ .
the wave crest again, but opposite now to the flow di- ... 2..-'(2 {
rection. ca1llla<y1wve/ ggrav wave,

: ".. . . .

.

.........

N o t e t h a t o u r _1 0 / _9 0 0

formlations and considerations throughout this paper

are refered to the domain around the starboard side
of the bow, where a is positive , hence 7 negative in .. U = 0.5m/s,jAU 2.5m/s (both(A+)'),- . (A)'.

general. To deal with the other ship side, statements o 900
remain valid if P and 0, -y and a are counted clockwise
against the x-axis and flow direction there. Note that,
observing 4kr./c 2 = p 4 (Aq 2 cos 2 7) in (11), we have the ql2  1 (far field) :. fui
deviation of c9/c form 1/2 depending on p2 and on q2,../

even under approach (A)', where the term (I - q2)/2 '7
is disregarded. cg/c and hence I a I increases with de. .

creasing speed U (i.e. increasing p) and with decreasing capil.lar waves /__vity Wave'4
distance front the stagnation point (i.e. decreasing q) /"
for y held constant. This implies an increase of the mod- ... ' . , .
ified Kelvin angle (which is measured against the flow -1800 a -900
direction!) especially near the bow, in particular under I U ?-- = 1.5m/s •. = 2.5m/s
approach (A+)'! This is well in accord with the exper- For q2 = 1 there is no difference between (A)' and (A+)'.
imental observations of Miyata[14] with wedge- shaped
models with U = 0.5mn/s, (p A 0.462) and U = lm/s, . . . / 900
(p : 0.231) . . c0/c negative! ".2

Away from the bow, where q2 ;.; 1, thus , " 0, ..
there is little difference between (A+)' and (A)'. But "
again we observe an increase of ak with decreasing U in - 4 0 (aside of a thicpc bb$y)] /
accord with Miyata's experiments with a rudder model / i
(see Inui [151) for the speeds U = 1.15m/s, 1.72m/s and .capillary waves /gravity waves.

U = 2.3in/s corresponding to p = 0.3, 0.14 and 0... / ".
. .. . j............I

In the domain where q2 > I aside of the ship, a re- cc0 a-. _900
duction of Ok is predicted under (A4' )' including a ter-
mination of rays with short gravity waves with c. ap- 4
proaching negative values, We may mention that for a - (A)', .. (A+)' (only negligible dependence on p)

vertical circular cylinder, q2 increases up to 4.0, whereas
for conventional forms q2 will not exceed 1.2. Fig.4Wave front angle 7 versus ray angle a

It is only for not too small q and for not too large p
that a is really stationary for a = akA and thus marks
a transition from transverse to divergent waves, so that
with dal/d7 = 0 we may expect a wave cusp effect. Let
us seardi for the most forward point along the water
line of a ship where stationarity occurs (i.e. immedi-
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Pl-cJIUI. 0.60 P(-C/UI- 0 40 P(-CWUI- 0.10
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/ 0/

//.. . -0.".-- ,
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Fig.4(a) a. vs. v (for(A+ )')
curves over the dotted Itnc: for capillary waves; curves

u|ndcr the. dotted ItjIC1 for gravity waves.
8
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C ? '
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0.1

0'. 0

-90.00 .70.00 '00.00 -b0,06 -C'0o0
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Then the rate of change of 0,3, and k along the ray is

The Situation Of Ray '.acing Near A Corner found from

And The Short Life Of Rays Near The Waveless Zone. 1 MI Ce~ Ai V (_ + i'\ (43)
Let us again considcr 2-D potential flow as the basic K7s = - - " * - :Z + e 4

flow, so that complex analysis can be used.We introduce Observing (34) and (5), separating real and imaginary

Z - z + iy = r. eV - u - iv = Uq. e- , (34) part in (43), we find

ie dO 4-.1Ue . Pie osin (0-0) + i +0 )
K-k -ik 2 =k.e-  (35) ds =  cat 7r-f (2 sin (-+O-6)' (44)

and
P - (g(,) - i(gC,)y = -(dV/dZ)V (36) U3 m dm 1 dZ _

The P stands for some gradient of the double body flow 1 dZ • sin (Z! - 4

pressure8 We can write the first ray equations (12) and - --- (a + - 6) (45)
(13) as

and thus

dk =  (V - K) = 2 e -C(a +O (37) d7 -(O - ) 1 io (46)
T Tc -k' ds ds =V r -,%x...

With ds as differential of the arclength along the ray,this (sin(a + 13-o6) 1- + sin(2 + 3-6)
implies that dr/ds = 1/1dZ/dr J= kc/2cat, so that we . 2o-)

can write (19) and (18) as Rae to the presence of the factor 1/r, which
1 dK ldk _dO dT tends to infinity at the stagnation point, that
TK s - -' d -T (38) might cause trouble when doing ray traoing near

eie dV ( + e  the bow. This may explain the dilena of Brands-

- . Z 2c ma (taking *0)In order that a ray should travel along the ship's wa-
Here o means 1 for (A+) and (A+ ) ' , it means 0 for (A) ter line (or more generally just coincide with a stream-
and (A)'.- The flow in the vicinity of a stagnation point line), we must have a = 0 i.e.- = 0 hence dlds i.e.
due to a corner is basically the flow near a corner be- d-i/ds =0 . It is not clear why this should be possible
tween infinite planes as decribed by Milne- Thomson for general hull geometries, as for a = y = 0, hence
112], we have 0 = 13, we find with cat = c.

V .Q . e. /- (39) U7 = Im "K() ( /2 +1 e' i (47)
ds dZk c c -c,

where Q is a real constant; this means that the range
fo < 6 < 7r for the polar angle 6 is mapped on the range valid even away from stagnation points.-

go _ 9(6) = Oo(r - 6)/(7r -3o) _> 0 for the flow angle. For the rate of change of the wave number k we find
In the special case of a bi-circular strut of opening angle 1 dk -1 Ug /o LoCos(7+ P-6)
213o and length L, under parallel flow of strength U, we -ds 

=  r ct 0- o 2cos + cos (2+ -6)
have dU r  . L-a0 l( 00)  (,40) (48)

7 = r (0) If the value of A along a ray should equal the critical
value pP/2, tis would correspond to the minimum for

so that q = q(r) = 7r/(7r -go).(r/L)(Po('-Po) and hence gravity waves; hence k then must decrease along the ray.

However, due to the rapid increase of - near a stagna-
dV o . V (41) tion point, the sum of cosine terms may change sign, so
dZ T r- Pa Z that k increases (in particular for (A)' where the first

Pa .3 (42) cosine term is deleted) and A approaches p2/2 again.
= (42) Here the ray must terminate, as for A = p2/2, even

ur -AD Zi off the waveless zone boundary, the partial derivatives
lm in j 1'6]unsdered a quantity related to ;,P 1 as a of A both regarding q- and - vanish simuitaneously in

disturbance parameter and came to die vexing conclu- conflict with the ray equations, q2 can not be varied
sion that ray theory does not apply for bow entrance independent from -y. This explains the previously men-
angles Pa0 < ir/3 as otherwise P is not bounded; on tioned occurence of short life rays. Thus the choice of
the other hand, Maruo [7] disclaimed the validity of ray initial points for rays is moot, quite apart from the am-
theory for#0 >-. 7r/3 due to divergence of an integral biguity of assigning initial values there for amplitude
representing the phase, and phase.
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Further Considerations About The Ray Approach Numerical Calculations.

A "ray" in the sense of our analysis is defined
as a characteristic to a partial differential equation Our calculations have been performed both for ap-
F(z,y,S.,Sv) = 0 for a function S(x,y), see(3). proach (A+)' and approach (A)'. We considered the

But we should ascer- class of bi-circular cylinders which had already been in-
tam that the essential features of the complex 3-D flow vestigated by Brandsma with conventional ray theory.
near the ship, including sensitive variations, can really The analytical expression for the velocity potential W
be modeled adequately through functions S(x,y) with is given in complex notation [12] in terms of bicircular
slowly varying gradient and associated complex anipli- coordinates and q through
tude functions A(x,y). Note that until Yin's [17] re-
cent investigations, no effects of the Froude number on Z = x + iY = L/2 . cot((/2) (49)

ray curvature could be modeled, and the variation of W= o + iP = UL . i/ncot(C/n) (50)
wave resistance only resulted front interference effects
in the far field computed through integration along the with + = iTj, = 61 -62, 77 = ln(r/r2), n = ,,
rays. Nevertheless, our it) where P0 stands for half the entrance angle and L for the

vestigation showed that certain global characteristics Ih of the strut. The symbols rt ,6S ,r 2 ,6 2 stand for

the wave pattern, such as the variation of ak,, and henck polar coordinates regarding the strut end points. For

of the tangential direction of the wave domain bound- economical reasons, we deduced explicit expressions in

ary (visible in the rich stock of Miyata's experimental real mode for u, v and their derivatives. We evaluated

results) can be predicted even near the bow with ap- the ray equations by the Runge-Kutta method.

proach (A I-)'.

An evaluation of merits for the competitive ap-
proaches (A)' and (A+)' may be attempted. But

it does not seem pertinent to discrim-
inate between a "correct" and a "less consistent" ap-
proach, although it is obvious that with inclusion of sur- X
face tension effects the rule of "automatic order change
through differentiation", essential for (A) , can not be
maintained. Fig.5 Bi-circular coordinate system around a bi-

Actually, the omission of terms with g(, (and hence circular strut.
with 1- q2) under(A)' has no fundamental consequences
for our analysis in general. Certainly, the extent of zones The aforementioned boundary of the short-life zone
without steady waves ahead of a blunt bow is consider- was determined numerically, assuming q2 = const there.
ably larger under (A), well in accord with data from It did not require much accuracy, we found that rays
experiments with a vertical circular cylinder, for which emanating outside such a border line were not sensitive
we have evaluated both approaches. However, the nu- to the choice of their origin. We selected. = 0 as
merous recent investigations on the flow ahead of a blunt initial value, securing a maximum for the wave length
bow (see the survey by Mori (181) make clear that be- and its rate of increase, hence minimum probability that
tween the bow and the stationary capillary wave zone we it may become stationary and decrease again along the
have to expect a finite domain with either a stationary ra
plateau, a turbulent free surface or instationary waves wiTh i is o bio n adstrahe to opewte

propagating forward (Osawa [19)), and the flow visuali- with a continuous distribution of disturbances than with
a concentration iin the stagnation points.

sation experiments of Kayo et al 120] display a system

of instationary "necklace vorticies" in this domain. And Due to inclusion of surface tension, steady compo-
the decay of capillary waves through viscosity, as inves- nents of bow capillary waves could be investigated as
tigated by Messick and Vu [21] should be considered, well. We traced rays with capillary waves from that

part of the outer boundary of the short-life belt where
the basic flow is incoming, and rays with gravity waves
from the part with outgoing flow; the two domains have
no common boundary, save the point where the basic
flow is tangent to the belt.
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1]e rays of gravity - axd capillarity - waves in the cases (3) The outward extent of this belt is decreasing with

of different body advance speeds and cntrance angles are increasing U, i.e. the stronger the capillarity
shown in Fig.6,8, 9, and Fig.l[t the larger the short life belt.

To show the diffcrence betNacn ours and the conventional The above findings are in qualitative accord with
ray hy a d ta-t aixt of our irxvnun, fward - (donSyruun) some tendencies one may observe from experimental vi-

and backard - (upstrciun from tie far field) tracing based sualizations of flow and wave pattern as presented by

on conventional ray theory are also prfonnd. For the latter, lnui[15] (his Fig.2-2 is reproduced in our Fig.7), of Miy-

considering the uncertainty due to the stagnation point, rays ata[141, of Maruo[7) and of Osawa[191 (see Fig.11). It

are lxrcktraccd from the far fiekl towards the bow, iterately, is true that we can not expect our analytical model to

by changing initial conditions, the results in the far field cover all features of the complex phenomena observced,

by usual ( forward tracing ) method being used as the first effects of viscosity and finite wave elevation in particu-

set of which, till ray reaches a given - sized neighborhood lar, though the latter may be assumed to be less signif-

of bow stagnation point, and wave angle converges at the icant considering the low speeds of the models. Thus it

same time. the results are shown in Fig.12. seems that in this regard ray theory displays a certain

In all the figures of rays presented, the Ixirs of members value for predicting ship wave phenomena, although the

a d t re-entrance of rays or their reflection at the water line
must be considered an open problem among others. In

values of 0 ( in degree . The short segments on tie rays any case, the authors would like to emphasize the need

show the local wave fronts, to take account of surface tension at low speeds) well in

To get better accurracy, step widths in ray tracing with accord with Maruo[7]. We hope that our work reported
Runge - Kutta method were carefully chosen, and the reliability here can add some further weight on this aspect
was checked by halving the step widths. Acknowledgements
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with regard to representing essential features of tile wave Prof. T.Y. Wu to the occasion of his sixty fifth

pattern, we have incorporated capillarity effects in our birthday.,
analysis to overcome obvious shortcomings near the bow
stagnation point.

Our formulation (A.+)' (eq. (2)) generalizes approach
(A)', where certain terms related to the double-body
flow pressure are disregarded. Although within our
work we could neither provide a rational model for ray
generation nor even a justification for extending the ray
approach the hull surface vicinity, the following facts
have been discovered or confirmed.

Our numerical investigations have displayed several
global effects on the wave pattern geometry result-
ing from the inclusion of capillartity to our analytical
model; they gain practical relevance for small speeds,
say for 'U--2 m/s (if we consider a minimum capillary
wave speed of 0.23 m/s.) :

(1) Both the far-field Kelvin angle and the "modi-
fied Kelvin angle" near the bow (i.e. the angle between
tangents to tihe wave region boundary and to the hull
water line) are found to increase with decreasing U.
(2) With increasing bow entrance angle, both the zones
of no steady waves and the surrounding short-life belt,
from which no rays proceeding into the far field can be
found, grow in size.
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Fig.10 Rays of bow capillary waves in front of a cir-
cular cylinder (moving to the left) under approach (A)' *-
for U = .&n/s (p=0.37) and U0.qm/s (p=0.25).

Fig.11 Bow waved in front of an advanoing

oylinder with diametre Dz 0.46 m, moving to

the left, at the speeds of-U-0.6, 0.7 and 0.9

rn/s (From K. Osawa [193
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DISCUSSION has been successfully included in the ray
by H. Kajitani theory to clarify the wave pattern around the

bow more clearly. It may be more usefully
1) I suppose the ray tracing is a kind of applied to a small-scale models. If it is the

low speed theory. I'm not sure that a pretty case it is possible that the local phase
high Fn applied in Fig.7 is available or not. velocity reaches to the minimum celerity of

capillary gravity waves (=25 cm/sec) and the
2) Could you comment on what difference capillary wave breaks. It implies that a new

can be observed on the traced characteristic source of singularity has been invited to your
lines between with and without surface tension method. I would be happy if you comment on it.
effects?

Author's Reply
3) The wave length of capillary waves in

front of a ship bow changes with its distance. Thank you for your comment. If the wave
Have you computed the capillary wave phase? length of a gravity wave is decreasing when

progressing, the wave might break before the
Author's Reply local phase speed c reaches the local minimum

phase speed cm. In our approach, we start rays
Prof. Kajitani's worrying about applying of gravity waves from the short-life-belt

ray theory for high Fn is certainly natural, boundary, where exist the shortest omitted
We use Fig. 7, the highest Fn is 0.4 gravity waves. The waves seem to become longer
there,(from Inui and Miyata) to show the when propagating (cf. (48), which shows that
qualitative confirmation with the test near the bow, l/k-dk/ds < 0, that means
results, We don't think that ray theories increasing wave length along rays ). If c<cm
(at present) can predict strong non linear does happen somewhere, our program will treat
effect. Keller[3] claimed that ray theory may the corresponding ray as short life ray,
be useful for Fn 60.7. We are more conserva- terminate the tracing and enlarge the short
tive in this regard. As to the differences life belt. We thus have not that kind of new
between those with and without surface source of singularity. You may be right to
tension, they could be listed in Table Al. consider these new singularities. But I wonder

if they would cause only secondary effect.
We have not yet calculated the capillary

wave phase. It could be carried out through
integration. DISCUSSION

by A. Hermans

DISCUSSION I congratulate the authors with their
by H.S. Choi interesting extension of ray theory. I agree

with them that in the region of very short
First of all, I would like to congratulate waves (near the stagnation points) surface

the authors that the surface-tension effect tension is dominant and that its influence on

the ray pattern is seen in the whole field. It
Table Al

Conventional ray theory Present ray theory
(no surface tension) (include surface theory)

1 Point disturbance, all rays are 1 Region disturbance, rays that can
from stagnation point; Stationry reach far field are from the boud-
waves exist even near the stag- ary of that region; No stationary
nation point, waves can exist inside of it.**

2 Ray and wave patterns are inde- 2 Patterns are dependent on U.
pendent of body speed U. Change tendencies of size of short

life belt, local and far field
Kelvin Angles etc. are in accord-
ance with experiments.

*) In Fiq.7, the rudder being small, Fn=0.4 corresponds to a "slow" speed in the scale of
minimum phase velocity Cm (in uniform flow)

**) Observing carefully the region right in front of slowly advancing body of blunt bow,
say a circular cylinder as shown in Fig.11, one could find (in some region of body
speed) in stationary waves between the stationary capillary region and a turbulent
region close to the bow. What we considered was only the stationary waves.
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makes the mode for the ray pattern more existing theory for not being perfect. On the

accurate than the one described by Brandsma contrary, we appreciate every effort made by

and myself. It is a pity that the authors do previous authors who developed ray theory and

not say one word on the influence of the wave made it possible to apply it in practice. In

excitation coefficients and the corresponding view of that some important features of the

wave amplitude. It is my philosophy that one real world can not be predicted with
must try to balance all components of the conventional ray theory, we think that some

building. To my opinion one approach has such improvements may be necessary.

a balance at its own level. Do the authors

expect that our approach to the amplitude We have not yet calculated amplitude. Our

problem is applicable in this case? If so, do concern in this paper is on ray pattern. Our

they expect that the influence of surface results show that surface tension may not be
tension is noticeable there just as well. disregarded for slow ship problems, at least

in small scale cases. Even if it turns out to

Author's Reply have no significant effect on the final

results in some cases, it can still be used as

Thank you for your congratulations and a way to circumvent the difficulties in ray

comments. The aim of this paper is to find out theory. From the viewpoint of validation, the

if surface tension is taken into con- assumption of infinitesimal wave length at the

sideration, the ambiguity and difficulties of stagnation point is always an unpleasant

the conventional Ray theory, as found by many thing. We tried to get rid of it.

others, can be overcome. We would not blame an
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Numerical Calculations of the Viscous Flow over the Ship Stern
by Fully Elliptic and Partially Parabolic Navier-Stokes Equations

K. I. Oh and S. H. Kang
Seoul National University

Seoul, Korea
T. Kobayashi

University of Tokyo
ToLyo, Japan

Abstract Viscous flows over the ship hull have been calculated by
the three-dimensional boundary layer theory. If free surface

Two computer codes have been developed to solve the effects are excluded, experiments and calculations indicate
Rcynolds averaged Navier-Stokes equations; namely the fully that the first-order boundary layer equations adequately
elliptic method and the partially parabolic method. These are describe the flow over a large part of a ship hull. But it
applied to simulate flows over the stem of the SSPA model as begins to break down gradually over the stem, which is
a bench mark as well as a multi-purpose ship with a barge around 10-20 percent of the ship length[1,2]. Experimental
typa stem. The numerically generated body-fitted coordinate information pertaining to the evolution of the flow over the
system is used to manage the complex geometry of the ship- stem as well as in the near wake has been reviewed by
hull. A standard form of the k-e turbulence model is Patel[2]. Much research has been done for thick boundary
adopted for modelling of the Reynolds stresses. layers over the stem in the past, but they have failed to

Simulated results by both methods are nearly identical provide a designer with valuable information.
when the longitudinal flow reversal does not appear. The The partially parabolic, or the semi-elliptic type, of the
partially parabolic method requires only half of the memory Navier-Stokes equations have been recently employed to
storage and cuts CPU time by 20% in comparison with the simulate the complex viscous flow over the stem instead of
fully elliptic method. The capability of programs developed the full elliptic Navier-Stokes(NS) equations in consideration
in the present study are confirmed by sucessfully simulating of physical phenomena that there is usually no region of flow
pressures, skin frictions and mean velocities over stems of the reversal in the direction of ship motion. These equations can
two models. The growth of the viscous layer over the stem is be used to describe flows between the tin boundary layer
well-simulated and the secondary motion is also captuted, upstream and the wake far downstream from the ship. The
which is usually observed in the experiments. Nevertheless partially parabolic Navier-Stokes(PPNS) equations have been
the standard form of the k-e model is not adequate for first employed to calculate flows and heat transfe/ in the
predicting the turbulent kinetic energy over the stem. straight square duct by Pratap and Spalding[3]. Abdelmeguid
Simulated nominal wake fractions show good accordance et al.[4] was the first to have applied to ship hulls. Markatos
with wake measurements. However, values of the outerpart et al.[5], Muraoka[6,7] etc. have presented further researches
of the wake are over-estimated, while the trends of the and several papers[8,9,10] appear in the 2nd Symposium on
circumferential variations are consistent with wake Ship Viscous Resistance in 1985. Chen and Patel[llJ have
measurements. Coefficients of the viscous resistance adopted the finite analytic numerical scheme and produced
predicted by present methods are under-estimated by 10 reasonably accurate results for flows external to an
percent. It further developments on the turbulence model axisymmetric body of revolution and three-dimensional
and numerics are accomplished, this method of numerical mathematical models. A computer program STERN/PPNS
simulations of the viscous flow over the stern would be has been developed based on the partially parabolic method
promising for the hull form design. and applied to several models to demonstrate its performance

by Kang and Oh[12,13,14]. The program proved to be
1. Introduction reasonably accurate in describing the pressure distributions on

the hull and the velocity contours.

The importance of the viscous flow simulations around When there appears flow reversal over the hull, the NS
the ship hull has received wide acknowledgement in 'he light equations should be solved. A computer code STERNNS has
of the hull-form design. Predictions of the viscous resistance been developed in the present study and it's performance has
are useful in the stage of the bare hull-form design. Ship been investigated by cross checking each of their respective
forms of good resistance and propulsion performance cannot similated results of flows over the stem. The SSPA 720
be developed witbnit considering the propulsion efficiency model is selected as an bench-mark model and a multi-
as well as the form factor. Such design and development can purpose ship with a barge type stem for the present study.
be effectively attained, only if numerical method can The possibility for the program to be uved for design purposes
estimate form factors, niminal and effective wakes on the is investigated in the present paper by estimating the viscous
propeller plane, and thrust deduction factors. These design resistance and nominal wakes on the propeller plane of a
parameters can not be reasonably obtained without complex barge type ship form. Estimated results are compared with
three-dimensional turbulent flow simulations over the ship measured data in the towing tank. Before going further, basic
stern aid in the wake. equations and calculation method are briefly summarized.
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2. Governirg Equations and Boundary Conditions

2.1 Governing Equation -- .w

Geometry of the ship hull is described in the cylindrical
coordinate system (x, r, 0) as shown in Fig.1. Governing "
equations for the incompressible, steady, and turbulent flow
are given by the continuity and Reynolds averaged Navier-
Stokes equations. Reynolds stresses are modelled by using
the eddy viscosity. In the k-e turbulence model adopted in Fig.2 Computational domain.
the presen' study, the. eddy viscosity is given by turbulence
kinetic energy k and dissipation rate e which are obtained
from their transport equations. In the cylindrical coordinate, vo
above governing equations can be written in the general form
as follows;

a -a La a a r(u4) + --- (rv4)) + 1--(wd))= -L(r.-
Ox r ar raH ax ax

1 a a4) ia a4
+ (rro + r ,-(F -) + SO ()

r ar ar r aO ae R

where d), r, , S+ stand for the flow variables, diffusion
coefficient and source terms for each variables. These are
summarized in Table 1. Fig.3 Body-fitted coordinate system and

velocity components.
2.2 Boundary-Fitted Coordinate System

The calculation domain is bounded by the hull surface S,
the center-plane C, the water surface W, the upstream ,gQ denote metric tensors, and / are control functions for
section A, the downstream section B, and the outer boundary alignment of grid points in the domain.
7 far from the hull surface as shown Fig.1. A boundary Design parameters and expermental data are usually
fitted coordinate is adopted to transform the physical domain presented at each stations of the ship hull. Therefore it is
in the cylinderical coordinate into a rectangular convenient if constant g planes are chosen to be coincided
computational domain in Fig.2. The numerical grid with constant x planes. If we put t=t(x), then following
generation is widely used for such a transformation. With equations are obtained.
the values of the coordinates specified on the boundaries of
the physical domain(x, r, 0), it then remains to generate the 11 + + grU + g 1  +2o1 r
vaites of these coordinates in the interior of the gr 2g 7M t r
domain(t, 'q, t). This can be obtained from the solutions of
the following elliptic partiP' lifferential equations[Il]; + 2g23rf + rC+ fr, + (3)

r

V2X =O, V = 2, V = 0 (2)
r 

8
11eot + g22o + gl30cc + 2g9120CY + 2g130C

where 2 2  a2  2 + 2g230q + flot + .f2e 0 + f 3oC = 0 (4)
2  g g.2 +g 2 -+g 3-W-+2g2-a Ij'+ 2 +2g-2 -- Grid control functionf I is calculated from the distribution qf

+2g13 a 2 +23 a2+f1 a a a the x planes. In the radial direction, grid contol function
+2S -+2g - f _ + +fis determined by grid distributions on the inlet and exit
agat a'a aplane for rid lines to be smoothly generated. Grid control

A: ,"tfo function I" is prescribed with the grid distribution on the
B :-,,, outer boundary.
I: t,*A@, . x._x(5
w o- -,f. " A , -q , 0 - g X(5 )

W Xt

0 -n,+ F'(6)
rr~

f3i(, = - ti, Tj,-12 (7)

A where

Fig.1 Physical domain and coordinate system. F.(2, r1, t -
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r'... the fully turbulent layer, and it is assumed that the law o the
F2m ",/) = - g .r wall is satisfied and the velocity vectors .in this region are

r71 collateral. The boundary values at the first grid point are
obtained by assuming the local equilibrium between turbulent

6t, 92 denote values of 6 corresponding to upstream and kinetic energy production and dissipation. They are given as
downstream sections respectively and 12 denote the value at follows.
the outer boundary. Symmetric Ncumann boundary ,w  ,k2

conditions are used at the water plane (0=00) and the - = KV , '  
+ (10)

center plane (0=90'). Dirichlet boundary condition is used p In(Enp)
at other boundaries. rw

2.3 Transformed Governing Equations pC/,(11)

Transtormation of independent variables (x, r, 0) in
governing equations are considered, leaving velocity 3,4 3/2
components (U, V, W) in the original (x, r, 0) coordinate in CIL k
Fig.3. Then governing equations are generally represented as E = (12)
the following form[121. The magnitude of the velocity at the first grid point np near

+ bthe wall is given as V and n is nomal distance from the
['-L (b'Ub + b'v + b'W ) wall.

J ag
a 2 2 (4) External boundary T; It is placed sufficiently far from

+ -(bU- + b2V4 + b3W4) the hull surface so that uniform flows and no turbulence
a condition can be assumed there.

+-(b1 U4 + b2V' + bW'O)] U =U,,,W =k = e=0,-V= 0, p =p, (13)
a it8  a 20,d

[(F,,J + (rJg al (5) Center plane C and water plane W; Symmetric condition
+ aL~ r 3 )+ s aare im posed.

(8) dU dV dk de 0 (14)
dt dt d; dt

The above equations are still the exact equations in so far as (6) Wake center line C; Following conditions are enforced.
no approximations have been made beyond those inherent in dU dk de
the turbulence model. The equation (8) can be rendered V = W = 0, = - = 0 (15)-
partially parabolic by neglecting the first term which involves dql dlq dlq
the second order derivative term with respect to g. Physically 3. Numerical Scheme
this is not the same as neglecting d4. nor does it imply that
diffusion in either x or g direction is neglected[11]. Uniform grid spacings are taken in the calculation domain

(A = ArlpA = 1) and grid control functions are determined
2.4 Boundary Conditions by specified values on the boundarys. The grid construction is

Boundary conditions at each boundaries of the solution obtained by solving equation (3), (4) by the finite difference
domain are summarized as below, method.

The Finite Volume Method is applied for discretizing the
(1) Upstream A; The position is extended to the upstream as governing equations and the hybrid scheme is employed in
far as thin boundary layer equations and the potential flow the evaluation of the convection terms. The finite difference
theory are valid. Then distributions of (U, V, W, k, e) can equations are obtained by integrating the governing equations
be prescribed from boundary layer calculation. If it is placed over individual control volumes formed by the staggered grids
over the mid-ship, then distributions may be assumed by system[15]. The scalar variablesp, k, F are located at the grid
using integral parameters without exerting significant nodes themselves, while velocity components are positioned
influences on downstream calculation. The streamwise between the scalar nodes. Such a staggered grid has benifit of
velocity profile in the boundary layer is specified by 1ith having the velocities at the boundaries of the scalar cells
law, where they are needed in integrating convective terms.

U (Y 1,7 Furthermore the pressure nodes are located on either side of
-. = () (9) the velocity node and it is easy to calculate the pressure
U, o gradient terms in the momentum equations.

and the velocity in the inviscid region is given as the free Then the final form of the discretized governing equations
stream velocity. The turbulent kinetic energy k and the are obtained.
dissipation rate F are also given by the flat plate
correlations with the boundary layer thickness and skin-
friction coefficient. apdpp = aw4 t + as_ " + aE4)E + aw4)w

(2) Downstream B; At one ship length downstream from the + afAU + aA'L + (IP
stem, zero gradient condition is assumed for the all variables.
In partially parabolic calculation, only the zero pressure The subscript P refer to the grid node to be considered and
gradient condition is required. the subscript U, D correspond to the upstream and

downstream grid respectively. The other neighbouring grids
(3) Hull surface S; The wall function is adopted in the in the sect;ons are given by the subscript N, S, E, W. The
present study. The grid points next to the wall are located in 4bv, it epN 4 s etc. represent the convection and diffusion

at ea, 4rresponding control surface[161.
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When the partially parabolic form of equation (8) is solved, STREA Wi IIS
the discretized equations are obtained by the similar way. I 12 1.

.01.

apdp = aN4 N + as-S + aE-4E + aw- w + CFUC, + 4 (17)

Since the diffusion term in the g direction is removed from oU 06 07 o09 I'D U , .2 L3

the equation (8), only the convection term C. is included in x/L
the t direction. The unknown variables (U, V, W, k, e) Fig.5 Pressure distributions over several streamlines
can be obtained by solving the equation (16) or (17) under on the SSPA model.
the assumed or estimated pressures.

The estimated pressures are indirectly corrected for the
continuity equation to be satisfied. If SIMPLE(Semi-Implicit .161
Pressure Linked Equation) algorithm is adopted[15], the -5

discretized equation for the pressure-correction is obtained. o. .. S

This equations can be represented by the same form with the 0 =X,(
equation (16), which has fully elliptic characteristics. SCMt 7

In the fully elliptic calculation, the flow variables are as_
iteratively solved and the converged solutions are obtaiined.
The procedures are summarized as: 04 A M

(1) Construct the coordinate system, and calculate thle 03 os ..

metric tensors and Jacobian.
(2) Specify initial conditions at the inlet plane.

(3) Solve the velocities with assumed or previously calculated 04" .
pressures. 

STREAM Lft

(4) Solve the pressure-correction equations ' 0 1.0

(5) Correct pressure distributions and velocities. .
(6) Calculate the k, e.
(7) Return to step(3) apd repeat step(3)-(7) untill the 4"

residues are reduced by 0.1% of the reference values. 0 *

To solve the partially parabolic equation, the marching s ' Q9 I

procedure along the t -direction is employed. 2

(U, V, W, k, e) at each sections are calculated with a
upstream values of each variables and previously calculated
pressure. Pressure-corrections are achieved on each section 0 d O's. 0! 1.

without any correction of the upstream and the downstream
pressures during the marching procedure. Pressure of the i/.
whole domain should be stored in the partially parabolic Fig.6 Skin friction coefficients over several streamlines
method and several sweeps in the t-direction are required to on the SSPA model.
obtain the couvrged s.lutiOns. The , rocedure are
summarized as:

(1) Construct the coordinate system, and calculate the (4) Correct the pressure distributions and velocities.
metric tensors and Jacobian. (5) Calculate k, e at the downstream
(2) Specify initial conditions at the upstream boundary. (6) Marching to the downstream boundary.
(3) Calculate velocities at the downstream with the (7) Return to step(3) and repeat step(3)-(6) until! the mass
previously calculated pressures. residue are reduced by 0.1% of the reference value.
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4. Calculations and Discussion 21L

A computer code, STERN/PPNS based on PPNS ),.byIMNS

equations has been developed by the method described above 0.00 - 00
and is applied to flows over several mathematical models.
Calculated results by STERN/PPNS have been discussed by
Kang et a1.[12,13,14]. Simulated flow fields and pressure 0.os 0.05

distributions are generally in good agreement with tested
data. But calculations have a marked trend to over-estimate .'1 ' v-ooo.07.o,turbulent kinetic energies near the stem. Such a trend has 0 .o

also been pointed out by Chen and Pate][11]. o,.

Another code STERN/NS based on NS equations has b) RMN.byl M FMS

been developed in the present study. General performances Fig.10 Comparison of calculated velocity contours and
of the code have been checked by simulating flows over cross velocity vectors at xIL =0.95 of the SSPA
several mathematical models by Oh[16]. Performance model.
characteristics of two programs have been intensively
investigated and compared in the present study by simulating Estimated pressure coefficients along each streamlines are
flows over the SSPA 720 model and a multi purpose barge shown in Fig.5. Both calculations are in very good agreement
type ship. The first one was a container ship model, which with blockage corrected data. The present programs can take
was tested in the wind-tunnel by Larsson[17] and used n one into account the blockage effect by considering the existance
of standard models of IITC-SSPA Workshop[2]. The latter of the outer wall. Even though SIERN/NS shows slightly
model has a barge type stem, which was chosen to investigate lower estimations than STERN/PPNS, differences are
the possibility of the numerical simulation of viscous flows to nigligible in this case of flow without seperation. However,
be used for design purposes. some attenuations appear in the estimated pressures just over

the stern by using fully elliptic calculations. Such attenuations
4.1 SSPA 720 model might be originated from neglected longitudinal diffusion

Part of the numerically generated grid system is presented terms in the partially parabolic method. The capability of the
in Fig.4. Numbers of meshes in the (t, 'q, t)-directions are both programs is confirmed to simulate the interaction
(58, 25, 14) respectively. They cover the calulation domain between the thick boundary layer and the external flow by
of 0.5<xL<2.0, r/L<0.8. Circumferential grids are sucessful prediction of hull pressures. On the other hand,
distributed to coincide with external stream lines along which predicted skin friction coefficients are qualitatively in good
mcasurcments hav, been taken. Mshus in (he radial accordance with measurements as shom in Fig.6.
direction are progressively closely spaced near the hujl. Considerable uncertainty should be taken into account as far
Calculation is performed at Reynolds number 5.0x 10 , as skin friction measurements are concerned. It is also true
where the model was tested in the wind tunnel. Converged that enough number of grids could not be allocated near the
solutions are obtained after 90 sweeps by STERN/PPNS and surface. It is seen that coefficients of skin friction reduces
190 iterations by STERN/NS. PPNS procedure save CPU over the stem, where the shear layer grows thick according to
time by 20 percent as well as considerable memory storage in the strong adverse pressure gradieiit and the stream line
comparison with the full elliptic procedure. convergence except along the keel line. Girthwise
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distribution of pressure coefficients and skin friction
coefficients calculated in the present study are compared with
measured values in Fig.7 and Fig.8. Secondary flow is
directed away from the keel and the water plane according to
the girth-wise pressure gradient, and the shear layer rapidly
grows thick at the mid-girth. Skin friction coefficients at the
keel show their largest values and decreases along the girth to
the water plane. Fig.13 Bodi plan of 37K PROBOCON.

The feature of shear layer formation over the stem by
STERN/NS program is shown in Fig.9. The contours of the
axial velocity component and the pattern of the transverse feature in the thin boundary layer. It is explained that such
motion at x/Il= 0.95 are shown in Fig.10. The boundary layer reduction is due to strong flow convergence without enough
remains thin along the keel line according to the divergence
of streamlines. The thickness of the viscous layer over the generation in the turbulence kinetic energy over the stem.
mid-girth is almost as large as the draft of the model. The The k-e model in the present study fails to capture such a
axial velocity contour is well-simulated in comparison with phenomena taking place over the stem. An algebraic stress
the measured contour. The bilge vortex, which is a general model may well be a furture choice for sucessful simulations.
feature of the stem-flow, is also observed in the simulation.
Distributions of the total velocity at several points where each 4.2 Barge Type Ship
streamlines intersect with the x1L = 0.95 section are compared An object of the present study is to investigate the
with measured data in Fig.1l. Here it should be noted that potentiality of programs to be used for design purposes. The
measurements are obtained normal to the hull and selected model, 37K PROBOCON, was originally designed
calculations are computed on transverse sections. There are by KSEC(Korea Shipbuilding and Engineering Co.) and
good agreements between calculations and measurements, developed by SSPA through several series tests in the towing
although some error might be involved due to such tank. The body plan is shown in Fig.13. Considerable
differences in the location. Turbulent kinetic energy reductions in the viscous resistance as well as increases in the
distributions are compared in Fig.12, where typical characters propulsion efficiency have been reported in comparison with
of turbulence in the stem flow appear. Turbulence kinetic conventional stem shapes. Components of the resistance
energy shows considerable reduction in the magnitude near coefficient and measured nominal wake distributions in the
the hull over streamlines 3, 5, and 7, which is quite a unusual towing tank are availablc[18]. Furthermore pressure
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distributions on the corresponsing double body have been Fig.15 Girth-wise variations of pressures at several
measured in the wind-tunnel[19]. stations of 37K PROBOCON.

Numerically generated grids are shown in Fig.14.
Numbers of mesh points in the (t, q, !).directions are (54, 0.,0
25, 32) respectively. Calculation is performed in the domain xi,
of 0.5<,.xL<2.0, r/L<0.963, and at Reynolds number
8.5x106, where the model was tested in the towing tank. "ls

Converged solutions are obtained after 90 sweeps with
STERN/PPNS and 200 iterations with SIERN/NS.

Pressure distributions at several stations over the stem by
the present calculations, by the inviscid calculations with
Hess and Smith program, and by the wind-tunnel experiment
are compared in~ig.15. The experiment has been carried out
at ReL=2.0x 10 and the measured data includes a small
amount of blockage effects. The present methods generally
show good performance of the pressure estimation on the
hull. The fully elliptic procedure gives somewhat lower
predictions of pressure. The potential flow theory does not
properly simulate pressures, especially near 0=300-40*
where the boundary layers have been grown thick according Fig.16 Simulated viscous layer over the stem of
to the streamline convergence. 37K PROBOCON by STERN/NS.

Overall feature of axial velocity contours and velocity
vectors on transverse sections to the downstream are shown
in Fig.16. As observed in the experiment[19], streamlines are Finally the capability of codes to estimate the viscous
uniformly distributed over the stem, and consequently the resistance is investigated. It may be obtained by integrating
gradual girth-wise variation of the boundary layer thickness is the pressures and the skin frictions over the hull surface of
obtained. Bilge vortex is usually generated over the stem due the double model while free surface effects are neglected.
to the girth-wise pressure distribution. Such vortex is But considerable numerical errors are expected during the
simulated as an open type separation over the afterbody as integration. A wake survey method to estimate the viscous
shown in Fig.17. The region of votex extends and the strengh resistance component in the towing test[20] is adopted.
at the core decreases downstream as shown in Fig.18. 1

Although the physical propeller plane is not divided into 2S (18)
fine enough grids to expect reasonable results, estimations of CV(
the nominal wakes are tried. It is not found how to allocate 1/2p'(Sw
grids effectively not only for the whole flow domain but also where Ho=po+pUo2i2, H=p+pU2/2 and S is the wetted
for the local region near the propeller by adjusting grid surface area ot the hull. The integration position of the wake
control functions. Wake fractions have been measured at w is half the ship-length down.;trean from the stem.
four radial positions (OAR, 0.64R, 0.88R, 1.12R) in the Estimated coefficients of the viscous resistance by -the
towing tank. R denotes the radius of the propeller. Predicted partially parabolic niethod an by the fully elliptic method
results in Fig.19 are generally acceptable at 0.64R and 0.88R, are 3.57x 10-' and 3.52x 10 respectively. On the other
except between the stem bulb and the ship bottom, where hand. the measured value was 3.9x 10" and the form factor.
only a few mesh points can afford to be allocated. However, was 0.23. All the simulation errors, i.e. presures and
wake fractions are over-estimated at the outer part of the velocities, :irc rmmed up to show 10% under-estimation. It
propeller and under-estimated near the hub. The trenJs are should be- noted that wave effects on the viscous resistance
qualitatively consistent with measurements. As far as grids can not be taken into account at all during the resistance test.
generations are concerned, it should be stressed that enough If we take into account such -uncertainties, the present
meshes are to be allocated locally over the propeller plane, as predictions give us acceptable values. If changes in the
well as globally over each ship sections. It is also noted that viscous resistance with any modifiction of the hull form is
free surface effects are included in wake measurements. reasonably estimated, the computer codes will be very useful

as far as the bare hull design is concerned.
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Fig.17 Simulation of bilge vortex over the stern of 5. Conclusion

37K PROBOCON by STERN/NS. (1) Two computer program have been developed in the
present study. STERN/PPNS simulates flows over the stem
by the partially parabolic method, and the STERN/NS by the
fully elliptic method. Simulated results are shown to be
nearly identical. This indicates that the effects of stream-wise
dffusion terms are negligible when the flow reversal does not
appear over the stem. They also cross check each others'
numerical scheme. The partially parabolic method requires
only half of the memory storage and reduces CPU time by

LOS ,20% in comparison with the fully elliptic method.

..... (2) The capability of programs developed in the present
study is confirmed by sucessfully simulating pressures, skin

,.,,, frictions and mean velocities over the stem of the both
models. The growth of the viscous layer over the stem is
well-smulated and the secondary motion is also captured,
which is usually observed in the experiments.

1.4.4 (3) There appear's to be some deficiency of the k-e
model enough to simulate the turbulence fields over the
stem. The standard form of the model usually over-predicts
the turbulent kinetic energy. It is also investigated that the
model cannot properly account for the reduction of the
turbulent kinetic energy ncar the wall when the viscous layer
becomes thick over the stem.

(4) Th streamlines over the stem of the barge type ship
Fig.18 Variation of longitudinal component of vorticity form show uniform distributions, consequently the 7,adual

in the wake of 37K PROBOCON. girth-wise variations of the boundary layer thickness and tha
pressure distribution are noted.
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ABSTRACT accurate methods, such as the higher
order boundary layer integral method

The research on CFD for ship flows [2], [3], the ADI method in body-fitted
carried out at SSPA and Chalmers Uni- coordinates [4] and the streamline
versity of Technology in recent years curvature method [5]. All of these
is summarized. Methods for potential produced improved results near the
flow calculations including first and stern, but none of them could accura-
higher order theories with linear or tely predict the near wake and the
non-linear free surface boundary con- viscous/inviscid interaction. A more
ditions are presented. The importance accurate approach to these problems was
of higher order effects and non- obviously required.
linearity is discussed. A viscous flow The situation was anticipated around
method based on the Reynolds-averaged 1980, when the development of a Navier-
Navier-Stokes equations is also intro- Stokes method was started. After
duced. The method may be run either in testing and analysing various routes to
the partially parabolic mode or fully find the best possible coordinate sys-
elliptically. A comparison is made tem and solution procedure a method was
between results of the two modes. Grid developed in 1985-1988. Several diffe-
dependence studies and validation rent programs were written based on
against experiments are presented for somewhat different approximations of
all methods. the Navier-Stokes equations [6], [7],

[8] and [9]. Introduction of the pro-
peller effect has been made recently
(10].

1. INTRODUCTION
In the early eighties interest was

also directed towards the free surface
Computational Fluid Dynamics (CFD) potential flow, and the first methods,

has been a major research area at SSPA based on Dawson's theory, were deve-
for a number of years. During the loped during 1983-1986 [11], [12],
seventies several computer programs for [13). The call for more accurate solu-
calculating laminar and turbulent tions in certain cases prompted the
boundary layers were developed. These development of methods with a more
methods turned out to be very useful exact free surface boundary condition
for thin boundary layers but failed and better numerical accuracy. These
completely near the ship stern [1]. methods are presented in detail in
During the eighties a strong effort has [14], [15], [16], [17], [18] and [19].
therefore been made to develop more The purpose of the present paper is to

introduce the new development, to give

1 Also Chalmers University of Techno- some examples of the application of the

logy programs and to compare the results
2 Presently at FLOWTECH International from different levels of approximation,
AB in the potential flow as well as in the

3 Presently at SSPA Maritime Consul- viscous flow.

ting AB
4 FLOWTECH International AB is a SSPA

subsidiary specialized in CFD for
external flows.
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2. POTENTIAL FLOW METHODS At the free surface, two boundary
conditions must be imposed, i e the

2.1 Governing equations flow must be tangent to the surface

In this class of methods, the flow is Oxhx + Oyhy - 0z = 0 (5)

considered steady, inviscid, irrota- and the pressure constant
tional and incompressible. A right-
handed coordinate system Oxyz is
employed with the origin on the mean gh + - ( VO.V - U2 ) (60
free surface, x positive in the 2
direction of the uniform flow, and z
positive upwards. A ship, piercing the
free surface, is assumed to be in a Further, no upstream waves must be
uniform onset flow of velocity U,. (See generated.
Fig 1.) The flow field around the ship
may be described by a velocity The exact problem formulated above is
potential 0, which is generated by a nonlinear, since the equations (5) and
distribution of sources on a surface S (6) are nonlinear and are to be satis-
and by the uniform onset flow in the x- fied on the wavy surface z=h(x,y),
direction. which is unknown. In the present work

an iteration procedure is applied and
z x the free surface boundary condition in

each iteration is linearized about the
previous solution. When the process
converges the exact solution is

X -- approached.

I Unknown sources a on the hull and
wavy surface z=h(x,y) will induce a
potential 0 and a wave elevation h,
which satisfy the boundary conditions

. /  (5) and (6).

Dl(o,h) - Oxhx + Oyhy - z 0

Fig 1 Coordinate systems in poten- D2(a,h) = h - (7 ) - (02+02

tial flow methods 2g ~ y

+02) ] = 0

0(xyz) = J a(q)/r(p,q) dS + U4x (1)

Small perturbations 6a and 6h of the
where e(q) is the source density on the previous solution are introduced, and
surface element dS and r(p,q) is the the equations expanded to first order
distance from the point q to the field in a Taylor series.
point p(x,y,z) where the potential is
being evaluated. Dl(a,h) w Dl(O,h ° ) + ADI(a,hO)

The potential 0 given in Eq (1) is + ADl(a*,h)
governed by the Laplace equation. + aD1 (0,h) + LDl(c,hO)6a

V20 - 0 (2)

in the fluid domain and satisfies the 
D 1(ah)6h'-= 0

regularity condition at infinity

VO = > tU.,O,O) as r -. (3) (8)

The source density a is to be D2 (o'h) D2(o
h ) + AD2 (J'h)

determined from the boundary condi- + AD2(9°,b)
tions on the hull and free surface. On h D (ao) a
the wetted hull surface the solid 102W'h) + D--.

boundary condition is a 2 (oh)8h 0

On = 0 (4)

where n denotes the outward normal.
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Here the superscript, *, corresponds Oxhx° + 0yhyO - Oz + 1x6hx
to the previous solution, which is (14)
assumed to be known. Thus, + 4y8hy = 0

Dl (ao,h 0 ) = txho + 0 hh h z 2 2g
x y z ( 9 )=6 h U C O x + y - 2 ( Ox O x + 'Iy oy ) ) / 2 g ( 5(9) (U+.+~~(15)

D2(o ,h ) = h 
o  - 1 [U2  - (

2g
These are the equations solved in2

+ + j,)2 the linear methods. They may be appliedeither on z=0 [11], [19] or on
z=h°(x,y) [15], the so called Bernoulli

where t is the potential induced by wave.
a* on the free surface z hO(x y).
Introducing the perturbation 80 the To obtain a solution satisfying the
partial increments of D1 and D2 may be exact boundary conditions (non-linear
written in 0 and h) the iterations continue

from the linear solution using (12) and
(13). After 5-10 iterations 8h and 80
are usually sufficiently small, and the

AD1 (a,h
°) = 80xh + 80y h - 8 0 z (10) process may be considered converged.

2.2 Numerical Solution
AD(aO,h) = J 8hx + 4y6hy + (4xzhxo

+ xh - 4' x)8h2.2.1 Free Surface Grid
+ 4yzhy - 4 zz)6h  

In the numerical implementation the
first step is to discretize the
integral domain S in (1) into a large

AD2 (o,h
° ) = 1 (tx6x + ty,8y + 4z0 0z) number of small panels. The domain

g1 consists of the hull surface and part

1(1) of the free surface. In principle the
AD2 (01,h) = 6h + 9(4'xxz + 4 yyz free surface panel distribution should

be extended over the entire region+ 4DzDzz )8h  where there are significant waves, but
for practical reasons the region of

Therefore the linearized free surface free surface panels has to be limited
boundary conditions are to the area near the hull. The

influence of the truncation will be
Oxh + Oyh - Oz + tx8hx + Oy 8hy + discussed later.

(txzhc+4yzhj 4zz)6h - 0 (12) To generate the free surface grid,
two different principles have been
used. Following Dawson [26], Xia [11]

S+- (4x1xz+tyyz +ztzz) )6h = generated a grid based on the stream-
g (13) lines of the double model flow. This

2 u4 4_ _ 911-2  approach has the advantage that a
2g x y z somewhat simpler form of the boundary

($x6ox+ y 6y+z6Oz) ) -ho conditions (14) and (15) may be used in
the linear case. Dawson showed that the

(12) and (13) are to be applied on equations can be rewritten as ordinary
z=hO(x,y) differential equations in 1, when 1 is

the arc length along a streamline.
Using a streamline grid thus enables

To start the iteration process the simple numerical differentiation
double model case is first computed. (Dawsons derivation was not quite
This yields 4' and h° , and a linear correct, but the error is small).There
solution 9, 11 may be obtained from is, however, one serious disadvantage
(12) and (33). However, for this of the streamline grid, as noted by Xia
particular case fz, as well as z- & Larsson [12]: the grid gets very
derivatives of *x and *y are equal to coarse at the ends of the hull, where a
zero, for symmetry reasons, so (12) and fine grid is required. Therefore
(13) are simplified to anoth r pproah has been chosen in 'he

more recent methods [12]-[19]. The
longitudinal lines are now generated
numerically by interpolation between
the edge of the panelled region and the
hull. The transverse lines can be
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either hyperbolas [1l]-[17] or straight are calculated from the distance bet-
lines [18], [19]. A typical grid is ween successive control points on the
shown in Fig.2. For non-linear calcu- free surface panels, see [11].
lations the free surface panels are
moved to the wavy surface in each Dawson conjectured that the use of
iteration. upstream differences along the stream-

lines should prevent upstream -waves.
This has been true of all cases com-
puted by the present methods even
though the streamlines have been re-
placed by the body-fitted longitudinallines.

During the iteration process in the
nonlinear procedure the calculation
domain is changed in each iteration.
The free surface sources are moved to
the previous wavy surface in every step
and the boundary condition is applied
there. This means that the hull surface
has to change as well, so a special
panelization procefdure has been intro-
duced in the program. A typical panel
distribution is shown in Fig. 3.

Fig 2 Panel distribution. SSPA
Ro-Ro ship, medium bulb

To obtain derivatives of a function g
in the x and y directions, derivatives
along the L (longitudinal) and T
(transverse) directions are obtained X,
from
gx " axlgT - ax2gL (16) .. . . . . . . . . . . . .
gy ' 9T

where Fig 3 Hull panel distribution inaxw = f the non-linear method. Series
60, CB - 0.60. Fn - 0.32

ax2 =- 1 + fL2

and y - fL(x) is the equation for a 2.2.2. Higher Order Effects
longitudinal line.

Xia's methods [11]-[14] were of first
Derivatives with respect to L and T order i.e. the panels on the hull and

are obtained either from three point or free surface were flat and with a con-
four point finite difference operators stant source strength. To obtain a more

accurate solution without increasing
gLi , CAigi + CBigi-NL + CCigi-2NL the number of panels Ni [15]-[18]

introduced a higher order technique in
gTi - GAigi + GBigi+l + GCigi+2  which tne panels arG parabolic and the

source distribution linear. The tech-or (17) nique, which is similar to the one pro-
posed by Hess [20], has been further

gLi - CAigi + CBigi-NL + CCigi-2NL improved by Kim [19).+ CDigi_3NL
A parabolic panel is defined in

gTi - GAigi + GBigi+l + GCigi+2 following form+ GDjgi+3 +' = Zo + AO' + Bon'
where NL is the number of longitudinal (18)
strips on the free surface. + Pog'2 + 2Qo0'n' + Ron12

The coefficients of the upstream where a panel element co-ordinate
operator (CA, CB, CC and CD) and the system (',n',') is constructed using
downstream operator (GA, GB, GC, GD) the four corner points. Thus, the
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origin is defined as the average of the sense to the values of source density
corner points, while the ;'-direction at the control points of the M adjacent
is normal to the two diagonal vectors, panels. Thus the source derivatives on
The six parameters (ZoAo,Bo, Po,Qo and the panel in question may be expressed
Ro) are determined by: (a) requiring in terms of the unknown values of the
the panel to pass through the corner source density on the adjacent panels
points of the panel (four conditions), in the form
and (b) requiring the panel to pass as
closely as possible, in a least squares M (W)
sense, to the eight additional input a ' E.Ck Gk
points for the adjacent panels (two k-o
additional conditions). (23)

In the present method the control M (W)
point is the point on the curved panel a - E Ck Ok
closest to the average point of the n k-o
four input points. This control point
is characterized by the condition that
the vector from the origin is parallel Thi desire source density coefficients
to the local normal vector Cf) and Cpn ) are obtained by

minimizing the error function E

~Min E) x M
-Mi E oak-(ao+a &k+a Tk)] 2 (24)

(19) c )cf" Ek

According to Eq (1) the perturbation

Eq (19) is equivalent to the two potential t at the i-th field point

scalar equations (i,ii)A iiduced by the J-th panel on
which the source density a is

G( ',n') = '+ '( ',n') (',n t ) =0 distributed is

(20) 0ij = J A(a/r ) dS (25)

Since in the higher order method the
These nonlinear equations are solved integration is to be carried out over a

by Newton-Raphson iteration. curved surface, expressions for 1/r and
dS are different from the corresponding

Once the control point is determined, first order ones. The expression for
the panel co-ordinate system (',',') fij is further complicated by the
is transformed to a new projected flat variation of a on each panel. In [18]
panel which is tangent to the parabolic the following expression for Oij is
panel and the tangent point is both the derived
control point and the origin of new
panel co-ordinate system ( ,ra) see
Fig 1. The equation of the panel may be 41 - i(o) + C P4 + (Pi)
written i ijaj +2

+ Rf(R) )a + ,(l)CF + O(in)cn
F( ,n, ) = 4- [p 

2 + 2Q0n + Rn2 ]J M-I

= 'ta j +kE ( C(041( I 0
= 0 (21) = J k=l k)ij

+ C(n) (1n)
+k ij )k (26)

The source density distribution is
assumed to be linear on each panel. Here 14 is the number of adjacent

a(gq ) = GO + 0r + Ofn (22) panels.

This is fitted in the least squares
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All the t terms in (26) can be r 7r
calculated numerically an they may b (4'x al1 a21  a3 l1 -
interpreted as follows: &L
corresponds to a flat panel with a ty a1 2 3 (29)

constant source density, tp ), J) 2

and M) are caused by the arabolc Oz Ja 1 3  a2 3  a33  4'
panel hape, 4'jjr) andf4'jJr'l come from
the linear variAtion of t e source These velocities may also be written
density. All these terms depend only as
on the geometry of the J-th panel, but
the curvature terms P, Q, R and 4h. NE
szurce derivative coefficients 7 and *xi = . Xijaj + U.
C 0 depend on the surrounding panels. J=l

NE

The individual -Vs in Eq (26) are 4 =yi =  lij°J (30)

1iJ() . 1 d~dn NE
ij JAJ r f dnzi = E ZijaJ

41i(P) = 2AJ 3 n
ij(  =JA iJ/rf d~d Here the velocity influence coeffi-

cients Xi., Yi and Zij are the
4' (1 / r3 velocity ompoeents in the reference

iAJ iflu/rf ddn (27) coordinate system (x, y, z) at the i-th
control point, induced by a source

(R) 2 3 density which is unity at the control
41ij R ) = AJ inj/r f dgdn point of the J-th panel. In the first

order method the velocity induced by a
panel depends only on the panel itself.

Aijl JAJ /rf d~dn The essentially new feature of the
higher order method is that the

(n) /rf ddn velocity induced by a panel depends on
iJ = j fj the values of source density also at

the control points of adjacent
where rf is the distance between elements. Thus the influence
( i, ni, ti) and the J-th control point coefficients for a panel depend not
( J, qA, 0) on the flat panel (see Fig only on the geometry of that panel but
1). Then the velocity induced by the also on the geometry of adjacent
panel is obtained by taking the panels.
gradient of the corresponding
potential. The second order derivatives Of 4 ij

M-1 required in (12) and (13) are-more
= j +M Ec k")'(I )+Ck(n)t'liT))ok complicated than the first order ones.

1k= In the present work, the magnitude of
M-1 the second derivative terms related to

+E-l(C )( (n (n)k the curvature and linear variation of+ (Ck~ l)a source density are assumed to be small(28) and vanish rapidly during the
* M-1 iteration. Therefore the second order

* 4= +kEl[Ck()P(lg)+Ck(n),t(ln) )k derivative terms are calculated from a
T source velocity which corresponds to

the flat panel with constant source

The subscript ij is omitted in the density.
equation for simplicily, nd new
velocity terms (4', 0 , ) are intro- T
duced. They are ;Koclty o r xz
induced at the i-th control point by a NE
unit source density on the J-th panel. *yz 1a 23All the induced velocities in (28) can J 1be obtained analytically. 1[#zzli [a331j

The velocities the reference
coordinate can be calculated from the al1 a21 a31  4'
coordinate transformation B 1 2

a12 a22 a32  4n On 4 j (31)

a13 a23 a3 3 04 4 t 47 ii
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variation, all, a21 and a31 are the
NE is here again th total number of first column of the transformation

panels. matrix between the panel andreference
coordinate systems, N E, N E and N E
are the components of the Rormal victor

2.2.3 Solution Procedure in the panel coordinate system and *2
is a term which takes into account the

The boundary conditions (4) and (12), change in panel area due to curvature.
(13) or (14), (15) may be transformed
into a set of linear equations in a The formula for obtaining the
using the relations above for the first resistance from the free surface
and second derivations of 0. sources is derived from the momentum

theorem applied to a control volume
[ A ] ( a ) = ( B 1 (32) outside the hull, under the undistrubed

free surface and extending to infinity
where [A] is a NE x NE matrix and (B) sidewards, downwards and longitudi-
is the right-hand side array. nally. The detailed derivation is given

in [18]. It yields
The upper part of the A-matrix and B-

vector, corresponding to the hull NF NB
boundary condition, is obtained in a Cw - (4n E UBIai&Si) / (U.2 E ASi) (35)
straightforward way, while the lower i
part, corresponding to the free
surface, is considerably more complex. It should be noted that this formula
The equations are given in [18] and is valid only for the linear case.
[19]. Unfortunately, the lower part of
the matrix is not diagonally dominant, 2.3 Validation
so iterative methods cannot be used in
the solution. This is therefore found The methods presented have been
by a Gaussian elimination procedure. validated in a number of ways. A gi-A

dependence study was first carried out
2.2.4 Wave Resistance for the linear first order method to

investigate the sensitivity of the
Having obtained the source strengths, solution to the panelization on the

velocities may be computed from (30) free surface. Most likely the results
and the pressures from the Bernoulli from this study are valid also for the
equation. To obtain the resistance, two other methods. The improvement in
principally different methods have been accuracy when introducing the higher
employed. Either the force is found by order method was then tested against
pressure integration over the hull or two analytical results without a free
by integration of the sources over the surface.
free surface. In the former case,
different formulas are used depending Comparison with measurements have
on whether or not the higher order been made for a number of cases such as
technique is employed, i.e. the Wigley hull, the Series 60, CB-0.

60
hull, the HSVA-tanker, the high speed

NB NB ship ATHENA, a Ro-Ro ship designed at
CW = E Cpi Nxi 6Si / E ASi  (33) SSPA and two sailing yachts. All these

i i comparisons are described in detail in

where NB is the number of panels and Nx  [1l]-[19]. As an example only the

and 1ASi are the x-component of the calculations for the Ro-Ro ship will be

normal and the area respectively of a presented here. This case is parti-
neml od ecularly interesting since a study of
panel, or several bulb alternatives was made. It

is also the only case for which calcu-
lations have been carried out using the

NB first and higher order linear, as well
CW = E (C + Cp + Cp0 as the higher order non-linear method.

iIE p0 p pn interesting comparisons between all
i Ethree methods may thus be made.

(alINE + a21NE + a3 lNE). (34)

9 2.3.1 Grid Dependence Study
INB

(l+2*z)d~dq I E i (i+
2p 2)dgdn Since one of the most importantI i Ei questions in connection with the

The latter formula is derived present methods is the dependence of
assuming that the pressure varies the solution on the panel distribution,
linearly over the panel in a similar particularly on the free surface, a
way as the source strength. C and Cpn systematic variation was carried out.
are the slopes of the pressur 191



The test case was the Wigley hull.Employing the coordinate system defined A panel distribution- similar to casein Fig 1, the equation for the hull No 9 of Table 1 has been used in most

surface reads work afterwards.

i1 1 - X2 1 -(36) 2.3.2 Analytical Test Cases

To investigate the improvement in
In table 1 (last page) the number of accuracy when introducing the higher

panels on the hull and on the surface, order technique the flow around a
the extent of the panelled part of the sphere was calculated. In-Fig 4 the
free surface in the x- and y- velocity distribution along a generator
directions, the Froude number and the through the stagnation point is shown.
wave resistance coefficient are given. Two grids were tested, one with a

In run No 1, only approximately 1/4 distribution similar to a typical ship
of the half ship length, 1, was used case, i.e. with 22 longitudinal and 40
for the free surface extent in the y- transverse strips on one quarter of the
direction. The calculation gave an sphere and one with 5x10 strips. It is
unresonably high wave resistance at Fn seen that both higher order solutions
- 0.266 and broke down at Fn - 0.45. In are extremely accurate, while there is
runs of No 2, 3 and 4, the free surface some error also for the 880 panel first
region was enlarged and divided into 5, order case. Small as this error may
10, and 15 strips respectively. At Fn - seem, it may have a significant in-
0.266, the resistance changed signi- fluence on the drag. Integrating the
ficantly from run to run, but at Fn = pressure on one half of the sphere
0.45 there was no change between the yields the following results for the
last two runs. drag coefficient cx

The free surface extent in the x-
direction was tested in runs No 3, 5,
6, 7 and 8. From No 3 to No 5 the free First order Higher order Exact
surface region was extended by 1/4 1. Cx  0.0550 0.0622 0.0625
The wave resistance did not change very Error 12% 0.5% -
much, but as the free surface region
was enlarged by 1/2 from run No 6 to
No 7, the wave resistance changed,
particularly for the highest Froude - Analytc solution

numbers. From run No 7 to run No 8, + First order solution 880 effective

nuper oftheree urfac rgn was 8,0 Higher order solution ponels
part of the free surface region was 20 A First order solution 50 effective
moved from the bow to the stern. The o Higher order solution panels
wave resistance did not change at Fn -
0.266, whereas it was increased by 10% V/V
at Fn - 0.45.

There were no systematic changes in 1.5
the panel distribution on the hull, but
two slightly different hull panel
distributions were used in the
successive tests. This should not cause
large changes in the final results. The 1.0
considerable difference in the wave z
resistance between runs No 3 and No 6
is likely to have been caused by the
change of the panels on the free Y X
surface. More even panels were placed
on the free surface for run No 6 than 05.
those for case No 3.

The results obtained imply that the v.. .
choice of the panels depends on the +

Froude number to be evaluated. Smaller 0 90
panels should be used for low Froude 30
numbers, while a larger free surface
portion is required for high Froude
numbers. It is wise to vary the panel Fig 4 Velocity distribution on a
arrangement for different Froude sphere
numbers.
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The higher order calculation is thus A common problem in most evaluations
considerably more accurate. It should of wave resistance calculations is that

be noted that the computer time for a the wave pattern resistance is seldom
given number of panels increases by measured. In the present case the form
about 10% for a case of this size. factor has been determined using a

Prohaska plot, and the viscous
resistance based on the ITTC-57 corre-

2.3.4 The SSPA Ro-Ro Ship lation and the form factor has been
subtracted from the total resistance to

The body plan of the SSPA Ro-Ro ship get the residuary resistance.
is shown in Fig 5 with a small, a
medium and a large bulb. A comparison Cwx O3

between the measured residuary
resistance and the computed wave 0.6
resistance (pressure integration) using
two linear (first and higher order)
versions and one non-linear (higher
order) version of the same program [19]
is made for the medium bulb in Fig 6.
The panel distribution is shown in Fig 05

2.
2 1 0 20 19 18 V7 16

04-F Medium
O.& N bulb

0.15
0.21 0---

0.3 0.25 0-,0

Fig 5 Body plan, SSPA Ro-Ro ship

with different bulbs
C xlO,) 0.1

30
3 - - M- easurements

* Linear solution (first order)
* Linear solution (higher order)
* Non-linear solution 0 0 1 2 3 4 5 6 7

Iteration
20

Fig 7 Convergence history. Wave
resistance of SSPA Ro-Ro
ship, medium bulb

As appears from Fig 6 the difference
o between the linear and non-linear

10 /higher order methods is quite small for
this case. This is also apparent from
Fig 7 where the convergence history of

A the wave resistance is shown. The final
, -, converged value after 7 iterations is
-not very much different from the first

] -. ., value, corresponding to the linear
01 01 02 Fn 0.3 solution. Larger differences have been

noted for bluffer ships [16] and non-
Fig 6 Predicted wave resistance linearity should be extremely important

compared with measured for hulls with large overhangs such as
residual resistance. SSPA sailing yachts.
Ro-Ro ship, medium bulb
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The first order solution of Fig 6 is
2h Calculated not as accurate as the higher order
L solutions, but even the first order

002 No bulb results are not grossly in error.

Small bulb Interesting comparisons between

Lar bulb results for the three bulbs and the
case without a bulb can be made in Fig/ \ \ / Medium bulb Band 9 based on higher order linear
solutions. The measured wave profiles

-i0 05 0.0 2X/L of the four cases are very muchdifferent as appears from Fig 8, and
the differences are quite well

v, predicted. The absolute values of the
wave resistance, Fig 9, are not as-001 accurate in all cases, but the method
is able to rank the cases in the right
order.

2h
- Measured
002 3 VISCOUS FLOW METHODS

Although, as indicated in the
Introduction, a number of different
methods for computing the viscous flow
(boundary layer/wake) around ships
have been developed at SSPA/CTH, only

0_._O 0.0 2X/L the Navier-Stokes methods will be
- presented in the present review.

3.1 Coordinate systems and grid
-001 In the SSPA Navier-Stokes methods

the coordinate systems of Fig 10 are
employed. These systems, which differFig 8 Wave profiles at Fn  0.21. from the ones of the potential flow

SSPA Ro-Ro ship methods, are more convenient for tensor

notation which is required for the
fully transformed Navier-Stokes

cwx0-3 equations in curvilinear nonortho-gonal coordinates. g1 are the global
Cartesian reference coordinates, while30- xI are the grid oriented ones, as

Type Measurement Calculation V appears from Fig 10. The relation
No bulb - between the two systems is of the form
Small bulb 0
Medinum bulb .
Loeg, bulb . ..

2.0 L v2xi . fi (i = 1, 2, 3) (37)

where V2 is the Laplacian operator in
orthogonal coordinates (gi) and fi are
control functions which may be assigned'1, appropriate values to yield the desired
stretching of coordinate surfaces. The1.0- /equations are inverted by exchanging

I, the dependent and independent
variables

/ + fgl _ V2gl (38)

0.1 - - The Laplacian operator may be written
2 1 3 hlh2h3

V - hJ( h2j - J)

Fig 9 Wave resistance. SSPA Ro-Ro (39)
ship
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0.1

0.4

0.

0.0 0.Z 0 0. 5 0. 0 1.0 1.0 1.4 1.5 1. 0.0

View of the water plane

J I--"-L 1

X1 I I-

Fig 10 Coordinate systems in Navier-
Stokes methods

here hl, h2, h3 are metric coefficients
in the frame Ei. After selecting
E1(xl) and assigning proper values for
the control functions fi, equations are
solved numerically. A more detailed
description of the grid generation is
given in [9]. Fig 11 shows the
coordinate system for the SSPA 720
Model.
3.2 Governing equations Fig 11 Longitudinal and transverse

views of the grid. SSPA
The governing equations solved are 720 Model

the Reynolds equations obtained from
the Navier-Stokes equations by The incompressible continuity
averaging over the largest, turbulent equation may be written
time scale. In this way the
unsteadiness due to turbulence is
removed at the expense of having to J-1 a(Jh-1 uk) . 0 (41)
introduce a turbulence model for the k (k)
Reynolds stesses. In the coordinate
system above the incompressible where J is the Jacobian
momentum equations may be written (see
[61 for a derivation).

a ui + h, u k = - h g + ui are the physical components of the
t (k) k mg i 'kP +velocity vector, i.e. the components

based on unit vectors parallel to the
(gjku i + h 1 1 iu k + covariant base vectors qi, whose

(kuvj W (  )kE magnitude IgiI is denoted h(i). giJ is
the contravariant metric tensor and
rli is a Christoffel symbol of the

vE(gikaaui +gka (ulni ) k~iu1 second kind. i is to be interpreted aE j jl klUj -  partial derivative with respect to x
and ui,j is defined from the relation

rkj urll (40)
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ui,) aui Qiu "E [giji ir±1(42) a E+h'l ua 6_aaE-gJrl a E]J
where
i~ ~ -ig va +il " h(j) 1~ 4) o giJ3JV 3iE +  (49)

6i (49) E j

and
hi 1 -i2

hjl h h(j) rj 1  - -61 h*(h i);jh(i )  C El rc GU c E2 k

where is the Kronecher delta an 4 4 )

The generation term can be written

- -1
k =  h(k) k -1-1 imi

An index written within a bracket 0 (m)(i)Ui +

means that it is not considered in the
summation rule. The quantity yE, ni -1  (50)
finally, is the effective viscosity g gmjh ) m)uiu)

m(in Uj ,i ,n

1 If no wall functions are used the
VE - n + Vt (46) rate of dissipation and the eddy

viscosity are obtained from

where Rn is the Reynolds number and Vt kS/2
is the eddy viscosity which is obtained 

E ( 51)2

from (51)
Vt = C1 /k l1

k2
Vt . 6 ( respectively. The following lengtht C - (47) scales are used

The following standard values are
used for the constants: cp - 0.09, 1 Cy (1 - ey/AE
CE1 - 1.44, cE2 - 1.92, ok - 1.0 and 1E (52)06 = 1.3 (2

GE 1.3l 1 ClY (I - e'Ry/Ajj(2

Two turbulence models are being used. (
If no wall functions are employed the
turbulence model is of the two-layer where Ry - Rn /k y , y is the distance
type. Thus, in the inner region an in the normal direction to the surface.
equation for the turbulent kinetic The following constants are used:
energy k is solved together with a
prescribed length scale. In the outer
part the length scale is replaced by an C1 . KC P3/4  , A 2CI A1  - 70
equation for the rate of dissipation of
kinetic energy,E . If wall functions K- 0.418 , as reported in Chen and
are used as the inner boundary Patel [23]
condition for the flow, the k-E model
is used throughout. The transport The velocity components ui , the
equations for k and E are as follows turbulent quantities k and E, the time

t and the pressure p are made dimen-
sionless in the usual way by the free-

-1)i stream velocity U0, the referenceatk + hMi k= length L and the density P.

- -g jk - gIg i 1 ik] (48) 3.3 Numerical solution

The Reynolds equations and the
1 transport equations for k and 6 can beak E Ei Grearranged into the following general

form
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9 1 30+ g22 a2a2o+ g
33 D3930 The discretization scheme by Chen&

Patel [21] has been adopted with some
2A30+ Moa20 + DaO+ EoatO + Sominor modifications due to the presence

where (53) of the term g 1
1 1 1. Within each cell

the coefficients are treated as con-
2Ao Ref f(aOu3/h(3) - gi"3JVE) stant. The finite-analytical scheme is

used in the cross-plane and a second-
2BO - Ref f(aou2/h(2) - g2ijjVE) order central and first-order upwind

difference approximation is used for
Do =Reff(aoul/h(l) - gliav) the second and first-order derivative

jE in the xl-direction, respectively. In
Eo - aoReff NASELL, this results in an eleven-point

discretization formula that takes the
following form using compass notations:

So so - 2(g12 ;la 20 +

0p P EANBONB + A oP n-l - R 0 (55)
a0  - Ifor 0.u- u U, u and N

NS - D,U,N,S,E,W,NE,NW,SE,SW
ak - k a6  O

Ref f is the effective Reynolds number A NB CN/03, A t =C PE 0/(fPdt), R 0 =P CS /P
and is defined as

Reff - 1/vE - 1 + C P(jD0I + 2g 11+ E 0/dt)

Finally, the source terms so are

Sui = Reff[(h(m) um - gmiDJVE)QnllulD - ,,ma +g

+h(i)giiaj (p + 2 k-CU. Do0 +ax

-h(i)h-l)g i u m J MVE - gifl~aQ 1 l - CS - PA/g(Bk), CN PA

2iQ~lulj +g9 41q~mu + 9rJMu'l CW PB/g(Ah), C E m B - CW
= m gm4alk - RefG )

S = j m e f f ( - ) C = ( 1 - P A - P B / ( h / ( k
SEg rjm 1 - Reff(cEl -±k 13-cE 2 fk-) A 6 /(h/(

In most ship flows there is a SE'e2hCW N 'eBk W
predominant flow direction usually = e 2Ah
approximately aligned with the xi CNE -e CN
direction of the grid. Under these
circumstances the term D1910 may be =h2( -P)/A)2neglected and the elliptic equations C A(53)become parabolic. The advantage of p2 A/(h/this approximation is that a marching k (1 - PB)/f(Bk)/2
technique may be used in the solution.
on the other hand, the fully elliptic
equations are more accurate for complex ehB
flows, particularly if recirculation Of PA = E 2e (hgB~(h
the flow occurs. At sSPA two different A 2 g(h(kfA)
programs have been developed: NASELL
for the fully elliptic equations and P2
NASPAR for -the parabolized equationis. ~ B 1 + hk (P -1fB)/A)

197



-(-l) m(Xmh) The scheme is not symmetric with
E = E- -m respect to the coordinate directions,

2 E(Al)- + ( 2cos( + k) but treats the xl-direction in a
mh 2 simpler way. Therefore special care has

to be taken with solutions produced in
regions where the velocity vector is at

Xmh = (m - V) large angles to the x1-coordinate line.
In the present application to ship
stern flows this problem is rarely en-

g(x) - 1 + e 2 X f(x) - xg(x)I(l - e 2x countered. Longitudinal vortices occur,but without any larger deviation
between the velocity and coordinate-

l//g 3 3  k = A = h( line directions. In very few cases
h =small local separati6ns with reverse

flow may occur in the stern-most part.
B = k(BO)p (56) The flow in the transverse plane is

very essential for stern flows, since
it controls phenomena such as the

In NASPAR,downstream points, index D, transverse distribution of fluid and
are excluded, so the discretization the curvature of the streamlines, which
formula contains ten points. determines the pressure. The more

accurate finite-analytical scheme is
The compass notation and the location therefore applied in this plane.

of points are described further in Fig
12. The superscript n-i denotes the The pressure-velocity coupling is
previous time level, while the treated with the SIMPLER-algorithm,
superscript n for the present time Patankar [22]. Details from a
level has been left out. The time step derivation of the equations for the
is denoted dt. Asymptotic expressions particular coordinate system and
for PA and PB are used for large cell velocity components are given in [6].
Reynolds numbers, following Chen& The resulting equations are
Patel [21].

1 1* 1Ud . Ud - Bd(p; - P)

P, U 2 2* B2  , - p ) (57)1n 
=  n n l P

P,% ua 3 * _ B3( -
V.e e e~EPe=Ue

where the ui* is the solution of the

momentum equations using the pressure
from the previous time level and B

i is
the coefficient for the orthogonal part
of the pressure gradient in the i-th

Pmomentum equation.

Bi = Reffh(j)giiCp/P (no summation)

The compass notation for the location
of the velocity components in the
staggered grid are sh9wn in Fig 12. The

I t pressure correction p is determined
TNW T N IE from the equation

Fig 12 Staggered grid and compass

notations
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a =p aBPN - The momentum, pressure correction
NB and turbulence equations are parabolic

and can therefore be solved in one xl
-

constant plane at a time from inlet to
where outlet plane. This is done as follows:

o The momentum equations (55) are solved

a = (JB)nb, ap N B aNB using pressure and coefficients based
NB on velocities from previous time level.The algebraic equation systems are

NB = D,U,N,S,E,W solved using a fixed number of line by
line sweeps with a tri-diagonal matrix

1* d 2* nalgorithm. Lagging and zero pressure
D*= [u J/h(1)Ju + [u J/h(2 )1s + field are used in the first time level.

o The coefficients for the parabolized[u J/h(e (59) pressure-correction equation (58) are
u (3)w calculated and the algebraic equations

are solved using a fixed number of line
The pressure, finally, is calculated by line sweeps with a tri-diagonal
from the pressure equation: matrix algorithm. The velocities are
app = N - D(60) corrected using (57).

NB 0 The divergence of the pseudoveloci-
ties Qi (61) and the coefficients of the

where pressure equation are stored.

o The transport equations for the tur-
[a 1 J/h d + 2 J/h 2 n bulent kinetic energy and the rate of

= hl)u + )]s + turbulent energy dissipation (54)are
solved using a fixed number of line by
line sweeps with a tri-diagonal matrix

e(61) algorithm.[3/(3) w (1

- When the marching prTcedure is com-
The pseudo-velocities 0 equal the sum pleted, i e the last x' - constant
of the terms on the right-hand side of plane is reached, the elliptic pressure
the corresponding momentum equation equation (60) is solved. Two techniques
(55) , except for the source term, have been used to solve the resulting
which is modified in such a way that algebraic equations. One in which the
the orthogonal part of the pressure pressure has been updated in one plane
gradient is taken out: at a time, sweeping upstream from the

outlet to the inlet plane. A line by
line sweep technique is then used in

i i n-l_ each plane. The other solution tech-= E Anbunb + At(uip nique is complete line by line sweep(62) with a tri-diagonal matrix algorithm.

nb = u,d,n,s,e,w,ne,nw,se,sw
Bii p  (no summation) - The calculation continues at the nextand Rj Ri + B~p(osmain

time level and all the above steps are
repeated.

In NASPAR the pressure correction
equation has to be parabolic so the In the elliptic program NASELL the
downstream values are taken from a marching technique cannot be employed.
previous time step. This may be The steps are then as follows
expected to slow down convergence, but
does not influence the final result. - Velocities, pressures and turbu-

lence quantities in the solution domain
The methods can handle unsteady are estimated, usually from a NASPAR

flows, but only steady flows have been solution.
considered so far. The time history is
therefore merely a route to the steady - The momentum equations (55) are
state. Time accuracy is irrelevant ankd solved based on the known pressure

the largest possible time step should using a line by line iceration

be used. The different steps in NASPAR, technique.
involved in the calculation of veloci- - The velocity field is corrected to
ties, turbulence quantities and pres- become divergence free using (57) and
sure at a time level can be described (58) Stones strongly implicit algorithm
as follows: is used.
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- The pressure is computed from (60) u2 = U3 = 0, 32u
l  D a2k B a2E - 0

using the same algorithm.
otherwise

- The transport equations for k and E
are solved using the line by line tech- u2 = 0, a2u

1 - 32u
3 . 32k - D2E - 0

nique.
For the body boundary condition there

- The same steps are repeated at the are two alternatives: either the
next time level. computational domain may be extended

into the viscous sublayer and the no-
In both methods the solution is slip condition applied (this requires a

assumed converged when the global two-layer turbulence model) or the wall
divergence is below a critical value, law may be used. In the former case the

conditions are simply
3.4 Boundary Conditions

uI = u2 = u3 = k-=
The calculation domain is 

shown in

Fig 11. If wall functions are used a
procedure similar to the one of Chen &

(1) Upstream and initial condition Patel [21] has been employed. The
procedure requires that the two pointsThe profiles of the velocity closest to the wall are located in the

components u? and the turbulent logarithmic layer. It is assumed that
quantities k and E are required at the the velocity at the innermost point is
inflow section. Only standard boundary pyrallel to the wall which yields
layer profiles for ul, k and E (u2 = u3  u = 0 at x2 = 2 and that the velocity
= 0) have been used in the calcualtions vector does not rotate between the
so far. No condition for the pressure first and second point in the plane
is required. parallel to the wall. The last assump-

Lagging has been used during the tion yields
first time step for the velocity and
the turbulent quantities and the (El 1

pressure field is assumed to be con- q x2 -2
stant and equal to zero. u3 )3 (63)

(2) Outflow condition ( -)x2 "2 (-x2.3

In the present calculations the where q is the magnitude of the velo-
outflow section is located in the far city.
wake and a zero pressure gradient
condition a1p 

= 0 is used. The procedure is iterative and starts
by calculating thR magnitude of the

(3) Outer edge velocity q2 at x4 = 2 with an assumed
skin friction velocity u, from the wall

The outer plane may be located far law
from the body, where the flow is nearly -1 lny+ + B
undisturbed and thus q2 = K 2

p = 0, u I = lu 3 = 0 , 32k - D2 E = 0 where K- 0.42,B - 5.45 and y+ = Re uTy.

and the normal velocity component u
2 is The velocity components at x2 - 2 can

calculated from the local continuity, then be calculated from equation(63).
The components serve as boundary condi-

Alternatively, p, uI and u3 may be tions for the momentum equations. q3
taken from a potential flow solution. can be calculated from the solution and

an updated u can be calculated from
(4) Symmetry planes the wall lawtapplied at point x2 - 3.

The procedure is repeated until conver-
The undisturbed water surface and the gence.

centerline plane are treated as symme-
try planes, i e The boundary conditions at x2 = 2 for

the k- and e-equations are
u= U, 3u - = o ~= 03k = 3 = 0

(5) Wake center plane u,2

The following conditions have been k 7E
applied at wake center planes that are
degenerated to a single line u3

62 =-
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3.5 Validation Case LL MM NN Total number ofclusters

3.5.1 Grid dependence study 1 60 19 9 10 260
2 60 21 15 18 900
3 30 21 15 9 450

A study was carried out to investi- 4 30 41 15 18 450
gate how the solutions depend on the
grid and what the proper number of Table 2. The four grid variation cases
clusters is in each coordinate
direction for ship stern flow calcu- The calculations for the four cases
lations. Due to computer limitations were carried out using stindard boun-
the study had to be rather restricted, daFylaker profiles for u k and E
however. (u - u 0) as the inlet profiles.

The systematic variations were made
using four different grids to investi- 2
gate the grid dependence in the three
coordinate directions. For all four
grids the calculation domain was the
same, that is the inlet plane was
placed at the midship, 2x/L - 0.0; the
outlet plane at 2x/L = 10 in the far
wake; the outer edge boundary on a cir-
cular cylinder located one ship length 2
from the centre line; and the two 9 2X/L:0.8
innermost grid points were located -8X1x9

within the logarithmic layer. - - 80X2IXIS
- 3X21X15.... X41X15

In case 1 the grid has a number of ..-.. .... t
clusters equal to LLxMMxNN - 60 x 19 0.00 0.05 0.10 0.15 0.0
x 9, where LL, MM and NN are the number GITH LENGTH
of clusters in the x', x

2 and x3

directions respectively.

The number of clusters in the
transverse direction x in case 1 might
be too small to capture the variation 0

of the cross flow and the rapid prec-
sure change near the region of the
keel. Thus in case 2, NN was increased
to 15. The grid in case 2 has the .
number of clusters equal to LLxMMxNN
- 60 x 21 x 15. 2X/L=0.8

In case 3, the grid was designed to - SWIxM5
test the grid dependence in the pre- ...... XX5
dominant flow direction x

1, LL was _ _ _ _ _

0.00 0.05 0.10 0.15 02
decreased to 30. The grid had the GIRTH LENGTH
number of clusters equal to LLxMMxNN =
30 x 21 x 15.

Fig 13 Grid dependence. Distribution
The velocity profiles and the pro- of C. and uz at 2x/L - 0.8

files of other physical quantities in
the normal direction might be quite The girthwise pressure and friction
influenced by the numb r of clusters in velocity variations at 2x/L - 0.8 for
the normal direction x . Based on the the four grids are shown in Fig 13. The
grid of case 3, we increased the number influence of the cluster numbers in the
of clusters in the normal direction to transverse direction can clearly be
MM = 41, getting the grid case 4: LLx seen from the figure. Comparing the
MMxNN = 30 x 41 x 15. grid case 1, 60 x 19 x 9, with other

grids it is obvious that nine clusters
are too few to resolve the problem inA summary of the four cases is given the transverse direction. The C
variation is almost the same for the
other three grids, since the same
number of clusters was used in the
transverse direction. Owing to the
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limitation of the computer size we did
not increase the number of clusters in
the transverse direction to more than
15. So it is difficult to say whether
or not the solution would be improved
if more than 15 clusters were used.
This number seems to be the minimum
required, however.r

o 3OxAiI5
-- 3MMSX1 Grid 60 x 19x 9

00 Watertine

C; I

0.00 0.50 1.00
U

o - 30X41X5 Grid 60 x 21 x 15
-- 30X21X1

450

CU

00X1

L V

000 0.50 1.00
U

____ ____ ____ ___ ____ ____ ___Grid 31 x 21 x 15
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The influence o the number of
clusters in the normal direction can be
tested by comparing the results of grid
3 and grid 4. The toi'al velocity pro-
files at 2x/L = 0.8 along the water
line, keel and at the bilge are shown
in Fig 14. There ai'e small discrepan-
cies between the results for the two
grids. Also in Fig 13 the girthwise uT C
variation of the grid 30 x 41 x 15 is i
only slightly difforent than the 0! - 1XI5
others. This means that there is a very
small grid sensitivity in the normal Waterline
direction. If we l(.ok at the isowakes a _ __ __ _ I__
from the results of the four grids at 0.0 0.2 0.4 0.8 0.8 1.0
2x/L = 0.91 shown in Fig 1.5, they 2M
correspond quite well with each other.

The pressure and f'iction velocity

variations along the water line and the
keel from the results of grid 2 and 3 o
are shown in Fig 16. Grids 1 and 4 are S
not shown in this figure, since their
(xI, x2)-planes are slightly different. 9

o -- 0 X21X15

--- 0X21X5 Keel
-.- 3 0X215I I I

0.0 0.2 0.4 0.8 0.8 1.0
Waterline 2X/L

Fig 16 Grid dependence. C0 and uo along the waterling and keel

I The influence of the number of
0.0 o.2 0.4 0.8 0.8 1.0 1.2 1.4 1.5 1.8 2.0 clusters in the xl-direction is tested

2M from this comparison. The results are
almost the same in the whole region.
Increasing the number of clusters from
30 to 60 gives only very small changes.
It is therefore concluded that 30

-- |XI5 clusters is enough in this direction.

14 Keel These limited systematic studies of
grid-dependence indicate that there is
some grid sensitivity .in the cross
section, but not in the longitudinal

odirection. Special attention must be
o paid to regions of abrupt change in

geometry, such as the stern region and
near the keel. Concentration of

Cclusters to these regions may be an
? I I I adequate alternative to fine grids.0.0 0.2 0.4 0.5 0.8 1.0 1.2 1.4 1.8 1.8 2.0 adqtelertieofnegds2o L Considering this possibility a grid of30 x 20 x 15 would be proper for

practical use.
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3.5.2 Location of the outer edge of the
computational domain - Vrlatlon of outer surface -W14)

As indicated above, the outer edge of
the computational domain can be located
so far from the body that free stream
conditions may be specified. Another
alternative is to obtain velocities B x 7a 2X/t .:8

(except for the normal component) and 0 * aZ .0
pressure from a potential flow solu- 0 V Ai0.

tion. However, outside the boundary- ...... WC/L-1:og

gAreAL.24.5layer there is a region in which the 2kc--- 0.- 4
viscous and inviscid flow interact. To -t/O.0S
apply the boundary condition here an
iterative procedure between the poten-
tial and viscous solutions must be in-
troduced. To investigate the location
of the region of viscous-inviscid
interaction for the SSPA Model a series
of calculations was carried out using
different locations of the outer edge.
The largest distance to the edge mea-
sured from the keel is 1.08 (dimension-
less by L/2) for a grid with 60 x 19 x
15 clusters. The distance was varied by -0. 0.0 0.1 0.2

dropping clusters in the normal
direction so that the distance was re-
duced to 0.51, 0.24, 0.11 and 0.05 U Yealotionofouter,ufeee 7)

respectively. The last grid 
consists of

60 x 11 x 15 clusters. For each calcu-
lation the boundary conditions at the
outer edge and at the inflow (outside
the boundary layer) were calculated
from the potential flow solution. The x 2X/L0.7
resulting pressure-fields are A 2X/L-. .

normalized at a point by subtracting a 0 * VA-0.95

constant in the following comparisons. ...... 2C-A..06

Fig 17 shows pressure profiles at four --- A.O- .4
different x-stations, distinguished by 20.It

symbols. The symbols are placed at the 0 O --- 2A-L.05

corresponding outer edge. The line
types distinguish different calcula-
tions, i e different locations of the
outer edge. The profiles shown in Fig
17 (N - 14) are from the region close
to the keel where the boundary layer is
very thin, and the profiles shown in
Fig 17 (N - 7) are from bilge region,
where the boundary layer is thick. Both
figuris show that the profiles from the 9
calculation with the outer edge located -0.1 0.0 0.1 0.2

at 0.05 are different from the others,
indicating that the boundary conditions
have been applied in the interaction
region. Thus, the interaction region Fig 17 Variation in outer edge
extends out to a surface which is location. Cp distribution in
located between the outer edges of the the x2 direction
calculation domain 0.11 and 0.05.

A calculation of the potential flow 3.5.3 Comparison between parabolized
and the laminar and thin turbulent and elliptic solution
boundary-layer normally precedes the
stern-flow calculation. The cost for The comparion between the
using the potentialflow condition is parabolized and elliptic methods was
therefore low. The gain would be a carried out for the SSPA 720 Model with
reduction of clusters in the normal a grid consisting of 60 x 19 x 15
direction and a convenient way to clusters. The inlet profiles were
handle blockage-effects in tunnel standard boundary-layer profiles,
simulations. normal and transverse velocity
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components were zero and a constant 3.5.4 Comparison with experimental
velocity uI - was outside the boundary- data
layer. The solution after one sweep
from the partially-parabolic method was The grid 60 x 21 x 15 was used to
used as input for the fully-elliptic make the final calculations. The inlet
algorithm, profile at midship (2x/L - 0.0) for the

longitudinal velocity component U
The pressure and friction velocity within the boundary layer was deter-

variation in the girthwise direction at mined from the wall law using the
2x/L - 0.8 are shown in Fig 18. The measured boundary layer thickness and
partially-parabolic and fully-elliptic friction velocity from Larsson. The
algorithms give almost the same normal component V and the transverse
results. No noticeable difference component W were assumed to be zero.
between the solutions can be seen. Outside the boundary layer the

distribution of U was calculated using
This is not surprising since the only Hess & Smith's potential flow calcula-

simplification made in the parabolized tion method. The k and E within the
algorithm, as mentioned before, is that boundary layer were calculated
the second derivative (D1 a1 0) in the according to Klebanoff & Bradshaw as
predominant direction is neglected. presented in [24] and set to zero out-
This higher order term is of signi- side.
ficant importance only for bluff stern
flow with separation, but not for The calculated results for the Reynolds
slender sterns, like the one of the number Re a UoL/ - 5.0 x 106, were
SSPA model. Thus the two algorithms compared with the experimental data of
should give the same results. Larsson [25]. Owing to the different

coordinate systems used in the
The CPU time for the partially- calculations and the experiments it is

parabolic algorithm is about 70% of difficult to make direct comparisons of
that of the fully elliptic one. all quantities of interest. Therefore

only limited comparisons are presented
here.

C; SSPA7200 AT 2X/L -0.8 SA2 p T0CO

0

- B0X21X15

00

0.0
- ELLWTIW

0.0 0.1 0.1 0.2 0.2
0. N GIRTH ENGTH a a a0.0 0.2 0.4 0.6 0.5 I.0 1.2 1.4 1.8 1.8 2.0

2XA/
SSPA720 Ut AT 2X/L - 0.0

8 0 SSPA720 C AT 90 DES.

a

0
0-

0

- ELLIPTIC
- - PARABOLIC

o I ,u

0.0 0, 0.1 0.2 O.2
GIRTH LENGTH 0.0 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.8 1.8 2.0

2X/L

Fig 18 Comparison between results of Fig 19 Comparison with experiments.
elliptical parabolized C distribution along water-
methods line and keel
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The pressure distribution on the hull S
surface along the water line and the SPA70 U AT0 DE.
wake centerline as well as along the
keel are prsented in Fig 19 along with 4 0
the measurements. The original
experimental data of Larsson[25] are 0

subject to windtunnel blockage effects. 8
Corrections have been introduced in the
figures using the formula given by
Larsson[253, which was formulated after OMM5
carrying out potential-flow calcu-
lations with and without tunnel
constraints. Fig 20 shows the girthwise
pressure distributions at three a a S

stations. It is clear from these 0.0 0.2 0.4 0.8 0.8 1.0
figures that the agreement between
calculations and measurements is quite SSPA720 Ut AT 90 DES.

good.

SSPA720 C AT 2X/L 0.70 o

ME ASURDW, 0.,0 0'2 0.4 0.6 028 1.0
S-WIMX1 2X/

_Fig 21 u-C distribution along water-
0.o A-0.05 0.0 0.15 0. l 0ne and keel

o Fig 21 shows the calculated wall
o ssPA72O CD AT 2X/L - 0.8o shear velocity distributions along

water line and keel and in Fig 22 the
girthwise distributions at three
transverse cross sections are given

m along with the measurements. It can be
seen from the figures that in the stern
region the calculations overpredict the

2 * wall shear velocity along the water
'line, but underpredict it along the

B MEASMEWT keel. This indicates that the
-OYMx5 calculated velocity profiles in these

regions might differ somewhat from the
measured profiles. It is difficult to

0.o0 0.05 0.10 0.15 0.20 make comparisons of velocity profiles,
IRm LENGTH owing to the different coordinate

systems used in calculations and
SSPA720 AT2X/L-O.9 experiments, as mentioned above.

SSPA720 Ut AT A - 0.70

o I

- SSIM

L 5.1 0.20WX.W

0.00 0.- 0 0 15

GIRTH LENGTH

o.0 0.1 0.10 0.15 0.20Fig 20 C distribution at three 0I00 0,05 GRTH LENGTH
sations
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SSPA720 Ut AT X/L 0.90 Measuremerts Calculation

U EASINENT
S - 90X21X15

0.00 0.05 0.10 0.15 0.20 Iso-wakes measurements x. 0.9, u. 0.6, 0.7, 0.8, 0.9, 0,95, I.0GIRTH LENGTH 
calculation x,0.b9 q/o.0.6, 0.7, 0.8, 0.9. 0.95

SSPA720Ut ATXA-0.9 Fig 23 Iso-wakes at two stations

a 4 FINAL COMMENTS

-- 0*MU Methods for computing free surfacepotential flows as well as complex________, 
_viscous flows have been presented. The0.0 0.0 0.10 0.15 0.20 development has taken place ovor a longGIRTH LETH period of time and includes five PhDprojects. Several computer programs

Fig 22 ux distribution at three have been written, but they are nowstations combined into one program for thepotential flow and one for the Navier-
Stokes flow. These flow programs,Wake contours are given for two together with a boundary layer codestations in Fig 23. A reasonable (for laminar and turbulent flows ascorrespondence with measurements is well as transition) represent anoted at 2x/L - 0.8, while at 0.9 the powerful tool, named SHIPFLOW, foroutermost iso-wake is displaced investigating the flow and resistanceoutwards. Close to the keel the properties of ships. The SHIPFLOWboundary layer thickness is over- system is also equipped with state-of-predicted at both stations. The results the-art pre- and postprocessors, whichwere obtained with the wall law as the makes it easy to use. For preliminaryinner boundary condition. Preliminary project investigations the systemresults from the latest version of represents an alternative to tankNASPAR, where the wall law is removed, testing, i.e. it could be used as aindicate that the prediciton of the numerical towing tank. It should beflow near the keel can be much im- noted that there are several featuresproved in this way. of the programs which have not been
presented in this survey.Measurements Calculalion Such features are the transom stern
option and the sinkage and trim calcu-
lation in the potential flow as well as
the propeller effect in the Navier-Stokes code. Quite interesting is also
the most recent development, in which amathematical optimization scheme islinked to the flow programs, enabling
optimization of hull forms from a
resistance point of view to be carried
out automatically. Owing to space limi-
tations these features have had to bezo-skcs measuremetss o .8 0...6,.1 0.0, 0.9,. 0.95 left out, but they are explained In the

Clulation o.0.8,q/U.0.6, 0.7, o.8, o.9, o.95 references (10], (11] and [19].
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Table 1. Grid dependence study.
Wigley hull.

panel arrangement extent of the free surface Fn  Cw
run no (half range) (in half ship length) 3

hull free surface x-direction y-direction x 10

24 x 6 34 x 5 -1.50 to 1.50 0.28 0.266 1.204
0.450

2 24 x 6 34 x 5 -1.50 to 1.50 0.775 0.266 0.5980.313 1.437

3 24 x 6 34 x 10 -1.50 to 1.50 0.775 0.266 0.785
0.313 1.495
0.350 1.212
0.400 1.849

0.450 3.054

4 24 x 6 34 x 15 -1.50 to 1.50 0.775 0.266 0.847
0.450 3.054

5 24 x 6 36 x 10 -1.75 to 1.75 0.775 0.220 0.603
0.310 1.551
0.350 1.199
0.450 3.046

6 22 x 6 36 x 10 -1.50 to 1.50 0.775 0.266 0.859
0.450 2.788

7 22 x 6 32 x 10 -2.00 to 2.00 0.775 0.266 0.931
0.450 3.317

8 22 x 6 40 x 10 -1.50 to 2.50 0.775 0.266 0.931
0.450 3.662

9 22 x 6 40 x 10 -2.00 to 2.00 0.775 0.266 0.913
(0.966)

0.450 3.168
(3.235)
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DISCUSSION Author's Reply

by C.M. Lee
We have compared the two ways of computing

This is one of the rare papers which cover the resistance for several hulls. Results are
both inviscid and viscous flows about ships. I presented in reference (19) of the paper. For
believe that a rational approach to ship flow the thin Wigley hull the differences between
problems should be based on an intelligent the two methods are very small, while for the
combination of potential and viscous flow Series 60, CB=0.60 hull, differences of about
solutions. This paper apparently shows the 10% were noted. The momentum approach yielded
efforts in that direction. The aithors deserve smaller values than the higher order pressure
congratulation for their efforts. Bulbous bos integrations. The Series 60 results are in our
certainly can be cited as one of the useful experience typical for ships of moderate

inventions achieved by the ship hydrodynamic thickness. However, for the very full HSVA
research community. However, we are still tanker we experienced the opposite trend with
uncertain ot its effects on flow around ship the momentum results higher than the ones from

bows, particularly on the viscous flows. Does the pressure integration. The differences were
a bulbous bow really contributes to reducing again around 10%
the total resistance of a fat ship like a

super tanker at low speeds? I think it is
about the right time to examine the bow flow DISCUSSION

for ships with bulbous bow in detail to find by F. Stern
the stagnation point on the bow as a function

of ship speed in order to develop a correct Fig.17 of your paper is very surprising
model for computing ship flows more and contradictory to our work on viscous-
scientifically. inviscid interaction, ie, our work indicates a

much greater extent of the interaction. Is
Author's Reply the inviscid-flow calculation for the bare or

displacement body? If for the former, please
We agree with Prof. Lee that a thoroigh comment on the lack of dependency in your

investigation of the flow around the bulb of a solution to the location of the outer boundary

fat hull would be a most interesting exercise, even for outer-boundary locations near the
Ideally, such an investigation should include boundary-layer edge.

an experimental and a numerical part. The
experiments should include detailed velocity Author's Reply
measurement, such as the ones by Fry and Kim,
presented at the 15th Symposium on Naval It should be noted that the distance to
Hydrodynamics using an LDV, and flow the outer edge of the grid is measured from
visualization to find the stagnation point, the keel, where the boundary layer is very
The numerical part should include free surface thin. Fig.Al may be helpful. We claim in the

as well as viscous flow calculations. For this paper that there is an interaction at 2x/L =

detailed investigation the best approach would 0.05 but not at 2x/L = 0.11. As appears from
be to use a free surface Navier-Stokes method, Fig.Al, the latter edge is about three times
like the one developed by Prof. Miyata and his the maximum boundary layer thickness away from

co-workers. In such a case the wave breaking, the hull. When reading the paper one might get
which is likely to be important in this case, the impression that the 2x/L = 0.11 grid
could also be considered, extends only to the boundary layer edge, in

which case the results would have been most
questionable.

DISCUSSION

by S. Ogiwara I </

There are several ways in prediction of .
wave resistance by the panel method, namely, edge\tgg
the pressure integral over a hull surface,

computation of momentum change and so on. If

between them, especially for the case of the '. -

series models with protruding bulb, would you

comment about that? 
,Edge of grd

Fig.Al
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Numerical Simulation of Viscous Flow
around Practical Hull Form

A. Masuko and S. Ogiwara
Ishikawajima-Harma Heavy Industries Co.

Yokohama, Japan

Abstract detail.

In this paper, this method Is applied to
This paper deals with numerical simulations simulation of the flow around the practical

of viscous flow around ships having practical hull form with complicated shape.
hull form under propeller operating condition. Computational grid becomes often extremely
The Reynolds-averaged Navier-Stokes equations skew for such form and calculation by the
for three-dimensional flow are discretized by author's method diverges due to skew grid. In
finite-difference approximation and solved order to stabilize the calculation, the
with SIMPLE algorithm. The k-E turbulence computational grid generated' by solving the
model and the standard wall-function are partial differential equation3 is modified to
adopted. A propeller Is simulated by giving eliminate the skew grid. The above flow
pressure jump at its position. calculation method Is applied to the cargo

In order to eliminate skew grid around ship Series-60 model and two types of tanker
practical hull form, which violates the model, one Is the ordinary type and the other
computational result, adjustment of grid angle has the II B.O. ( Bulbous Open ) stern4. The
Is applied to the grid generated by solving calculated wake and pressure are compared with
the elliptic partial differential equation, the experiments and propeller/hull interaction
Computational examples for the cargo ship is numerically investigated.
Series-60 model and the practical tanker
models under propeller operatirg condition are 2. Calculation method
presented and compared with experiments. 2.1 Basic equation

1. Introduction
The governing time-averaged equations for

In the ship building industries, three-dimensional turbulent flows in Cartesian
computational fluid dynamics ( CFD ) technique coordinates are
Is being Introduced to design and develop the
ship hull forn under the concept of "numerical u.) 0
tank". Although quantitative accuracy of the 9xJ =
prediction is not sufficientat at the present a _p_ a .u Lu
stage, qualitative prediction of flow field -(pu, uJ) =- Ae * a I ( ] + -L- )3 (2)
can be applied to evaluate the propulsive Xi ; * x, ax;

performance and to design a new hull form. It where u, is the velocity component, p is the
Is considered to become a useful design tool fluid density and p is the pressure. g is the
from the point of efficiency and cost for the effective turbulent viscosity and given by
development.

The authors have been developing the k = + lJt = u +C-p (3)
numerical code for calculation of viscous I
flow' around ship hull aiming at the practical where g Is the laminar viscosity, gt is the
use In ship design. The preliminary studies turbulent- viscosity, C. is the constant, k Is
using mathematical ship models 2 showed that the turbulent kinetic energy and e Is the
the method has a sufficient robustness of dissipation rate of k.
convergence for iteration number and the In the k-e model of turbulence s , k and E
variation of computational grid. The are governed by the following equations
comparisons between calculation and experiment
demonstrated that the method Is effective to _ a 9k
predict the wake distribution, viscous x(Pui k) = " + 

Pk _ p (4)
pressure drag and propeller effects on them, ax, a* ax(

although some discrepancies, for Instance in 1 = a E 2strength of bilge vortices, are found in axJ =ax o' aX1 k
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where Ps Is the production rate of k and given Further discretization by the Hybrid scheme7

by : leads to the following algebraic equation

P*= itp, (u LU . )u (6) APOp =AE Al u ,+AN Om & s +AT r +As

Standard values for the constants In Eqs.(4) + (15)

and (5) are as follows 6 : where Su denotes a source term which Involves

CD = 0.09 Cz = 1.44 C2 = 1.92 the diagonal terms ((DE, etc.) and off-diagonal
terms (4)DE,etc.). Coefficients AE . AP are as

= 1.0 a = 1.3 follows

Eqs.(l), (2), (4) and (5) are represented A = 10, Di,-0.5Cio, -CiaJ

In the following general form := , Djm+O.5Cth,, Civ]
= ( q. ) + So (8) A, 10, D,-0.5Ca,, C2n3

where (D Is a general dependent variable,
4--(1,u;,k,e). When a general curvilinear As = 10, )2i+0.5C ,, Cas] (16)
coordinate system i, e2, W)=(, a7, ) Is
introduced, Eq.(8) Is transformed to the Ar = 10, D3t -0.5C , -C3t ]

following equation : As = 10, D&+0.5C36, Ca3s

a J 7 a A; 2 + So AP = A  +A Y +As + +AT +A S

a P 4l ) + S,# (9) and

where J Is the Jacobian of transformation, S,' Di = r, Ai A66 Ci = pGAt2 A $
is tic transformed source term corresponding
to Eq.(8), and Sol is the modified source term & #AL At 3
Including S.' and the cross derivatives in the D : P. J C2 = PGZA 3, (17)
diffusion terms. Gi is the contravarlant A32AtLA
velocity components without the metric D3 = p, C3 = PG3 A6i A&
normalization, and defined as follows JA 3

A sign [ , ] in Eq.(16) means the maximum
G, = a, U; (10) value In ]. Su and Sp are given by the

following equation
A.; and a,, are the metric coefficients for
transformation Su + Sp = JS,*' Ati A& 3 (18)

a; g, J (11) The SIMPLE algorithm? links the pressure
=ajx; to the velocity through the pressure-

A, ( a k (12) correction equation. When pressure p is
supposed to be summation of previous value p.

Production term Pk in general curvilinear and correction p', the pressure-correction
coordinate Is given by equation Is obtained from the continuity

equation and momentum equations. The

a/, aU; aj_,9; a; au discretized pressure-correction equation has
Pk = lit Jat, ( Ja, + j*; (13) the same form of Eq.(15). In the present

calculation, off-diagonal terms in Su of
Table 1 shows (D, r, and So' In Eq.(9). pressure-correction equation are assumed to be

small compared with diagonal terms and
2.2 Finite difference equation neglected for saving computing time.

In consequence, the sequence of solving the
Variables u. and p are set at staggered governing equations is as follows

location to avoid spurious error7 . Integrating
Eq.(9) over a control volume (Fig.l), the (1) Solve the momentum equations with the
finite difference equations are given as initial or previous pressure field to obtain
follows • the Intermediate velocity components u;'.

EP1ed26t + EpGa21snA,tA (2) Calculate the Intermediate contravariant
velocity components G(" with u;'.

+ 1pG3OQb'tA&
(3) Solve the pressure-correction equation

i= + A._12 isnatzd6 using G,.

9 (4) Obtain the new values of G0 and ui which
+ 11' 3 ' A IA + S.'JAl tAi tA (14) satisfy the continuity equation using pressure
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correction. considering the boundary conditions.
(5) Correct the pressure by the pressure
correction. On the hull surface

UP =0, VP =0, M =0,
(6) Solve the governing equations for k and e. k =O, p =0

(7) Iterate steps (1) to (6) until the On the center plane
solution converges. up vp=O, acW =Mw,

As a solving algorithm of algebraic k = E=

equation, a "checker-board" method with SUR On the water plane
(Successive Under Relaxation method)' .8 Is u u =V1, WP =0,
employed to vectorize the calculation on a kP =kr, EP =Esupercomputer. (0On the upstream boundary :

2.3 Computational domain up =U, Vp =0, XP=0,

In this paper, a body . fixed Cartesian JE 0, kP 0, EP =0
coordinates are adopted whose origin is On the downstream boundary
settled at the bow on the still waterplane, x- up=U, UP=Vk, l=&W
axis in positive direction of uniform flow and PP =PU kP=u, lOP =E,
z-axis downwards. In the body fitted
coordinate system ( e, 17, C ), constant-e On the outer boundary
planes are chosen as correspond to constant-x up =, VP =, W=0,
planes, -q-axis in radial direction from hull Ps =O, kP =0, EP =0
surface and C-axis in girth direction.

Calculation is carried out in the domain Since the standard k-E model cannot be
surrounded by the following boundaries ( see applied in the viscous sublayer and
Fig.2 ): transition layer around the hull, the standard

wall-functtons' are adopted. In the present
Hull Surface x= 0.0 N L calculation, the effective exchange

y= yO coefficient r+ is modified at the wall
z= 0.0 v d boundary so as to make the velocity profile

Center plane y= 0.0 fit to that from the log-law. Therefore the
Water plane z= 0.0 grid spaces In i7-direction adjacent to the
Upstream boundary x=-O.SL hull surface have to be set to satisfy the
Downstream boundary x= 2.0L following criterion.
Outer boundary r= 0.5L

20 < y* = Aih;npu*/ < 100 (21)
where L, d and yo denote ship length, draft
and half breadth of a ship respectively, where At17 .i denotes the minimum spacing of 71

direction ( distance from the hull surface to
2.4 Boundary conditions the nearest grid point ) and u means the

frictional velocity.
As for flow field around a fixed model in

the uniform flow U, the boundary conditions 2.5 Propeller model
are given as follows under neglect of free
surface disturbance In order to simulate the propeller effect,

the pressure jump model is employed in %hich a
On hull surface propeller Is replaced by a accelerating

disc'. The pressure jump is assumed uniform InU, 0, w, k, E = 0 the disc mad its value is derived from the
On center plane: measured thrust of the self-propulsion test.

Fig.3 shows the grid configuration at theOI Du'n 9k" DE - O section of the propeller. The grid is not
0, 9 i -n ii9l -n (19) fitted to the propeller disc and the uniform

On water plane pressure jump is applied at the grid points
indicated by circles.W 0, ju av ak 9E

W, ' 9 9k, 0 Fig.4 shows the pressure distributionn' n n an calculated by this method for a propeller
At infinity which Is operating in open water. The

calculated pressure connects smoothly withU = U, v, w, p, k, = 0 the given pressure jump at the propeller
'^rc /n Is nor na i rIvatle to t .=- position. The velocity a t the propciler
boundary surface. position and far behind the propeller

When the finite difference equation Is coincide with the values given by the momentum
solved in the computational domain shown in theory.
Fig.2, the boundary values subscribed with p
are determined by the following manners
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3. Computational grid for practical hull form of tangent at point Pi( (fL), (0;)2 and (Bd)
), and then a mean of these three angles is

In the present calculation, the taken for an angle of tangent of point Pi.
computational grids are generated by solving Next make a triangle PiP; IP' using a
the elliptic partial differential equations, segment P,P,.i, and tangents at Pi and P1. 1 ,
however these grids do not always suitable where P' Is a cross point of two tangents. An
for practical hull form. In general, Interpolated point Q Is taken at a Inner
computational grid for viscous flow center of this triangle.
calculation requires some characteristics By treating an interpolated point as a new
such as orthogonality, smoothness, adequate data point, these process are repeated until a
concentration, configuration like streamlines length of the segment becomes sufficiently
and so on. Above method does not guarantee short. These process are carried out along
orthogonality condition of the grid and often the waterlines and frame lines. The
provides the extremely skew grid. coordinates of grid points on the hull surface

The present flow calculation method has a are determined by choosing a point from these
characteristic to be sensitive to the skew sequential points.
of the grid and the convergence of the
calculatlon is violated by highly skew grid. 3.2 Generation of grid
Fig.5 shows an example of the grid
configuration including skew grids and the The coordinates of grid points in the
results of flow calculation which is violated computational domain are generated by
by skew grid. The grid In Fig.5 Is generated Thompson's method. They are solutions of the
by Kodama's methods. which satisfy the above following Poisson equation
characteristics necessary for computational
grid by geometrical manner. This is one of ____ =44_1 P, (22)
the sophisticated method to generate the grid ax,2
for arbitrary hull form and the flow Exchanging the Independent variables and the
calculation method proposed by Kodama gives dependent variables in Eq.(22), following
satisfactory results using these grids, partial differential equation Is obtained
However there are some skew grids near stern
region because the grid line Is chosen to ___x;x__ 0(3
correspond to the end profile and when these A;1 - + J 2Pj " x = 0 (23)
grids are applied to the flow calculatlon by
the present method, the solution diverges. It Is not necessary to solve the equation for
Tie computational results shown In Fig.5 Is x, in Eq.(23), because the constant-t stations
the \(locity vector near hull surface just are chosen to correspond to the transverse
before calculation breaks down. It Is found sections.
that the calculation is getting to be This method has some problems when
violated around the skew grid. The reason why generating grid for arbitrary hull form.
this breakdown occurs Is considered that the Since this method does not guarantee the
all off-diagonal terms are treated as the orthogonality of the grid, extremely skew grid
source term and they are ignored In the is often generated depending on the hull form.
pressure-correction equation. Although it Is When sufficient number of grid points cannot
possible to treat these terms more precisely, be taken for the limitation of computer
It brings enormous increase of computational storage, grid lines often break Into the ship
time. Therefore, from the practical point of hull. Fig.7(a) shows a typical example of such
view, it is much convenient to generate the case. This is the grid at the section of
computational grids which restrain the bulbous bow which has extremely convex
breakdown of calculation. configuration. At the side of bulb, highly

In order to restrain this breakdown, skew grids are found and some grid lines
computational grid generated by Thompson's break Into the bulb.
method is modified so as to improve the shape Since the stability of the solution by the
of the grid In the transverse plane. For present flow calculation method Is very
convenience of expression of computational sensitive to the skew of the grid, a method of
results, constant-t stations are chosen to grid modification which adjusts the angle
correspond to the transverse section. between grid lines is adopted. Fig.8 shows

the way of this adjustment. The two segments
3.1 Grid points on the hull surface on constant-K lines which close to the hull

surface are adjusted normal to the constant-?
The coordinates of grid points on the hull lines. For the other segments on constant-c

surface are given by Interpolation technique lines, the direction Is adjusted to the angle
from the offset data. The method of a circular between 45 deg. and 135 deg. When this
arc approximation 0  is adopted for the adjustment is carried out directory, the
!nterpnnltinn 'I'hp pr~oedtirp of the change of the grid direction is too large and
interpolation Is as follows ( see Fig.6 ). the computational grid breaks down. So the

First, an angle of tangent of each data above adjustment Is carried out iteratively
point ( P. ) is determined as follows. Using using relaxation method. After obtaining
four data points near the point P,, make three constant-a coordinates, smoothing of constant-
clrcular arcs ( arc P.-2P,-IP:, arc P,-,PiP,.i 1 line is carried out by Lagrange
and arc PiP,-iP,.2 ). Each arc has an angle
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interpolation, experimental data. One Is obtained in the
At the same time, the minimum spacing of towing tank of Ishikawajlma-Harima Heavy

the grid Av. ,, is set constant and determined Industries Co., Ltd. (II1) with Gm length
using Ct of the Prandtl-SchlichtIng's formula model, where resistance and hull surface
at the aft end of equivalent flat plate as pressure are measured at RN=4.2Xl0 6, and the
follows other data is from the wind tunnel test by

Sardall using a double model at RN=4.Sx106.
3Fig.14 shows the iso-wake contours at the,, =30.._ 30(24)

pu- = aft end station compared with Sarda's results.
The calculated result shows qualitative

T.= pu2 Cr agreement with the experimental results,
2 however, it is a little diffusive due to the

W I u)0(25)ogRN . 58(1 1.12 numerical diffusion of the Hybrid scheme.
2 logR5 Fig.15 shows the comparison of hull surface

pressure distributions, and reveals good
Fig.7(b) shows the modified result of agreement between the calculation and

Fig.7(a) by this method. Fig.9 and Fig.IO show experiment. In this figure, inviscid results
the computational grids for tanker forms with obtained by Hess-Smith method are also shown.
normal stern and 1ii B.O. stern respectively. The results of the present method agree with
In every case, orthogonality condition is the inviscid results In the fore part and the
almost satisfied. displacement effect of boundary layer Is

4. Convergence property simulated near the aft end.
Fig.16 shows the comparison of the local

skin-friction coefficient Ct. Calculated skin-
Convergence histories of pressure at three friction is given by the following equation

monitoring points, midship, after

perpendicular (A.P.) and In the wake, close
to the keel line, are shown in Fig.ll In the Cr -pUJ 2/2
case of Series-60 model (Cb=0.6) at the 1 xqCD "-1 kz (
Reynolds number based on ship length - 12/2 In(ECDJ'dk' ,/;n/) (27)
R,=9.22xI0 6. The number of grid points Is
94x25x21 and the iterative calculation is where x Is Karman constant and E is constant.
repeated 300 times. The calculation seems to The figure shows good agreement between the
converge at about 100 times. calculation and experiment except slight

Fig.12 shows the convergence histories of discrepancy at the station x=5.9m close to the
variables u, w, p, k and r near the keel line aft end.
at A.P. The values are non-dimensionalized by Agreement of the turbulent kinetic energy
the differences between maximum and minimum between calculation and experiment Is poor as
values of each variable. Convergence of shown In Fig.17. Calculation does not simulate
variables excepting pressure is considerably the sharp peek of the turbulent kinetic energy
slow. This may be attributed to the lack of in the region close to the hull near the after
grid smoothness. end. As the same tendency appears in Sarda's

Fig.13 shows the variation of mass- calculation which also adopts k-E model, this
imbalance with the number of Iteration. SSUM seems to be due to the defect of the
means a sum of mass-imbalance for all the grid turbulence model.
points normalized by Inlet mass flow rate. The pressure resistance and the frictional
SSUM decreases rapidly with the number of resistance are calculated by Integrating the
iteration and this verifies that the equation hull surface pressure and local skin-friction
of continuity Is satisfied. respectively on the hull surface. The

From the above results, 200 Iteration calculated results are as follows compared
steps Is chosen for practical use. It takes with the experimental values given by three
about 20 minutes of CPU time to calculate 200 limensional analysis of the resistance tests.
steps using the supercomputer FACOM VP-50. In
the following calculations, the Iteration
Is stopped at 200 steps in every case. Calculation Experiment

5. Computational results and discussions Total Total
resist. 12.6x10- 3  resist. 13.2x10- 3

5.1 Wigley model (rT) (rT)

The Wigley hull Is defined by the following Fric. Fric.
parabolic equation resist. 10.8x10-  resist. 12.7x10 3

(rp) (rF 9) (Schoenherr)
= 2 x - (26) Press. Residual

where B is the ship breadth. resist. l.Sx10 -3 resist. 0.5x0 -3

Calculations are carried out using 93x25x19 .... (rR)

grid with L=6.0m, B=0.6m, d=0.375m, U=0.85m/s R,=4.2x10s FN--0.1043
and Rtd=4.5xl06, and compared with two kinds of
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where r=R/pU2V2 "3 , R Is the resistance and V of experiment and an island-like contour
is the displacement of the model. Calculated of vortical motion is not found in the
value of the pressure resistance is larger computed results.
than residua resistance which does not The flow around tanker form with IHI B.O.
include wave resistance because of very low stern ( Fig.ll ) is calculated at RN=4.94x10s.
Froude number. This may result from the fact IHI B.O. stern is developed aiming at both
that the calculated pressure of after part is merits of wake gain by bulbous stern and low
a little lower than measured one as shown in thrust deduction by open stern. The
Fig.15 observing In detail. However the order configuration of B.O. stern is so complicated
of the total resistance comparatively agrees that the flow calculation does not succeed by
with experiment, the ordinary method of grid generation.

However the present method of grid
5.2 Series-60 model (Cb=0.6) modification makes the flow calculation

possible.
The first application to a practical hull Fig.23 and Fig.24 are the comparison of

form is made for prediction of flow field hull surface pressure distribution and wake
around Series-60 model (Cb=0.6) under pattern in towing condition respectively.
propeller operation. The calculation is Calculated pressure distribution agrees well
carried out with L=7.Om and U=l.5m/s, with the experiment except near the stern end
corresponding Reynolds number Is RN=9.22xI0 8 . where calculation gives lower pressure. B.O.
In the calculation of propeller operating stern gives uniform wake in propeller disc
condition, pressure jump Ap=412.47N/m 2 which compared with ordinary stern shape. Present
is equivalent to the measured thrust T=22.119N calculation simulates this feature of wake
( propeller diameter is .2613 m ) is set on pattern, however the correspondence with
the propeller disc. Total number of grid measured results Is not good because the bilge
points is 94x25x21. vortex is not simulated well. In order to

Fig.18 shows the hull surface pressure improve the accuracy of the prediction,
distribution, where measured data is from VEB further examinations are necessary for finite-
towing tank using 5m model at U=l.54m/s difference scheme, grid generation, adoption
(RN =7.7x10 6 ) 2 . Calculated and measured of wall-function, turbulence model and so
patterns of pressure contour without propeller forth.
resemble each other. In the propeller Fig.25 shows the velocity vectors near the
operating condition, suction effect of hull surface for both cases of with and
propeller Is appeared in the stern region, without propeller. In the propeller operating

Fig.19 shows a comparison of wake patterns condition, the pressure jump of 691.67N/m2

at three different transverse sections. which corresponds to measured thrust of 17.6N
Experimental data Is obtained in IHI towing is set on the propeller disc of diameter
tank using 7m model. The unit of calculated 0.18m. Applying this propeller model, the
vector is twice of the measured one in order accelerated flow afore and abaft the
to make clear the direction of the flow. The propeller can be simulated as well as
calculated contour of w =O.l is a little decelerated flow just above the propeller. The
diffusive compared with the measured one, present method predicts the boundary layer
however, the pattern of the iso-wake contour flow Into the propeller around such a
is well simulated as a whole. complicated stern form.

Fig.20 shows the effect of propeller on the
iso-wake contours. It can be seen that the 6. Conclusions
effect of propeller is restricted In the
propeller disc. The measured iso-wake Present studies are summarized as follows
contours with propeller at A.P. section (just
abaft the propeller) show the asymmetrical (1) In the present flow calculation method,
feature about center line due to the rotating the off-diagonal terms In source term in
flow ( Fig.21 ). As the present method does pressure-correction equation are ignored as
not deal with the rotating flow, calculated small quantities in order to save the
results are compared with the measured contour computational time. It is found, however, that
taking the mean of the contours in starboard this leads to the breakdown of computational
and port side. It is found that the present results when there are skew grids In
method can simulate well the propeller effect computational domain around practical hull
on the contour. form.

5.3 Practical tanker form (2) In order to stabilize the calculation for
practical hull form without increase of

The second example of the appilcation to computational time, improvement of the grid
prac'ical hull form is the simulation of the shape generatee by solving the elliptic
flow around two kinds of tariker forn, shown in partial differential equation is carried out
Fig.10 and Fig.ll. by adjurtment of grid angle.

Fig.22 shows the comparison of iso-wake
contour of ordinary tanker form ( Fig.10 ) at (3) Using this grid, the calculations of
propeller position in towing condition at viscous flow around practical hull form
Ri,=7.8X10". The vortical motion can be (Series-60 and tanker forms) under propeller
simulated, however, it is smaller than that operating condition are carried out and the
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results are compared with experimental 9. KodamaY., "Three-dimensional grid
results. This method Is applicable for hull generation around a ship hull using the
form examination at the Initial design stage. geometrical method", Journal of the Society of
In order to improve the accuracy of the Naval Architects of Japan, Vol.164, pp.9-16,
prediction, further examinations are necessary (1988).
for finite-difference scheme, grid generation,
turbulence model, adoption of wall-function 10. Oki,Y., Ochl,M. and Ohgane,E., "Ship lines
and so forth. design system"( in Japanese ), IshikawaJima-

Hlarima Engineering Review, Vol.21, No.5,
pp.422-427, (1981).

The final goal of the present study Is to
build a design code which can evaluate self 11. Sarda,O.P., "Turbulent flow past ship
propulsion factor of a ship taking account hulls -- An experimental and computational
rudder effect. study -- ", Ph.D. Thesis, the University of

Iowa, (1986).
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Calculation of Nonlinear Water Waves around a 2-Dimensional
Body in Uniform Flow by Means of Boundary Element Method

K. Suzuki
Yokohama National University

Yokohama, Japan

tion. Similar schemes were developped in last decade andinvestigations of two dimensional nonlinear water wave

In this paper, nonlinear wave making phenomena a- including steepening or breaking have been carried out
round a two dimensional body is studied. The analysis [31141[5116]. In most cases, however, wave-making phenom-
uses the boundary element method based on Cauchy's in. ena around a body in uniform flow [7] have not been tried.
tegral theorem and the wave profile is calculated by time The main difficulty is that nodal points on the free surface
marching integration based on the semi-Lagrangian ap- can move according to the uniform flow component.
proach. Steepening or Breaking waves can be simulated In the present study, two problems are described; a
by this scheme, semi-circular mound in shallow water, and a rectangu-

Two problems are discussed; a semi-circular mound lar floating body with semi-infinite length. In the for-
in shallow water, and a floating body with semi-infinite mer problem, nodal points on he free surface will pass
length. In cases including a uniform flow component, nu- through the downstream boundary, and in the latter prob-
merical treatments have some difficulties. In the semi- lem, nodal points will concentrate at the stagnation region
circular mound problem, nodal points on the free surface in front of the bow, if the suitable way cannot be found.
move out of the calculation region, and in the floating In this paper, numerical treatments for these problems
body problem, nodal points concentrate in front of the and related ones are discussed, and several numerical ex-
bow. In the present work, numerical difficulties caused amples are given. Some checks about the validity of the
by these problems are settled and numerical examples are present numerical method are also given by comparing
given for several cases, the results to the other theories and experiments, an by

varying the number of nodal points, the size of calcu, t;ii
region and the time interval.

Many numerical schemes have been presented for the 2. Basic Equations
purpose of the analysis of free surface flow in resent v,-,, 1s
Some of the schemes, however, need high perfornm:u.-v Two examples of nonlinear wave making phenomena
computers with very large memory storage. In those cases, around a two dimensional body in uniform flow are dis-
some difficulties remain in practical applications. In the cussed in this paper.
problems of nonlinear water waves with steepening or 1) Semi-circular mound in shallow wat3r as in Fig. 1.
breaking, many complicated numerical procedures and 2) Rectangular floating body with seni-infinite length as
considerable CPU time are needed. If we neglect viscos- ;n Fig. 2.
ity and assume irrotational motion, a numnerical scheme
based on the less complex boundary integral equation can
be employed, which does not need high performance com-
pu.ers VFor the problem of two dimensional free surface flow, Z l .-

Longuet-Higgins and Cokelet 11] introduced the boundary CtC=C+UP I/
element method ( abbreviated as BEM ) based on Green's 1LC. h C+
integral theorem, in which they used the mixed Eulerian- otom,
Lagrangian method in order to follow nodal points on .
the free surface by means of time marching integration.
This scheme was modified by Vinje and Greenhow [2].
who employed BEM based on Cauchy's integral theorem
and highly accurate scheme of time marching integra- Fig. 1 Semi-circular mound in shallow water.
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The downstreara boundary is open in the first problem, integral equations, nodal points are distributed along the
and a stagnation region exists in front of the bow in the contour C as shown in Fig. I or Fig. 2. We have NF
second problem. When using the numerical method ex- nodal points on the free surface which are movable and
plained below, various anmerical difficulties are arisen be- a total of NP nodal points on the contour C. On each
cance of these features of the problem. Numerical treat- boundary element divided by these nodal points, it is aq-
ments for each of these probhms are explained in later sumed that the complex velodty potential w varies lin-
sections. early in z. Using the well known procedures by means

of these linear boundary elements, the following discrete
expressions are obtained with respect to eq. (4) and (5),

fNP

hI2 xRe [rknWn] =0 on :: (t )

' 'Im [ 1 rk,.WnI =0 on Cq (7)

where

"-77 -77T rT777777'777- ,-" / rk, A - Zn-i In Zn - zk + Zk - Z+ In Z_+I - Zk

Z
n 

- Zn_ 1  Zn-I - Z k  Z. - Zn.Fl Zn -- g

(8)
Fig. 2 Rectawgular floating body with semi-infinite rA,,k-I = Zk.1 Zk-2 In zh-I - zk (9)

length. Zk-1 - zh-2 zk -- A

The coordinate system i, taken as shown in Fig. I or rkZk = la Zk- z- (10)
Fig. 2. For the sake of convenience, all equations in this
paper are normalized by a characteristic length 1, and a rk,k+l zk Zk+2 In Zk+2 - zk. (11)
uniform flow U. For example, the normalised time t is Zk+1 Zk+2 Zk+1 - Zk

expressed as I/I x real Nine. In the first problem, the Since terms including known 0, and tP remain in left hand
radius a of semi-circular mound can be chosen as the char- side of eq. (6) and (7), these terms must be transposed
acteristic length, and in the second problem, the draught to the right hand side. A set of simultaneous equations is
d call be chosen as the characteristic length. If we neglect thus obtained. Since the coefficient matrix of this equa-
the fluid viscosity and also assume irrotational motion, tion system has a property of diagonal superiority, Gauss-
the governing equation of the flow field is Laplace's el,,- Seidel iterative method can be used to solve the simulta-
tion. The complex velocity potential can be introd,,'ed neous equation.
as follows, In order to follow nodal points and velocity potential

values on the free surface, the mixed Eulerian-Lagrangian
w(z; t) = O(Z, Y; t) -1 i()4,,;t) (1) formulation is employed. Namely the dynamical free sur-

face boundary condition is expressed as follows by using
z = z + iy (2) the material derivative

where is the velocity potential and 4 is the stream func- dO 1 2  '
tion. If the contour C of clockwise direction is chosen and + (L
the singular point zo is considered on C as shown in Fig. dt M 2 0zi 'Oy) j 2
1 or Fig. 2, the following equation can be introduced by where yo = g9/U7. In eq. (12), a uniform flow component
Cauchy's integral theorem, is taken into consideration. The kinematical free suface

iaw(zo; )+ w( dz = 0 3) boundary conditions are also expressed as follows.
fC z - ro dz 04, Rediv(3where a = 7r, if the contour is smooth at zo. If 4 is given dt = -(1dz

at zo ( GC, part of C ), the real part of eq. (3) can be dy O0 w (14)
taken. On the contrary, if 4 is given at zo ( CO part of C = -y (14)
), the imaginary part of eq. (3) can be taken. Taking the

real and imaginary parts of eq.(3), following equations are Integrating the ordinary differential equations (12)-( 14)
obtained, numerically with time increment, the wave profile can

be obtained at each time step. Hanniing's predictor-
-aO(zo; t) +I Ref w z; I)dz = 0 on Qp (4) corrector method is used as the time marching integration

Cz -Zo technique TMIj niptind nPods thp values at the first three
ero(z; t) + Im / !wz)dz = 0 on CO (5) time steps, which are calculated by means of Runge-Kutta

f¢ Z - zo method.
These formulae are integral equations of Fredholm type of Wave making drag acting on the mound or the rect-
the second kind, in which 4 is unknown on Cb (eq.(4)) and angular floating body can be estimated in each time step.
4, is unknown on CO (eq.(5)) respectively. To solve these Since the pressure coefficient is expressed as
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Cp = P-9O 2-= - 2 ) 00) (15) Z (XNP+ Z2), Ii (YNP+ Y2), 01i (OP+0)
1 U2 OY (y 2 2 ,  2

= -- (18)
by Bernoulli's theorem, the coefficient of wave making This replacement technique is convenient, because the cal-

drag is obtained by the following pressure integral, culation region can be kept almost the same size.

C¢ = -- = -- Cpnd, (16) ) 2-3-2-1

where s is the girth of the nound or the wetted bow part of A B C
the floating body, and n. is the direction cosine of outward J1,
normal on s to z-axis. V

NP I 2 3 N-3 N-2 N-1 NF del.
t I t t t t t t I

3NP 1 2 N-4 N-3 N-2 N-I N

3.1 Treatments for Numerical Computations
A BD C

General descriptions of the numerical method used in A: Upstream Boundary (fIx)
this work are given in the preceding section. In practi-
cal free surface computations, however, some difficulties B: lnitial Downstream Boundary
caused by the uniform flow component must be settled. C: Downstream Boundary (movable)

First the initial condition must be given. Il general, D: New Downstream Boundary
the initial condition is given by U = 0 at t = 0 and the Fig. 3 Treatment of nodal points oi tie free surfic.
flow is increased gradually to uniform to maintain the
stability of the numerical computations. In the present For the movable downstream boundary, the condition
study, however, the uniform flow is gi,,e at t = 0 as for 0 must be given, because this boundary is G as in Fig.

0 = Zon C, ?p = 0 on Co, (17) 1. In the finite difference method, the zero-extrapolation
technique is ordinally used for an open boundary of this

inl order to eiminate the acceleration effect on the J""w kind. In this analysis, however, BEM is employed, and an-
This initial condition gives no influence on the stability of other way must be found. When the disturbance velocity
the numerical computations. This procedure is effective potential Wp is introduced as
also for saving CPU time.

Since the nodal point NF shown in Fig. 1 can move 0 = Z + (p, ONF = XNF + 'pNF, (19)

according to the uniform flow component, the treatmentof te dwnsrea bonday ismor dificltIf his the downstream conditions for 'p are given below, which
ofthdwtramboundary is fixedmnodalposohe do ltra Ife utilize the solution form based on the linearized free sur-boundary is fixed, nodal points oin tihe downstream free faecni o .
surface will move out of the calculation region. In order
to avoid this difficulty, a new nodal point is introduced 1) If YNF > O,
on the upstream surface, and a nodal point which passed
through the downstream boundary is deleted. The de- for y > 0,
tailed numerical process can be described as follows: ky sinh kh + cosh kh

1) As shown in Fig. 3, a fixed upstream boundary and Wp =PNF- sinhkh+coshkh (20)

all initial downstream boundary are given. On the free
surface, NF nodal points which are movable with time for y _5 0,
marching are given. cosh k(y + h) (21

2) The downstream boundary can move corresponding to p = C iyNF h + cosh kh
the nodal point NF. Unless the nodal point NF - 1 pass
through the initial downstream boundary, the computa- 2) and if YNF :5 0,
tion is continued without changing numerical procedures cosh k(y + h)
as shown in Fig.3 (1). Wp = 9'NF cosh k(YNF + h)
3) If the nodal point NF - 1 passed through the initial where
boundary, the downstream boundary is changed to new
position of the nodal point NP - I at next time step. At
the same time, as in Fig. 3, the nodal point NF is deleted, These equations satisfy the condition of 0 = #NF at y =

the nodal point numbers are replaced, and the new nodal YNF and the continuity condition, and eq. (20) is the
point 1 is added between nodal point NP and 2. linear extrapolation of eq. (21).

The position and the velocity potential of the new nodal As described in the previous section, in order to follow

point 1 is given simply like the wave profile in each time step, the numnerical integra-
tions of differential equations (13), (14) are needed. For
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this purpose, dw/dz on the free surface must be evalu- 2.0 Cw.Rw/tpau
ated. Several methods are known, however, the following
two simplest methods for approximations of dw/dz were
used for the present problem.

1.6

1) Upstream difference UP-STREAM DIFFERENCE

dw wn - wn- (24).dz z, 1 (24)..1 1.2TZ Zn - Zn-1

2) Downstream difference

dw _ W n - n +1 (25) o. -
dz z, - z n+0

3.2 Numerical Examples 0.4

Numerical examples are shown for the semi-circular
mound of radius a = 0.1m in the uniform flow of U = o
0.5m/sec and the water depth h(= depth/a) = 0.25. 1.0 2.0 3: 4.0
Some examples are also given for the other speeds of uni- Fig. 5 Wave drag coefficients based on the schemes of
form flow or the other water depths. upstream difference and downstream difference.

As the first example, the schemes for dw/dz on the free
surface have to be examined numerically. The computed 1.0
wave profiles based on the schemes of upstream difference
and downstream difference are shown in Fig. 4. In this
example, numerical conditions are chosen as; the position
of downstream boundary xz in = -7.5, the position of up.
stream boundary z,,,z = 10.0, the number of nodal points
on the free surface NF = 100 ( length of all elements are s=3.5 1 0.7 sec 3
equivalent ), and the time interval At = 0.05. Fig. 5
shows the wave drag coefficients for the same cases. In
Fig. 4 and 5, the scheme of downstream difference seems Fig. 6 Wave profile based on the scheme of downstream
to be a suitable one for this problem. However, if ex- difference.
tending the wave height to vertical direction as in Fig.6,
the reflected wave from the downstream boundary can be
observed. For this reason, the upstream difference which
can simulate the steep wave as in Fig. 4 is employed as
the scheme for dw/dz. CIS

1=3.50 I 0.70 sec e DOWN-STREAM DIFFERENCE -2. . o. . 2.0 ,0, o _ _ _

-0.5 0,5 M's

0.4 :/s

1=2.55 1 0.51 sec e UP-STREAM DIFFERENCE
Fig. 7 Wave profiles for U = 0.3,0.4,0.5m/aec.

h = 2.5, real time = 0.51sec )

0.51sec in all cases. The difference of wave steepening

points can be simulated well in this example. Fig. 8
shows the computed wave profiles for h = 1.25,2.5,5.0,

Fig. 4 Wave profiles based on the scheme of upstream where U - O.5n/eec and t - 0.5. Fig. 9 shows the
difference and downstream difference. wave drag coefficients for the same cases. The case ofh = 1.25 is the limit of what can be computed by the

present technique. As shown in Fig. 9, wave breaking
According to the numerical conditions, some examples occurs immediately after the wave profile in Fig. 8. As is

are computed. Fig. 7 shows the computed wave profiles well known, numerical techniques based on BEM cannot
for U = 0.3,0.4,0.5m/sec. where h = 2.5 at real time = simulate the wave after breaking.
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37th step T-2.59 ( 0.518 ccc ) DT=0.07

-2.0 ... -- N. 2.0 4.0

-0.5 OEPTH/a 5.00 Fig. 11 Wave profile for the case of At = 0.07.
OEPt/o 2.50
DEPTH/a 1.25

For the first example, effects of the time interval are
exemplified. The wave drag coefficients for the cases of

Fig. 8 Wave profiles for h = 1.25,2.5,5.0. At = 0.03, 0.05,0.07 do not show serious differences caused
( U = 0.5m/sec, t = 0.5 ) by the time interval ( Fig. 10 ). In Fig. 11, however, the

wave breaks unusual in case of At = 0.07. Since the wave
C.,/2poU' profiles for At = 0.03 and 0.05 are almost same in this

problem, At = 0.07 is considered as a rough time step for
the present problem.

2.0 DEPTH/. 1.25 | 0.225 .
0.$

1.6 0.0
.1 0.0 -9.0 r -. 0 -7. 0 z.0 - .5. a

1.2 O PTH/ : 2.50 0 .250 1 . - XNIN -- 0.0
0 XNIN " -.S

0.0 Fig. 12 Upstream free surfaces for the cases of
KOEPT : 5.00 1 0.500 LO .. = -7.5 and -10.0.

0.O4

2.0 2.0 3.0

" L ~2. -. 40

Fig. 9 Wave drag coefficients for h = 1.25, 2.5, 5.0.
( U = 0.5m/sec )

C.,R./2p.U') -0.! T-0.40-- - - T-1.20

2 .. . 12.00
1.2.80

7 ,.s. r-.12

2.0 Fig. 13 Time history of wave profile. ( U = 0.5m/sec,
mn= -10.0, NF = 157, At = 0.04)

2.6 In some of the examples, small undesirable ocillations

. can be seen on the upstream surface. When the numerical
conditions are changed to zmin = 100 and NF = 115,

1.2 / L those undesirable ocillations are suppressed ( Fig. 12 ).
In the final three examples, zi, = -10.0, NF = 157,
and At = 0.04 are used ( Fig. 13, 14 and 15 ). The com-

0.8 . puted time history of the wave evolution is given as in Fig.
13. At the filial time step, the wave becomes very steep.
In Fig. 14, this steep wave profile just before breaking

0.I in cnmpared with thp rpqult haqPd oi Ilip finlte differpncep
method by Miyata et. ai.[81[9] Both results show a fairy
good agreement. The wave profile before steepness pre-

0.0_ dicted by the present method is also compared with the
2.0 2.0 3.0 40 0 experimental result by Miyataet.al.[8][9] in Fig. 15. Since

Fig. 10 Wave drag coefficients for the cases of the experimental wave profile is replotted from the pub-

At = 0.03,0.05,0.07. lished photograph, small errors are probably included, and
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the time step is not equivalent in both cases, because ihi- tion point on the bow. For this type of the flew field, the
tial conditions are different with each other. Though clear numerical solution of the double model flow can be intro-
conclusions cannot be described for the above reason, the duced as the initial condition. The double model solution
present method can be regarded as one of the powerful can be obtained by the boundary conditions of
simulation tools for real phenomena of steep wave.

= 0 on the body and the free sutface at rest, (28)

-h on the bottom (29)

0.s iwith eq. (26) and (27). The obtained vclues of on the
free surface ate employed as the initial condition with the
other boundary conditions.2-r2." 0.0 p, 4,

The most serious problem i caused by the existence of
the stagnation region. Because of the uniform flow com-

-0.5 ponent, the nodal points will concentrate in front of the
Ns157 00.0.04 bow and the distance between nodal points NP and I
cAL. BY H.IYP'A will become larger and larger. This causes unusual wave

-1.0 profile around the nodal point 1, which is showy' in the

Fig. 14 Wave profiles by the present method and the subsequent section by a numerical example. In this case,
finite difference method. ( U =.5m/sec ) the replacement technique of nodal points as explained

in section 3.1 cannot be hitroduced, because the verti-
1.0 cal boundary with the nodal , )int NP is not movable

and nodal points in front of the bow cannot be deleted
in order to simulate the wave breaking. To counter this
difficulty, long elements are introduced on y = 0 before
the nodal point I as shown in Fig. 15. Following bound-

-2.0 0.0 2.0 .. ary conditions are imposed on nodal points on these long
....... "elements.

-0.5 W5= z o, the long element region (30)
t'f.I5 5 00.0.04

• EXP. BY H.HITATR These long elements act as wave suppression plates.
-I.0

Fig. 15 Wave profiles by the present method and the
experiment. ( U = 0.5m/sec )N

4- N ELMENTS-

4. Rectangular Floating Body with Semi-infinite Length Fig. 16 Long elements on the upstream surface.

4.1 Treatment for Numerical Computations In order to evaluate dw/. on the free surface, the

As described in section 3.1, the means of solving some following three methods are used.

numerical difficulties have to be given also for this prob- 1) Upstream difference ( same as eq. (24)
lem. If the deep water depth is assumed, the boundary 2) Downstream difference ( same as eq. (25)
conditions of upstream and downstream are simply writ-
ten as 3) Centered difference

= z on the upstream boundary, (26) dw 1 z- - z-.-,iI + - Iz. - z+I(
h,-,_ -,- ,+ = _ _ (31)

= z on the downstream boundary (27) dzI- z.-II + Iz -z.+ I

respectively, because there is no free surface at the down- Eq. (31) corresponds to the weighted mean of the up-
stream boundary in this case. However the condition (27) stream difference and the downstream difference. Nodal
is not applied to the top and bottom nodal point at the points on the free suface can be followed by the above
downstream boundary, which are regarded as points of CO numerical procedures. For the nodal pdint NF, how-
on the body and the bottom in the present calculation. If ever, the horizontal velocity component Re(dw/dz) is ne-
the water depth become shallower, the problem becomes glected, because this nodal point must be restricted to
more complicated and other considerations will be needed move along the bow.
for both boundary conditions.

In order to start the computation, an initial condition 4.2 Numerical Examples
is needed. Though the uniform flow condition is employed
on all C# region as in eq. (17), it is not able to be applied Before showing several numerical examples, the nu-
to the present problem, because of existence of stagna- merical accuracy of the double model solution must be
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studied, because it is employed as the initial condition for OVN-STREAM irrEPNCEt - Ds

the present problem. Two numerical solutions of XMOX -=
20.0 and 80.0, where z ,, = -10.0, are compared with the
analytical solution based on Schwarz-Clhristoffel transfor- "9 .8 -, - S - . s * .7 -1

mation [101 in Fig. 17. The results are slightly different,
though the same tendency of 6 is obtained. The extension
of the upstream boundary does not improve the numneri-
cal solution. Since the numerical solution is employed as
the initial condition, it cannot be avoided that 0 includes UP-STREAN DIFFERENCE I - I.6

small errors initially. However, initial flow velocities on
the free surface are accurate, because the velocities are
obtained from derivatives of 0. .9 .5 -2 .. - .4 . .2 -

-10

CENTERED0DIFFrERENCE
"  

I - 2,sT'

-5

NUIMERICOL SOLU1104 INt 20 0 .Fig. 19 Wave profiles based on the schemes of upstream,
.....aN~iL~e 5LUIS ... X O.O "". .downstream and centered difference.

...... .. 40tlY IC 65I.U91O0. -

-10 -5 - ements, and z -8.0 .. 0.0 is divided also by 120 normalelements. By employment of these long elements, unnat-

Fig. 17 Double model solutions, ural waves induced on the upstream surface, shown in the
upper example of Fig. 18, are suppressed as in the lower
example. In this example, the centered difference scheme

As discussed in section 3.2, several numerical treat- is used to calculate dw/dz on the free surface. The pre-
ments and conditions are studied. These are carried out dicted wave profiles at final time step by three schemes of
as d = 0.1m and U = 1.Om/sec ( Fig. 18 - Fig. 24 ). downstream difference, upstream difference and centered
First, the effectiveness of long elements on the upstream difference are shown in Fig. 19. For the present prob-
free surface is verified Long elements are arranged before lem, both the downstream difference and the upstream

= -10.0, z -10.0 - -8.0 is divided by 10 normal el- difference are not suitable, because computations failed

WITHOUT LONG ELEMENTS

S .8 .7 -6 S -4 -S -2 -X

WITH LONG ELEMENTS 6-'

-9 8 -7 -6 -S .4 .3 -2 -1

Fig. 18 Wave profiles for the cases without and with long

elements on the upstream surface. ( I = 2.4, At = 0.04
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without sufficient wave overturning. In the case of the body as x,... increases. On the contrary, the extension
centered difference, however, the plunging breaker can be of tlse upstream boundary has no effect for the numerical
simulated. The centered difference includes both informa- solution.
tion from upstream and downstream. In order to express
the flow field in the stagnation region, both are needed. CW.R./pdU'

Differences in the wave drag coefficient are also observed 1.2

with respect to the upstream difference and the centered
difference as in Fig. 20. In nll following examples, the
scheme of centered difference is employed. 1.0

C.,R,/(pdU'l
3.8

0.8

3.5

0.6

1.2 UP-STREAM DIFFERENCE
CENTERED DIFFERENCE . . . x Hqx . o

0.4 XN20.0
XNQX,20.O

0.9 XKR,=.O

0.2

0.6 0.. r 1.0 2.0 3.0 4 0

0.3 Fig. 22 Wave drag coefficients for the cases of

= 10, 20, 30.

.0 2.0 3.0 4.0

Fig. 20 Wave drag coefficients based on the schemes of Fig. 23 shows the wave drag coefficients for the cases
upstream and centered difference, of At = 0.02, 0.04, 0.08, and 0.12, where = 20. At

At = 0.02 and 0.04, almost the same results are obtained.

Effects of the size of calculation region and the time As in Fig. 24, the detailed simulation of wave breaking is

interval are examined. Fig. 21 shows the wave profiles at shown, where t = 0 -, 2.6 and At 0.02.

t = 2.4 for the cases of x... = 10, 20, 30, and Fig. 22
shows the wave drag coefficients for the same cases. The C,.R.,/OU'3

wave overturning point is closer to the bow of floating 1.2

1.0

0.8

-O- - DTO.O2

.. DT0.04

-2 -X -. 0.18
x DT-O. 32

0.2

XM-50.0

XMRqX20.O 0.0

.0 3.0 0

XMqX10.O .0 2

Fig. 21 Wave profiles for the cases of = 10, 20, 30. Fig. 23 Wave drag coefficients for the cases of
NF = 130, t = 2.4, At = 0.04 ) At = 0.02, 0.04, 0.08, 0.12.
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x x

Fig. 24 Wave breaking simulation. Fig. 26 Wave breaking simulation for Fd 0.8.
U= 1.Om/sec,zma, = 20, t = 0 - 2.6, At= 0.02) (t =0 1.92, At =0.032)

According to the above studies about numerical treat-
ments and conditions, simulations of mave making phe-
nomena are carried out for Fd = Ulvl = 0.5, 0.8 and
1.0 as in Fig. 25, 26 and 27 respectively. In the case of
Fd = 0.5 a spilling breaker is obtained, though the other
cases show plunging breakers. Since reliable experimental
data is not available, these solutions cannot be compared
with experiments. However, under the numerical treat-
ment that the numerical solution of double model flow
is employed as the initial condition, these solutions must
be considered as accurate ones, if the above mentioned -2 -1
studies are acceptable.

Fig. 27 Wave breaking simulation for Fd = 1.0.

( t = 0 - 2.4, At = 0.04

The present results are compared with the other the-

oretical and numerical results. Dagan and Tulin [ill ob-
- ained the wave profile in front of the rectangular body

-2 X Vby a perturbation method based on small Froude number
expansion. In Fig. 28, wave height at the bow 7 based
on the present method is plotted for Fd with their re-
sult. The present result is not equivalent to 17 = 0.5F,2 by
Dagan and Tulin. Wave steepening is related to their sec-
_nd arder solution, but wave breakitig ph-numenu cannot
be explained by their analytical approaches. Finally as
shown in Fig. 29, wave profile for Fd = 1.0 is compared
with the result based on the similar method by Grosen-

Fig. 25 Wave breaking simulation for Fd = 0.5. baugh and Yeung [7). Fairy good agreement is observed
t = 0 - 0.9, At = 0.02 ) except the sharpness of overturning waves.
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of the present method are shown by examples for several

1.0 cases with numbers of nodal points, sizes of calculation

* PRESENT CAL. region, and time intervals. For the detailed experimental

DAGAN & TULIN verifications, reliable data is needed. The present method,
however, can be regarded as one of the powerful simula-
tion tools for the nonlinear wave making phenomenia. The

present method can be extended to general problems of
two dimensional wave making phenomena.

Q5
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DISCUSSION DISCUSSION

by R.C. Ertekin by C.G. Kang

I think your paper lacks quite important Usually there is singular behavior at the
references on the upstream waves that can be intersection point between the body and the
seen in your figures. It is well known by now free surface. Even if the potential and the

(see the three papers by Bai et al.; Choi and stream function are not singular at the point,
Mei; and Ertekin & Qian) that when a the velocity is singular when the intersection
disturbance moves in finite depth, then angle is not 90 degrees. Could you show us how
upstream waves (solitons) will be generated to remove the singular behavior? Greenhow
if the blockage coefficient is significantly showed that the solution using fine grids is
high (like yours) and the depth Froude number poorer than that using coarse grids. Did you
is not very small (0.2). So the upstream check the convergence of the velocity at the
waves that you obtain are not necessarily intersection point?
"undesirable oscillations" but a gift of

nature. By the way, you are solving Laplace's Author's Reply
equation and there is no difference between

the body moving (steady) in an otherwise calm As described in my paper, the intersection
water and the fixed body placed in an uniform point NF is treated as the free surface nodal

oncoming flow. point, and its horizontal velocity component

calculated by Re(dw/dz) is ignored. Along the
With regard to the "open-boundary" bow, only this intersection point is movable,

conditions you can very well calculate the that is, the other nodal points on the bow
phase speed at these boundaries and use under the free surface are fixed. In this
Orlanski's scheme coupled with the approximation, the velocity at the
Sommerfeld's radiation condition. Your results intersection can be obtained without
show that your "open-boundary" conditions are difficulty.

reflective.

Author's Reply DISCUSSION

by J.H. Hwang
In the case of solitons, the waves

propagate from the body to the upstream. In my I congratulate on your fine presentation.
case, however, the upstream waves appear Your calculation is seemed to be basically

around the nodal point 1 and propagate to the based on Vinje-Brevig method. Could you give
downstream direction. It is caused by the some comments on major advantages of your

numerical technique of the addition of new calculation in the numerical scheme including
nodal point 1 and can be avoided by the the treatment of the intersection point

extension of the calculation region. In the between the free surface and the body.
present case, the wave breaking occurs before

the generation of solitons. In near future, I Author's Reply

would like to simulate the soliton by the

present technique. As described in my paper, the intersection

point NF is treated as the free surface nodal
Exactly speaking, your opinion about the point, and its horizontal velocity component

radiation condition is right. For the calculated by Re(dw/dz) is ignored. Along the
practical use, however, we usually need the bow, only this intersection point is movable,

simple and numerical radiation condition. For that is, the other nodal points on the bow

example, in the research field of Rankine under the free surface are fixed. In this
source method, several numerical radiation approximation, the velocity at the

conditions are employed. In the present intersection can be obtained without

method, the combined technique of the upstream difficulty.

difference approximation of dw/dz, the

replacement of nodal points on the free

surface dnd the employment oi the linear Discussion

solution form at the downstream boundary can by J.W. Kim
be expected as the numerical radiation

condition. We would like to comment on your treatment

of the downstream condition and your finite

difference schemes.
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The downstream condition given in Author's R l
Eqs.(20)-(22) is based on the steady linear

solution. But your calculation is made on an Strictly speaking, your comments are
unsteady problem. In a transient stage many true. For numerical treatments in my paper,
components of waves with different wave however, it is not suitable to discuss
lengths are evolved and eventually hit the separately the downstream condition and the
downstream boundary. The wave components which finite differnce schemes of dw/dz. These
do not satisfy the dispersion relation in (23) treatments connect with each other through
will be reflected back to the computational eqs.(12)-(14), that is, ONF in eqs.(20)-(22),
domain. Even for the wave components which is time dependent variable, is
satisfying the equation (23), this equation determined from eqs.(12) and (19). In this
cannot distinguish incoming or out-going waves treatment, the position of down stream
with respect to the computation domain, boundary is not fixed. If we find a suitable

way to estimate the wave number as a time
You have tried various difference schemes dependent variable, these numerical treatments

in your paper and the final choice was made will be improved more precisely. We should
from computational results. We do not not pursue an ideal, but find more convenient
understand how one can choose a specific way.

finite difference scheme if we don't know the
correct result in advance. We strongly believe
that one should decide a certain numerical
scheme for a given problem based on rational
mathematical analysis, not after comparing
with the known result.
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Nonlinear Simulation of Transient Free Surface Flows

R. Cointe
Institut Franqais du Petrole

Rueil-Malmaison, France

1 Abstract The main difficulty, however, is probably that the accu-
racy of the simulation is difficult to establish for transient

The application of the Mixed Eulerian-Lagrangian method flows in the vicinity of free surface piercing bodies, because
to the simulation of transient free surface flows in the vicin- of a lack of reference cases. Checking such requirements
ity of a free surface piercing structure is considered. A par- as conservation of fluid or energy might not be sufficient.
ticular attention is given to the validation of the numerical Surprisingly enough, the linear solution is not always com-
procedure. puted and quantitative validations of the numerical proce-

Several applications are studied. Comparisons between dure are almost inexistant, even for weakly nonlinear flows.
the results of the numerical scheme and those of approxi- These considerations have partly motivated the present
mate theories and/or experiments are shown. They demon- work which associates numerical and analytial studies.
strate the accuracy and versatility of the simulation that A code based on the MEL - Sindbad - has been de-
can be used as a "standard" to check the applicability of velopped that has for purpose the simulation of a two-
approximate theories, dimensional wave tank using potential flow theory. A par-

The main limitation of the method is that it cannot ticular attention is given to the proper validation of the
account for viscous effects, in particular in the vicinity of numerical scheme by comparison of its results to those of
the free surface. Approximate ways to simulate dissipative experiments and of asymptotic studies. To make this corn-
phenomena associated to breaking would be most useful. parison easier, an option of the code allows the linear prob-

lem to be solved. Such an approach appeared necessary in
2 Introduction order to gain confidence in the code and eventually extend

its range of applicability.

The direct numerical simulation of unsteady two-dimen- A direct simulation of experiments that can be carried

sional potential free surface flows using a Mixed Eulerian- out in a wave tank is performed. For this purpose, waves

Lagrangian method (MEL) has received considerable at- are generated in a rectangular tank by use of a piston-Lagrngin mtho (ML) as rceied onsderbleat- type wavemaker. These waves can then interact with sub-
tention since the pioneering work of Longuet-Iliggins and tyewvmkrThswascntenieatwthubtention since the pinyoeeinw of t Lousetiigs antd merged or free surface piercing cylinders in forced or free
Cokelet [22]. If many codes exist now that use this method, motion. Reflection from the wall opposite to the wave-
their suitability for the study of nonlinear fluid-structure maker is avoided by the use of a damping zone - see fig-
interaction problems has only been demonstrated for some ure I
particular applications (e.g., water impact [15], simulation The results of the classical first- and second-order dif-
of breaking in a tank [12], forced heaving of a cylinder [18], fraction radiation theories can be recovered using the sim-
etc...). ulation. A good agreement with experimental results is

Compared to the initial application of the MEL to the obtained in cases where these classical theories fail.
study of steep periodic waves (e.g., [22]), several new dif- The main limitation of the method is that viscous and
ficulties appear when a structure is present, especially if turbulent effects cannot be accounted for. This problem
it pierces the free surface. The first one is r'latpd to thpproperes the f low i The it o intereton is crucial when viscous effects occur in the near vicinity ofproper description of the flow in the vicinity of intersection tlhe free surface, in particular during breaking.
points between the body and the free surface. A second tefe ufci atclrdrn raig
difts ton be aboy cnt the ie n a e rAnd This work has been reported elsewhere while in progressdifficulty is to be able to control the incident wave train ([5], [6], [8], [9]). If we focus here on the results of thesimulation, a more detailed description of the numerics and

of some of the approximate theories referred to here can be
found in [7].
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Figure 1: Sindbad - geometric definitions

3 Numerical Scheme This constant specifies the tangential motion of the
markers: C = 1 identifies markers and particles while C = 0

3.1 Outline of the Method yields a zero tangential motion of the markers. This last

Since there exists now quite a large number of codes based choice allows a current to be simulated in the tank. For the
on the MEL, the numerical method used will only be briefly applications discussed here, we will however always take
outlined. The attention will focus in the next sections on C = 1.
the main difficulties that have been encountered and on the We will assume that the pressure is constant along the
methods used to overcome them. free surface. It can therefore be included in the function

The nain idea of the numerical procedure is to choose of time c(t). With an appropriate choice of the velocity
markers initially at the free surface and to follow them in potential, this function can be taken equal to zero.
their motion. At a given instant t, if 4, and O, are known along the

We use a coordinate system (z, y). The x-axis coincides free surface rd(t), then the right-hand sides of (3)-(4) can
with the reference position of the free surface and the y-axis be evaluated. The fact that 0 is harmonic in the fluid
is upward vertical - see figure 1 for geometric definitions, domain allows the value of O, along rd(t) to be computed
The fluid is assumed to be incompressible and the flow from the values of 4, along rd(t) and of O, along rn(t).
irrotational so that the velocity field 6 is given by: The kinematical constraint AO = 0, associated with the

boundary condition on r,, permits therefore to express
= V , (I) the free surface boundary conditions (3)-(4) as an evolution

equation for (4, E). This evolution equation can be solved
with: numerically using standard time-stepping procedures, such

AO = 0. (2) as a fourth-order Runge-Kutta algorithm.

The computation is performed in a bounded domain. The main numerical difficulty is to be able, at each
Along rigid boundaries (: E rn(t)), the normal velocity in time-step, to solve for the harmonic function 0 knowing
the fluid is equal to the normal velocity of the boundary. 4 along rd(t) and O, along r,(t). We use the integral
We have, therefore, a Neumann boundary condition. equation:

Along the free surface, we use Bernoulli equation and G
the fact that the free surface is a material surface. The -8(P) O(P) +" 4(Q) G,(P,Q) dSQ
corresponding equations are written for a marker i on ther
free surface (F E rd(t)) and the associated value of the = f 4,(Q) G(P,Q) dsQ, (5)
potential, O(g). This yields1 : Jrd+r,

DO, 1 where P is a point on the boundary, G is the Green func-
D' ( -C ) 02+ 2 2 - p + c(t) (3) tion, O(P) the angle between two tangents of the boundary

at P (equal to ?r for a smooth curve) and s a curvilinear

Di abscissa along r. Equation (5) is discretized using a stan-
'7= C F + 4. ii, (4) dard collocation method. The boundary of the domain is

where D is used to indicate a material derivative, "and fi approximated by segments and 4, ard 4, are assumed to

are vectors tangent and normal to the free surface, respec- vary linearly along each segment. this allows an analyti-
tively, and C is an arbitrary constant. cal integration of the Green function, its normal derivativeand their products by the curvilinear abscissa so that the

For the sake of sim plicity, we use units such that the acceleration a lc t i o of the a ri l eent s cis a sim plet(and

of gravity, g, the specific mass of water, p, and the depth of the tank, calculation of the matrix ements is rather simple (and

h, are equal to 1. vectorizes well).
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3.2 Numerical Treatment at the Intersections pected, the local behavior of the classical linear solution
cannot yield any information for the nonlinear problem in

At each time-step, we have to solve a Neumann [along this case (e.g., [28]). It seems that Peregrine's solution [27]
rn(t)] - Dirichlet [along rd(t)] boundary value problem, corresponds to an outer solution to which an inner solution
It is well known that the solution of such a "mixed" prob- should be matched. Of course, only this inner solution is
lem is singular at the intersection points, i.e., at points relevant to the the study of the local behavior. If work
belonging both to rn(t) and rd(t) - e.g., [16]. has been carried out to find an inner solutiort(e.g., [21]

Let us consider, as an example, the wavemaker problem. and [8]), it leads to serious difficulties and, to our knowl-
For a piston type wavemaker and an horizontal free surface edge, no definitive answer has been provided. It is only for
(900 intersection angle), the complex potential 9 = 4, + i 'P the related - but different - water entry problem that
solution of such a problem behaves like z log z near an there exists some results concerning the local behavior of
intersection located at z = 0. This gives the expected the nonlinear solution (e.g., [7]).
behavior of the problem discretized in time.

Discretizing in time is similar to performing a small 3.3 Wave Absorption
time expansion, i.e., to write: In order to make proper comparisons with experiments and

O(x, t) = 0o() + t 0,1() + " (6) classical theories, it is often necessary to compute a steady

Not surprisingly, performing such an expansion also leads state response.
to a z logz behavior for q51 (e.g., [27], [21]). Does this, When the linear solution is computed, one prescribes
however, necessarily imply that this singular behavior has an incident wave and write a "radiation" condition that
to be expected for the solution of the transient problem? transmitted and radiated waves have to satisfy. Writing

The answer is no, just because the small time expansion a proper radiation condition for the second-order problem
is not regular near the intersection point. It is, therefore, has long been a matter of controversy. For the fully non-
improper for a local analysis. linear problem, such an approach does not seem possible.

A regular expansion can be found in the weakly nonlin- In the absence of any mathematically satisfying answer,

ear regime, i.e. here, for a small acceleration of the wave- we have chosen a pragmatic solution similar to that used for

maker (relative to that ofgravity) - see [9]. It appears that an experiment in a tank. This approach does not involve

in this case the first approximation (in an asymptotic sense) any hypothesis concerning the steepness of the outgoing

is provided by the classical linear solution. The boundary waves.

condition for this solution is not a Dirichlet boundary con- Waves are generated by a wavemaker, either piston-

dition; it is given by: type or flap-type. A "beach" is used for the absorption of
the waves that are generated in the tank - see figure 1. It

OPn + 4,v = 0. (7) is in fact a damping zone, similar to that used in [1]. In this

If regularity in time is assumed, the local behavior of the zone, the free surface boundary conditions are modified by

complex potential for this solution can be shown to be in adding a damping term. Wierefore, write
z2 log z. Not surprisingly, this singularity is the same DO -Y _ 1 _ + 1 n - v(x) (4,- 4e) (8)
as that appearing for the harmonic problem (for which D 22

= V exp(iwt)) which was studied by Kravtchenko [20]
as early as 1954. It is much weaker than that of the prob- =(

lem discretized in time. D
The singularity can also be studied in a similar fashion where the subscript e corresponds to the reference config-

for an arbitrary angle of intersection 0. Assuming that uration for the fluid. The function v(x) is homogenous to

the complex potential is bounded near the intersection, the a frequency.

leading behavior of the complex potential can be shown to The principle of this damping zone is to absorb the

be in z"/ or z'10 logz if ir/0 is an integer 2 .  incident wave energy before it can reach the wall. It may

A consequence is that, for an intersection angle smaller be intuited that if the absorption is too weak, part of the

than 7r, 4, is continuous along the boundary r while 4, and incident wave energy will reach the wall and be reflected.

4,n are piecewise continuous but experience a finite jump Inversely, if the absorption is too strong, part of the energy
at the intersections. will be reflected by the damping zone itself.

The numerical treatment at the intersection has been In practice, the damping coefficient v(r) is equal to zero
devised to accomodate such a behavior, referred to as weak- except in the damping zone (x > x0), is chosen continuous
ly singular. More details on the nwimerical implementation and continuously differentiable, and is "tuned" to a char-

can be found in [5] [7]. acteristic wave frequency w and to a characteristic wave
These results only apply in the weakly nonlinear regime, number k:

i.e., when the classical linear solution yields a first reason- 1 0L 4
able approximation to the problem. Obviously, it would be v(X) = a W [- X - X>, x = -.- (10)

interesting to study other regimes.

Tie impulsive regime (very large acceleration of the If the proper scales have been chosen, values of a and fP of

wavemaker) has been studied by several authors. As ex- order 1 should be appropriate for the absorption of a wave
train of wave frequency w and wave number k.

2
The same singularity occurs at corncrs of rigid boundaries.
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3.4 Validation scheme that has to be evaluated. In any event, a compar-
ison with a linear result appears necessary in order to be

As indicated previously, the proper validation of the nu- sure that nonlinear phenomena are important. It should
merical simulation has been one of our main objectives, also be kept in mind that viscous effects can play an im-
Solving the fully nonlinear problem can only be interesting portant role and are not accounted for in tle simulation so
if the accuracy of the numerical scheme is well established, that discrepancies might not be due to the inaccuracy of

Several strategies exist for this validation, the numtrical scheme but to an improper physical model-
Consistency checks should of course be performed. For ing.

that purpose, the volume and the rate of change of en-
ergy are computed. When no damping zone is present, this 4 Numerical Results
last quantity is compared to the power input from exterior The purpose of this section is to show some numerical re-
loads. The pressure exerted by the fluid on rigid bound- Tups tha t setiopr is to o oe teries
aries is computed by two different methods. Both of them suits that can appropriately be compared to other theories
use Bernoulli's equation, but they differ by the evaluation or to experiments. Numerical instabilities - encounterel
of the Ot term. In one case, this term is evaluated by fi- by many similar methods - may appear for waves of large

nite differences in time. In the other case, it is obtained by steepness. In this case, a 5 points smoothing algorithm

solving the boundary integral equation for O. similar to that used in [221 is employed.

In our opinion, consistency checks are not sufficient and 4.1 Sloshing in a Tank
comparisons with results from approximate methods are
also needed. In the weakly nonlinear regime, the reference The study of sloshing provides a first simple test for the

solution is the classical linear solution. However, a direct accuracy of the simulation. We consider a rectangular tank

comparison with this linear solution is difficult, for two and the free motion of a fluid initially out of equilibrium.

main reasons: One of the main advantages of this configuration is that

* comparing the nonlinear simulation to a linear result it allows quasi-analytical solutions of the transient problem

can be confusing since discrepancies might be due to non- to be derived at first- and second-order [9]. The efficiency

linear phenomena. For that reason, a linear version of the of the numerical scheme for the solution of the linear and

code has been derived that only differs from the nonlinear nonlinear problems can therefore be directly evaluated.

version by the boundary conditions that are satisfied; We consider the case of a constant initial slope of the

* usually linear results are for the steady.state response free surface, i.e., an initial elevation given by:
while the simulation is transient. Discrepancies might be
due to long-lasting transient phenomena, to the wave gen- y=(d -0.5), (11)
eration or absorption mechanism used, etc... A first step

has therefore been to make proper comparisons with linear where d is the length of the tank, We show on figure 2
results for the transient problem in a tank of finite length. the free surface profiles for d = 1 (i.e., a depth equal to

The main interest of the method being to be able to ac- the length) and C = 0.35. With such an initial amplitude,
count for nonlinear phenomena, a proper validation of the breaking occurs in the tank.
nonlinear response should be made. For that purpose, a In order to evaluate the accuracy of the simulation, we
comparison is performed with approximate nonlinear the-
ories, such as second-order theory or shallow water theory.

A final test is provided by comparisons with experi- y- Ylinear (12)
ments. In our opinion, however, these comparisons should ((d)2

only be made last if it is the accuracy of the numerical to the second-order wave elevation that has been computed

quasi-analytically [9]. For ( = 0.1, a good agreement is

4.0- - SECOND-ORDER
.. iNIAL SLOPE: 0.10
.. INMAL SLOPE: 0.35

2.0

0.

-0.0 .'

0.0 0.2 04 0.6 0.8 1.0
x

Figure 2: Sloshing - free surface profiles Figure 3: Sloshing - perturbation elevation
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achieved, indicating that both the linear and second-order From this table, it appears that:

component of the wave elevation are accurately computed. * a sufficiently small time-step has to be used in order

For C€ = 0.35, breaking occurs and the agreement deterio- for the numerical scheme not to blow up. The influence of

rates, suggesting that higher order effects become impor- the time-step is otherwise rather small;

tant. More results on this topic can be found in [9]. * for a given ipatial discretization, results converge as
the time-step goes to zero. Note, however, that the numer-

4.2 Harmonic Motion of a Piston-Type Wave- ical results do not converge to the exact solution;

maker * as the spatial discretization increases, results seem to
converge to the exact solution. However, the convergence

The wavemaker problem is interesting because it provides rate is not second-order in the grid size. This is very likely
a simple configuration to study most of the difficulties as- due to the numerical treatment at the intersection that is
sociated with the simulation. In particular, it involves a not second-order 4.
moving free surface piercing body (the wavemaker itself)
that is absent in the sloshing problem. 4.2.2 Linear Solution in a Tank of Infinite Length

In this section, the wavemaker motion is given by:
In order to test the efficiency of the damping zone, we con-

1(t) = 0 t < 0 (13) sider now a tank of infinite length. For a piston type wave-
at

t(t) = -t cos(wt) I > 0. (1) maker, the solution far from the wavemaker and for large
2 times is a progressive wave of amplitude:

The length of the tank is d. Note that even though the sinh' k
motion is harmonic for t _> 0, transient phenomena are a - at k + sinh k cosh k
expected.

where k is the wavenumber associated to w (W2 = k tanh k).

4.2.1 Linear Solution in a Tank of Finite Length Note that in deep water (k - oco), a = at.

For a tank of finite length, it is possible to derive a quasi- We perform the simulation for the same wavemaker mo-

analytic solution for the linear transient problem that can tion as in 4.2.1 but in a tank of length 10 equipped at its end

be evaluated quite easily. This solution can be found in [12]; of an absorbing zone. We compare on figure 4 the steady

an alternative solution that seems to have better conver- state linear solution and the result of the linear simulation

gence properties has also been derived [9]. with and without an absorbing zone for the wave elevation

Since this problem involves a moving rigid boundary at the middle of the tank (distance 5 from the wavemaker).

that pierces the free surface, it allows the numerical treat- The damping coefficient is given by (10) with a = 1 and

nient of the intersection point to be evaluated. Here, we fl = 1. It appears clearly that. the damping zone- provides

compare the result of the linear simulation and the quasi- a simple and efficient way to avoid any reflection.

analytic result. This ensures that discrepancies are only
due to numerical errors.

As an example, we consider a wavemaker motion at the
frequency w = ir/2. The corresponding wave period and
wave length are 4 and 2.5, respectively. The accuracy of 1.0
the simulation has been evaluated at t = ,5 in a tank of .. STEADY STATE LINEAR SOLUTION

t siUNEAR SIMULATION WITH ABSORPTION
length 5. We show on table 1 the root mean square of the ....LINEAR SIMULATION WITHOUT ABSORPTION
error (the reference 100 is taken as the error for the coarsest
grid used, equal to 0.0903 at) as a function of the number 0
of nodes per wave length, NX, and the number of time -- *i

steps per wave period, NT.3 . J. : V

w0.0.
NVT /NX-. 5 10 20 40 80 160 H V,..,

4 100 o c c c c
8 61.3 26.2 10.6 oo co co -0.5
16 63.7 29.3 11.5 4.2 1.8 co op  P0

32 64.0 29.9 13.7 5.3 2.3 1.3 TIME

64 64.0 29.9 14.4 A . 2.5 1.4 ME

128 64.0 29.9 14.4 5.4 2.5 1.4 Figure 4: Wave elevation with and without damping zone
256 64.0 29.9 14.4 i 5.4 2.5 1.4

Table 1: Convergence table

3A uniform grid is used and, thanks to the symmetry, the bottom 4This indicates that numerical errors are mainly due to the numer-
is not discretized. No smoothing is applied, However, using the 5 ical treatment at the intersection. A convergence test for the problem
points smoothing procedure introduced in [22], even a each time-step, with periodic boundary conditions is therefore not relevant to assess
does not significantly alter the accuracy of the method. the accuracy of the simulation applied to the wavemaker problem.
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In order to evaluate more precisely the efficiency of the A A A I

damping zone, we show on figure 5 the difference between .. .0.0.. .
the steady state linear solution and the result of the linear ^
simulation for the relative wave elevation (wave elevation A I A A A I \ A A A A 4 A A - A

divided by the wave amplitude -! al) at the same point. If .. _ I ________________-

long-lasting low frequency oscillations appear, the relative 6, 0 50 00 'io 200 2i.0 300

error is only of a few percents and the absorption mecha-
nism appears to be quite satisfactory. Figure 6: Shallow water swell - measured (left) vs. com-

puted (right) wave elevatioro at several points in the tank

4.2.3 Nonlinear Solution in Shallow Water

In order to estimate the accuracy of the method for the
nonlinear computation, we first consider the case of a shal-
low water swell. We compare on figure 6 the measured and computed

Mei and Un)iiata [24J have explained how such a swell wave elevations at several points in the tank. An excellent
can experience very drastic nonlinear deformations when agreement is achieved. This agreement is confirmed by a
it propagates. Very recently, Chapalain (2] has performed Fourier analysis performed oi-..e a steady state is reached.
experiments at the Institut de Mdcanique de Grenoble that The amplitudee of the first three harmonics is plotted as a
neatly confirm this bi-harmonic resonant behavior. It ap- function of the distance along the tank on figure 7. It ap-
peared therefore interesting to try and reproduce them with pears that the simulation is very efficient to model shallow
the simulation. water waves and their generation by a wavemaker.

The only data for the numerical simulation are the ge-
ometry of the tank, the law of motion of the wavemaker
and the friction coefficient f, used to model dissipation5 .
The experiment was performed in a 40 cm deep tank with
a piston-type wavemaker the motion of which was given
by (14) with at = 15.9 cm and w = 2.5 rad/s. The total 70.0-
length of the tank, 36 m, is simulated using 300 nodes on
the free surface. The simulation on 30 s took approximately 60.0" SINDTD.EXPERIMENTS (CHAPALAIN)

7 minutes on a CRAY-XMP. 50.0"

840.0-

O 30.0-
in order to model dissipative effects in a way similar to that 20.0"

used by Chapalain for Boussinesq equations we substitute to Bernoulli
equation: 10.0"

0,+1 0 +..+.= .

%;.h 010 510 10,0 15,0 20.0 25.0
4 t- "DISTANCE FROM WAVEMAKER (M)

We took the value of '., used by Chapalain, f. = 0.1. Note that this
modeling of dissipative effects, already used in [14] for the study of Figure 7: Shallow water swell - measured vs. computed
sloshing, is similar to the modeling of the damping zone. Fourier components
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4.3 Arbitrary Motion of a Piston-Type Wave- The results of our simulation are in good agreement
maker with both experimental and numerical results obtained at

MIT up to breaking - see figure 8. If overturning develops
In deep water, nonlinear phenomena in the propagation at the same time, our computation fails sooner than their
of a regular swell are rather long to develop. Numerical (before the closing of the tube)6.

methods with periodic boundary conditions, such as 110], This confirms that the numerical simulation can repro-
are probably more suited to the study of this problem than duce accurately nonlinear phenomena observed experimen-
the direct simulation of a wave tank. taly.

An appropriate choice for the motion of the wavemaker
can however lead to wave focusing that results in break-
ing. Experiments based on this principle were performed
at MIT and a comparison with a numerical simulation sim- 4.4 Wave Diffraction on a Submerged Cylin-
ilar to ours made - see [12] where the law of motion of the der

wavemaker is given. The main drawback of this test case The case of the wave diffraction on a submerged cylinder al-
is that it involves a large amount of computer time. We lows a first study 3f wave-structure interaction. This prob-
have run Sindbad on the same case, but using an absorb- ler has been studied e:tensively in the past. In partic-
ing zone and a somehow coarse grid in order to minimize ular, Ursell [31] used linear theory and showed that, for
computational effort. The calculation has been performed a circular cylinder, there is no reflection. Ogilvie [25] ex-
on a CRAY-XMP and demanded "only" 30 minutes with tended Ursell's results and computed the second-order ver-
250 nodes on the free surface (compared to 30 hours with tical drift force. Very recently, Vada [32] computed the
500 nodes on a CRAY 1 for the simulation performed at second-order potential and calculated the diffraction loads
MIT). and the diffracted waves to second-order.

Chaplin [3] measured diffraction loads in the labora-
toiy while Grue and Granlund [17] measured the diffracted

0.5- waves. These experiments have partly confirmed the re-
S 000 sulte of first- and second-order theories. They have also

exhibited some important nonlinear phenomena not ac-

0 20 n 40 50 so counted for by these theories. Such nonlinear phenomena
can either be due to nonlinear free surface effects (of third-

0 00 Consequently, the present study has two main objec-
tives:

0 0 0 30 40 50 60 * to recover the results of first- and second-order theo-
ries in order to assess the numerical accuracy of the method;

0.25 * to compare with experimental results in order to de-
]-A 0 termine the relative importance of viscous and free surface

effects for the nonlinear phenomena observed.
-0 10 - Fully nonlinear simulations similar to ours have been0b10o a c is ee40ui ro6l
0- -performed by several authors (e.g., [29], [11]). In general," [ periodic boundary conditions were used. To our knowledge,

000 however, comparisons with second-order theory were not
.. .. T1__________ achieved.

o !Q 20 30 40 5 £

0 25 4.4.1 Diffraction Loads

0 00 1 We consider a circular cylinder of radius r = 0.06. The
coordinates of its center are xe = 3.5 and y, = -0.12.

0 -0 I'D 4o 5 so so Waves are generated by a piston-type wavemaker moving
at the frequency w = 1.85. The simulation is made in a

00-7 0 tank of length 10 with 200 markers at thme free surface and
-4, _ 0 00 - 60 time-steps per period.

The forces acting on the cylinder are computed by di-

0 10 20 30 40 so so rect integration of the pressure.
In order to compare the results with those of experi-

ments or of first- and second-order theory, we use a Fourier
Figure 8: Steep deep water waves -- measured (left, dashed seisxpnonfthtrsetsgal(ceatad-ae
line) vs. computed (solid line, left: MIT, right: Sindbad) series expansion of the transient signal (once a steady-state
wave elevations at several points in the tank ic reached). This Yields

'Our own experience tends to suggest that "numerical" overturning .- F(0) + E &) cos(nwt + (16)
is very sensitive to the discretization used and more particularly to n21

the node distribution along the free surface. Here again the validity of - F O) + F~n cos(nwt + (n)), (17)
the simulation is difficult to establish. Our interest has been mainly --- =n
to perform the simulation up to the point where breaking occurs. nZ_
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where the subscript x and y denote the horizontal and ver-
tical components of the force, respectively.

ka °I) F) (0) F() 1 3.00

0.05 0.50 0.00 0.04 1.07 1.07 0.07 0.07 2.50
0.07 0.75 0.00 0.10 1.58 1.58 0.15 0.15 ,x

0.10 1.00 -0.01 0.16 2.07 2.06 0.24 0.25 -2.00 -°
0.12 1.25 -0.02 0.24 2.52 2.51 0.33 0.34 &
0.14 1.47 -0.03 0.30 2.88 2.87 0.41 0.41 J 1.5,,d

(51.00.
- EXPERIMENTS (CHAPLIN)

Table 2: Diffraction loads - Sindbad 0.50 xSINDBAD
-UNEAR THEORY (OGILVIE)

As in [3] we introduce the Keulegan.Carpenter number, 0.00.
K,. For a linear deep.water wave, K, is given by: 0.00 0.50 1.00 1.50 2.00

Kc
= exp(kyo). (18)

Figure 9: Diffraction loads - inertia coefficients
Table 2 gives the values of Pn) and F(n) for n = 0, 1,2 vs.
K. in the case just described (that corresponds to Chaplin
case E [31).

Following Chaplin, we write

F - Cx.K, (19) o.o
M1 *EXPERIMENTS (CHAPLIN)

-W E CnmI . (20) ~ xSINDBAD)= ,0 - . SECON-ORDER (OGILVIE)

The classical inertia coefficients are equal to C.11 et -- 2.0. x

C 11. According to linear theory, these are the only non-
zero coefficients and they are equal. Ogilvie [25] calculated - -X..
them; they go to 2 as the immersion depth goes to infinity.

We give on figure 9 the horizontal and vertical inertia -4.0.
coefficients vs. K,. For a small value of the Keulegan-
Carpenter number, both experimental and numerical re- -5.0
suits go the value predicted by linear theory, 2.25. As I -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00
increases, however, the sharp decrease of the inertia coeffi- In(Kc)

cient observed experimentally is not predicted by the sim-
ulation. As argued by Chaplin, this is very likely due to Figure 10: Diffraction loads - vertical drift force
viscous effects (creation of a circulation around the cylin-
der).

Figures 10 and 11 give the second-order vertical drift
force and the force at the double frequency, respectively.
Here, a good agreement appears between experiments, sec-
ond-order theory and the present simulation. It should
be stressed that recovering the results from second-order 0.0-.EXPERIMENTS (CHAPUN)
steady theory with the simulation is by no means obvi- xSINDBAD
ous: it demands a good accuracy and a proper control of -1.0. SECOND-ORDER (VADA)

the wave generation and absorption mechanism. It can be
argued that the results of the simulation are better than -_ -2.0- X

those of second-order theory for large values of K,. -

4.4.2 Diffracted Waves

Grue and Granlund [17] performed experiments related to -4.0

incoming deepwater Stokes waves passing over a restrained
submerge!d circular cylinder. For a small cylinder submer- -5.00 -1.50 - -0.50 0.00 0.50 1.00

gence, a strong local nonlinearity is introduced at the free In(Kc)
surface above the cylinder and free higher order harmonic
waves are generated. Figure 11: Diffraction loads - response at double fre-

We remind of the obser.ations of Grue and Granlund quency
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Figure 12: Diffracted waves - amplitude of second-order Figure 13: Diffracted waves - free surface profiles

free wave

concerning the wavefield far away from the cylinder: water). With these choices, the results shown by Grue
* upstream of the cylinder: an incoming Stokes wave- and Granlund correspond to a cylinder radius r = 0.117

train. No reflected waves, even to higher order; and a depth of immersion of the center of the cylinder
* downstream of the cylinder: shorter free second har- Yc = -0.1755.

monic waves of considerable amplitude are riding on the The simulation was perfomed in a tank of length 8,
transmitted Stokes wave. with a damping zone of length 3. The cylinder center was

If these trends are well predicted by second.order the- located at a distance x, = 2 from the wavemaker. 340
ory [32], the quantitative agreement with experiments is nodes were distributed on the free surface and 60 time steps
rather disappointing. The amplitude of the second har- used per period of the incoming wave.
monic free wave, a2, only increases as the square of the On figure 13, free surface profiles after 7 periods are
amplitude of the incoming wave, a, for very small values of shown for several amplitudes of the incident wave. The
a. A "saturation" rapidly appears; thereafter a2 remains apparition of a perturbation of wavenumber 4k is obvious.
almost constant - see figure 12. However, its amplitude does not increase as the square of

These findings suggest that the range of validity of the incident wave amplitude.
second-order theory is quite narrow in this case. Observ- A Fourier analysis of the diffracted wave confirms this
ing that this theory predicts amplitudes of the second-order trend. We show on figure 12 the comparison between Grue
free wave as large as that of the incoming wave, this should and Granlund's experiments, Vada's second-order theory
not appear as totally unexpected. In order to see if non- and the present calculation. The agreement between the
linear free surface effects - and not viscous effect - are, numerical simulation and the experiments is very good, in-
indeed, responsible for this deficiency, it appeared interest- dicating that the "saturation" is, indeed, a nonlinear free
ing to run Sindbad on this case. surface phenomenon not accouitted for by second-order the-

In order to compare our results with those of Grue and ory.
Granlund, we write (once a steady state is reached): Grue and Granlund observed breaking for ak -- 0.085,

* for the incident wave: while we were able to perform the numerical simulation up

to ak = 0.12. It is rather interesting to note that this does
?7 I = a cos(kz - wt + 0) not seem to affect the amplitude of the second-order free

+ at cos2(kx-wt+O)+... , (21) wave.
A little more surprising is the reason for which the nu-

where at i3 the amplitude of the second-order locked wave; merical computation fails for ak = 0.12 after 3.2 periods.
* for the diffracted wave: The computation does not blow up because of the overturn-

= al cos(kx - wt + 01) ing of the crest, as would have been expected, but because
'd= of a concentration of particles just aft the cylinder. Phys-

+ a2 cos2(kz - wt + 01) ically, it seems that particles flow very rapidly over the

+ a2 cos(4kz - 2wt + 02) +... , (22) cylinder and are then decelerated. Here again, the validity
of the simulation is difficult to establish.

where 2 and a2 are the amplitudes of the second-order It is rather interesting to note that for waves passing
locked and free wave, respectively, over a submerged cylinder, nonlinear free surface effects

In order to exhibit the second-order free wave, it is nec- are important for the diffracted waves but do not seem to
essary to take a rather fine grid. The wavenumber of this affect very much the forces.
free wave is, indeed, four times larger than the wavenum-
ber of the incoming wave. The wavenumber of the incoming
wave is chosen equal to k = 3.42.(so that we are in deep
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Figure 14: Forced heaving - transient force Figure 15: Forced heaving - free surface profiles

4.5 Wave Radiation by a Free Surface Pierc- The second term on the left-hand side is the linear hydro-
ing Cylinder static contribution. The acceleration-phase and velocity-

phase components of the force at the forcing frequency
As a last example, we consider the case of a free surface would correspond to the added mass and damping coef-
piercing body in forced or free motion. ficients for the linear problem7.

4.5.1 Forced Motion p
(O) F

l a
) F(Ib) F(

2) IF(
3) FS

(
4)

Forced motions of a free surface piercing circular cylin- 0.1 -0.02 0.61 0.39 0.06
der have been studied quite extensively using linear and 0.2 -0.03 0.62 0.38 0.12 0.02
second-order theory (e.g., [26], [19). Fully nonlinear cal- 0.3 -0.05 0.63 0.36 0.18 0.04 0.02
culations have also been attempted for forced heaving of 0.4 -0.07 0.65 0.35 0.23 0.08 0.05
a circular cylinder by a few authors. Initially ([13], [33]) 0.5 -0.10 0.66 0.33 0.30 0.14 0.09
only the s.,rting phase was considered. Recently, Hwang
et al. [18] calculated the steady state response and made Table 3: Radiation loads - Sindbad
comparisons with first- and second-order theories and with
experiments. We give on table 3 the amplitude of the different har-

As an example, we consider the case of a half-immerged monics as a function of c = a/,/r. The Fourier analysis is
circular cylinder with kr = 1. The simulation is performed performed on the four last periods of the signal. For small
in a tank of length 4 with a forcing frequency w = 3.16 (so values of c, the results from linear and second-order theory
that k = 10). The cylinder center has for elevation: are recovered (e.g., [26], [19]). As the amplitude of the mo-

tion increase, the added mass increases while the damping
Iyc = 0 t _ 0 (23) coefficient decreases. This behavior is in agreement with
Y, = ac sin(wt) t > 0. (24) available experimental observations [19] and other numer-

ical results [18].
Because there is no wavemaker in this case, absorbing The importance of relatively high-order harmonics is

beaches (with a = / = 1) are located at each end of the Te rmrale or 05ati o of hamplitude

tank. We used 200 nodes on the free surface. In order to quite remarkable. For c = 0.5, the ratio of the amplitude
avoi to smll r to lage egmnt izesnea th iner- of the fourth harmonic to that of the first is almost equal to

avoid too small or too large segment sizes near the inter- 15%. This behavior, that obviously cannot be accounted
section, a regridding procedure similar to that introduced for using second-order theory, is quite different from that
in [11] was used when a node came too close or too far from observed for the diffraction over a submerged cylinder. It
the intersection, shows the interest of a fully nonlinear simulation, in partic-

We show on figure 14 the transient vertical force on ular in order to assess the range of validity of approximate
the cylinder as a function of time for ac = 0.5 r. If a theories. If these results for forced motions are very promis-

steady state is rapidly reached, the signal is obviously not

monochromatic and harmonics are present. ing, more experimental data would be needed to make pro-

The free surface profiles corresponding to this case are prer comparisons.
Note that for c = 0.6 the numerical computation breaksshown on figure 15. uwt lu efuie a steady state is reached, apparently because

Once a steady state is reached, we write the force as: the cylinder goes out of the water.
F, + 2r y, = F( ) + F("a) sin(wt) - F00 cos(wt)

0.5S r2 a. w2 V V c

+ ") sin(nwt + 0 (')). (25) 7 Note that for the nonlinear problem the distinction between
n=2 added-mass and hydrostatic components is somehow arbitrary.
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If the MEL provides an efficient and versatile way to
study two-dimensional free surface problems, it cannot ac-

2.0 count for viscous effects (except in a very crude way for
_SINDBAD (YO - 0.9 r) instance for the modeling of bottom friction). This is par-
.. LINEAR THEORY (URSELL) ticularly a problem for viscous effects occurring in the near

vicinity of the free surface, i.e., viscous effects associated
o 1.0. to breaking. Breaking is a major limitation for the simu-

lation because the calculation has to stop whenever a local
"...breaking event occurs.

o> 0.0 It would therefore be most useful to be able to simulate
breaking and associated dissipative effects, even in a crude

-way. Some hope exists (e.g., [30], [4]) for spilling break-
ers, but there is an obvious need for more theoretical and

-1.0 - experimental work on the subject.
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
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Slamming of Flat-Bottomed Bodies Calculated
with Exact Free Surface Boundary Conditions

S. Falch
Norwegian Marine Technology Research Institute

Trondheim, Norway

ABSTRACT x Horizontal space coordinate.

F x-coordinate of fluidoarticle.

y Vertical space coordinate.
The impact of a flat-bottomed two-dimensional body which Y woonent in the relationship between p and a.

falls vertically towards initially calm water is studied C E Vat-on of the water surface.

theoretically and numerically. The flow in the 0 Oeadrise angle.

compressible air layer between the body and the water p Density of air.
yo Density of air at atmospheric pressure.

surface is calculated by assuming that the air is

P. Density of water.
inviscid and the flow is one-dimensional. The calcula- 4 velocity potential.

tion of the flow in the water is based on potential H Streamfunction.

theory, and a boundary-integral-equation technique with W Circular frequency of heave oscillation.

6n Width of element &Iong the x-axis.
exact nonlinear boundary conditions are used. The effect ut Timeseriod between tao timesteps.

of various deadriseangles has been studied, and the

pressure acting on the bottom of the body is calculated

until the body makes contact with the deformed water CHAPTER 1. INTRODUCT!ON

surface.
Section I I general

The aim of this work is to calculate the pressure on a flat-bottomed

List of symbols body which is falling through air towards initially calm water and

Subsequently penetrates into the water. The effect of the entrapped

b Half width of body air between the body and the water surface is specially studied.

c Velocity of sound in air.

co Velocity of sound in air at atmospheric pressure. This is a particular case of the general slamming problem where an

cw Velocity of sound in water. arbitrary Shaped body hits the arbitrary shaped free surface of the

Cp Constant in nondimensional momentum equation. water. or it may be the water that hits the body. The pressure Ond

C C._ Family of characteristic curves, the force acting on the body due to this, will in several applications

g Acceleration of gravity. be of significant interest to marine designers.

h Distance between body and water surface.

H Elevation of the bottom of the body at centerline. The classic examole occurs when a ship is travelling at high speed or

H
o  

Value of H at start of the numerical calculation. in heavy sea, and the bow moves out of and reenters the water. Severe

Ha Aiolityde of forced heave oscillation damage on shipbons has been resorted as a consequenso 8).

K Number of elements on body. Considerable impact forces may also occur when large waves hit cross

n Two-dimtnsional mass of body. members or deckstructures of offshore oirigs.

N Numner of elements in air calculation. finally the Sit4ation Must be mentioned where different kind of equip-

NA tunber of surface elements between x m 0 and x m b. nent Such as a mini-submarine is lowered or lifted through the splash-

Nh Total number of bounda.'y elements. zone. Specially if the eouipent is operated by a crane situated on

n
2  

y-coonent of the unit normal vector. sone kn of floating platform, the relative notion between the water

o0 Atnospheric pressure. causing significant mnact loads

Radius of cylinder.

S So-face of body. The calculation of impact loads in these situations is needed ii, order

S1 Cylindrical surface of snall radius. to determine 'he -ecuired strength of the structures involved.

Se Horizontal control surface far down. For the case of Slamming of a ship bow or lowering of equipment

Sc The free surface of mater. through the splash zone, knowledge of the impact loads is also

S, Vertical control surface far away. eeouired in order to determine in what kind of weather Condition cer-

S time. lain operatins may oe Carried out.

a Velocity of air in x-direction. A better understanding of the whole phenomena of slamming will also

V Velocity of body. 9've irfoation on how to design the shape of the structures in order

V0  Vplocity of body at start of the numerical calculation. to nsze the Insact loads,
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To cclcuste 'he impact Icads ir the zases mentioned here. is very In 1977 Koehler and Kettleborough (1) presented a theoretical study

difficult. The prole'lee to be Simplified. The purpose of such which shows in detail the calculated pressure in the airgap and the

sicnlif'cut'vrs say curtlv be no foci sorneimae solutions to the surface elevation for one of the cases used in the experimental study

real problem%. and pa tly to be a step on th3 road to more soffsti- of Lewlson and Maclean.

ceted methods. For 0S puiurpSo t sec s -cosotible that one way of

making the sisolifi.atios is to decide toW problem into sub-problems. Verhages describes that pictures tahen during his experiments shows

Special phenome,,ons ra- hen ke Slitoted sp'ae'y. that the water elevation is at first noticeable at the edges of the

The cost obvioisS sipl'f~catjon etil be to start to study two- body Just before the plate touches the water surface. fext the air

citmorsna' -orle&.. Anothe" sirpluficatior. which seems reasonable, layer breaks up into bubbles beginning et the edges and extending to

is to soos that the reol prolem ray Io4 spprotmatid by the entry of the center of the body with a speed in the order of magnrtude equal to

a -otiv into cale water m.h. vexitv equLI to tie relative velocity the velocity of sound in air. With increasing tim the bubbles drift

between tte body snd the eoviny flee surface. St:.h s, approxlmation relatively slowly outwards.

is e.pected t. be 7004 it the di ensions of the bed' is small com- Chuang [4) present SOme interesting sketches of the situation after

4 cod '0 the avelerplt' imoact based on photographs taken during experiments. These sketches

dM5 I - l.ove aploxmik.ions are mace by seveal other authors. are given in Fig. 1.1.

The bodies nolved Nay heve varicus different orms Some of them

ltO to certa'n rlie-en mh,ch ne&JS tg be stfe. specially. In

tnv hork it h.s been chosen ' Study flut-bntt.md .*dies. r.

This d.scussian lezis , 'he concl..... the' it is interesting to

study the '...c.inj Particular case. d . i.ich may be characterized

by

- The calculations will be two-dimensional. That means that the
results will be oroxlmately valid for a slender horizontal

body.

The body will be synaetrical.

The water is initially calm.

The body is fulling vertically under influence of gravity end the

pressure force on the bottom. (The body may also have prescribed

motion.)

The body is cooletely rigid.

The body is almost flet-bottOmed. That means it may have a smell

deadrse angel.

or this particular case, the aim is to calculate the pressure distri- w 0

busion on the surface of the body and the flow in the eater and the .

air as a function of time, both before and after the moment when the ," sit .. -*I M

body makes contact with the water surface. 
o . wtwew..

The calculation will include both the effect of entrapped air and the rig. 1.1

possibility of large water surface elevation.

This is a theoretical and numerical study. No experiments have been

carried out, but the results of this work have been compared with In the theoretical work of both Verhogen and Koehler and Kettleborogh
a two-dimensional problem was studied. They assnd that

other works, both theoretical and experimental.

compressible inviscid air layer exists between the body end the water

In the effort to achieve this aim, several simplifications, especially surface. As the body falls, the air in the layer flows One-

on the properties of water and air. will be made. The introduction, dimensionally outwards from the centre of the body. The water is

and the discussion of the justification. of these siaslifications will assumed to be incompressible and Verhagen states that this Is a good

be done in the following chapter, hut they will all be of such a kind approxieation if the velocity of the body do not exceed a few meters

that they will have more or less negligible influence on the results per second.

of the calculation
In both works the calculation of the flow In the eater is based on
linear free surface condition. The pressure distribution Is calcu-

lated until the edge of the body mlkes contact with the elevatedSection I 7 Pachurond

water surface, and Koehler and Kettleborough assumes that the masimum

Until the beginning of the nineteensisties. the theories of von Karen impact pressure is reaches at this time-instant. Verhagen almo cslcu-

(I,' and Wagner (2) was used to predict hydrodynamic impact forces. latcs the pressure in the trapped air bubble after this tfme by a
nimolified method assuming that the pressure in the bubblea nd the

These theories neglected the influence from the air, and in the case

downward velocity of the water surface wfthin the bubble is only aof a flat-bottomed body, von Karman suggested that the eanimuel impact
function of time. Koehler and Kettleborough makes the calculation

pressore was the acoustic pressure of water.

with different deldriseangles. The intention is to predict the uncar-
tainty In experiments due to the fact that in an experimental sot up

Then several experimental and theoretical wOrks was done, which showed

that for the case of a flat-bottomed body the effect of the air bet- is not Dossie to be sure that the bottom of the body Is exactly

-. 'n - -V v-! :tcr srfs l- to in taken into account in

orde- to predict the impact pressure core correctly.

They found that the cushioning effect of the trapped air in the layer Some of the results presented is the papers mentioned above will be

between the falling body and the water surface reduced the Impact used for comparison in the Present work and will then be discussed is
more detail.

pressure to aoproxnimately one-tenth of the acoustic pressure.

The most significant of these works was experiments made by Chuang

(3, 4 and tewison and Maclean (s) and a theoretical and experimental As mentioned in section 1.1 it was the intention in the present work

study ade by Verhagen (6). to calculate Impact pressure both before and after the momient when
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contact occurs. It is then clear from Fig. 1.1 that the method used Finally, it is assumed that the effect of surface tension can be

for calculating the flow in the water must necessarily be based on neglected.

exactly non-linear boundary condition. Such a method has therefore

hewn used, and this is the main deviation from earlier works. It has For the same reason as for the water, it is assumed that the air may

however not been possible within the limit of the present research be treated as inviscid.

project to fully develop a method which calculates the pressure on the However the compressibility of the air will not be neglected. This is

body during all phases of the imoact. The computer programe which necessary because the calculation shows that the flow in the air heco-

has been made, calculates the flow in the air and the water prior to -es supersonic.

the moment When contact is made between the body and the water sur-

face. Verhagen (6) assumes the flow in the air to be isentropic (.reversible

adiabatic) which means that:

CHAPTER Z. OVERALL -ESCRIPTION OF THE PROBLEM ANS THE SOLUTIONi P A V y w 1.V

0 0
The problem to be solved is the one described in section 1.1. Fig.

2.1 shows the situation at time t 0 0 which is the starting point of On the other hand Koehler and Kettleborough (71 assumes that y is

the numerical calculation. closer to 1.0, Which is the value for an isothermal process, and he

argues that the temperature will be kept constant because of all the

usterspray in the gap between the body and the water surface.

In this work both values are used. For the idealized case which is
studied here, and also for the experiments used to compare with, the

b heat-transfer from the air in the gap to the surroundings wIll be
negligible during the very short time of the pressure build up, which

means that the flow in the air will be Isentroic. This assumption

will be used through the paper if not otherwise stated. On the other

hand in a more realistic slsaming situation where the water is not

initially calm, and there is wind and waves, the situation will be

different. Because of the spray in the air, the contact-surface bet-
wean the air and the water Hill be very large, Which means that the

heat transfer will be murh faster. It is possible that this causes

rig. 2.1 the flow in the air to be isothermal.

When the body aporoaches the water surface, the pressure in the air

A r'ght-handed, earth-fixed coordinate system is used with the x-axis between the body and the water starts to build up at the same tile Is

horizontally, the y-axis vertically and positive upwards, and the ori- the ar starts to flow outwards from the centerline towards the edges

gin at the intersection between the undisturbed water surface and the o' the body. The pressure rise causes the hater surface to defore,

centerline of the body. b is the halfeldth of the body and a is the and this situation is illustrated in Fig. 2.2.

deadrise angle. The elevation of the keelpoint (that is the intersec-

tion point between the centerline and the bottom of the body) is

designated H(t), and the velocity of the body V(t). V is defined to y

be Positive upwards.

'he numer-cal calculation starts it - ) When the body has reached the

position M * Mo, and the velocity is V A V
o
.

Because the effect of the viscosity in the water is confined to thin

boundary lsye'S, the water may be regarded as inviscid. This means i Ixt)

the -.e fiow in the water will be irrotational and it may be charac- Mx,t)

terized by a velocity potential *xoy,t). x

AMte the ionent uhen tve bottom of the body has Passed the eater sur-

face and continue to move downwards through the water, it is possible

that vorticity will be shed from the edge of the body. This effect, rg. 2.2

however, Will not be studied in this Work. It will probably have

negligible influence on the pressure on the bottom of the body. On

the other hand, if a study of the effect of a secondary impact as Fos exoeriments it is known that the pressure will not exceed the

shown in Fig. 1.1 , as well as an exact calculation of the pressure ateosoheric pressure significantly until H o< b. This means that the

along the sidexal of the body are to be carried out, it may be flow in the air may be regarded as one-dfmensional, that is the flow

necessary to take this vortex shedding into account. is parallell to the x-axis and all quantities are a function of x and

t only. This assumption has also been made by other authors (6], (M.

Whether the Water might be regarded as incompressible or not depends The elevation of the water surface is designated C(x,t), and the

on whether the duration of the impact is large compared to the time it distance between the body and the water surface is hie.t). The rale-

takes for a pressure shock wave in the water to travel a distance tionship between these two is

equal to the half Width of the body. If the width of the impact

pressure-time history curve is called At, the half-Nidth of the body h(x,t) A Hit) . f x - ((x,t) (2.2)

it h And th vl'itv of snws in uater in c
0
. then the corndition for

the xater to be regarded as incompressible becomes: The one-dimensional flow in the air is characterized by the horizontal

velocity u(x,t), the pressure p(x,t) and the density p(x,t).

0C As mentioned above the pressure build up in the gap under the body

Experiments and earlier works have shown that this condition holds for causes the water surface to deform. Or in other Words, before the

the range of velocity uhich has been studied, so the Water will be body makes contact the flow in the water and particular the free sur-

treated as an incompressible fluid, face elevation depends on the pressure in the air above the water sur-

face. On the other hand the calculation of the pressure in the air
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depends on the width of the gap h(X.t) which partly depends on the P - O
0  

at x a t b (3.4)

elevation of the water surface (x.t). This may be illustrated like

this However this boundary Condition can only be used as long as the flow

is Subsonic. Aftel the flow has become supersonic. the problem will

h(x.t) - p(x.t) - (xt) - h(x.t) (2.3) be completely determined in the region we are interested in without

any boundary condition at x a t b.

The first arrow will be treated in chapter 3 and the second arrow in

chapter 4. The third arrow is given by eq. (2.2), and the arrow from The initial condition will be determined in the same way as in (.J and

p to h indicates that h depends on the pressure through the motion and [], The initial height. HO, of the falling body is assumed to be

tre force on the body. sufficiently above the free surface so that the air is not behaving

Of course, to get a solution to our problem, all calculations have to compressible and the pressure distribution within the air layer is

oe made simultaneously, which in the numerical procedures means that essentially ute.noharic so that no initial effect "Ill be felt by the

all tie calculations will be carried out in each timestep. How this water. At this height the eater free surface will be undisturbed and

is done, is described in chapter S. fo the case H m 0, h(x,p) will be a constant. Since p(x.0) also is

assumed to be constant, an initial velocity distribution may be derived

from the Continuity equation (3.2). Since the problem is symmetrical,

CHAPTER 3. THE AIR REGION u will be zero at the centerline (x - 0). and the result is:

The assumptions and simplifications made in chapter I and 2 which u(x,O) - - 0 I3%

regards the air region, may be summarised as: 
1.0 H

The body is two-dimensional, symmetrical, rigid and flat-bottomed. It

falls vertically under influence of gravity and pressure or has a and hence if the velocity is assumed Constant:

prescribed vertical motion. The flow In the air is one-dimensionl, 2

inviscid, compressible and isentropic. The situation is shown in Ha(.,o) . L 1h x V 01

Fig. 3.1 where the coordinate system and the symbols are the same as h t0 . 02x

introduced in chapter 2.

Using this initial velocity distribution and holding

p(x,0) constant • 
0
o, an initial air pressure distribution can be

obtained from the equation of motion (3.1). With the boundary con-

Y d ion p w P0 at x -. the result is:

b

VH 2 2366
Oiu,0) • * O 

H 
O 

ib
2 
- (3.6a)

pts'tl and hence from eq. (3.3).

x olx.O) - Pc IF (x'O) ) (3.6b)

F. .1he derivation of the initial condition was based on the assumption

Fig. 3.1
that the pressure distribution is essentially atmospheric. This means

-ha
t
.

V
2

For this 61w the eauation of motion becomes Po , 2 - °
H
0

a. Hu . I(3.1)
ax HwHich gives the following restriction on the choice of HO:

-e et?'1 0' cstnuity M VO

5(uwP) - ath) - 0 (3.2)

ne nlaionshio between oressure and density is. "s nust hold at the same time as

p H
O

0 " (1 ) (3.3) No << I

In this chapter h(x,t) is assumed to be known, which means that there which earlier has been introduced as a restriction which is

are three equations for the three unknowns u, p, p. By the use of necessary in order to use a one-dimensonal model.

equation (3.3) p may be eliminated from eq. (3.1), which means that Initial-condition fur the Case 0 $ 0 may be derived in a similar way

eq. (3.1) and (3.2) contains only the two unknowns u(x,t) and p(x,t). and it can be shown that the deviation from the above results is small

These unknowns are to be determined in the region x c(-bb], if

%(O,tk, where tk is the time where the body has reached a point

whe . this calculation is no looger valid. The equation system is < -2.

hyperbolic, and in r-der to solve the problem, initial-conditions at

t - 0 *s needed for both the unknowns. As long as the flow is sub- The problem described here has been solved using the method of charac-

sonic, a boundary condition along X s t b for one of the unknowns is teristics with specified time intervals, similar to the method used by

also needed. Verhagen (6). The method together with a numerical scheme called

CHAR-S is described in ref. (17).

At te edge of the body the air will flow as a free Jet (see (6 and

;T7), .hith means that the following boundary condition should be

used
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CHAPTER 4. THE-WATER REGION 0 (4.3)
at ay a. a

Section 4.1 InTroduction on y m C(xt)

The assumotions and sieolifications made in chapter 1 and 2 which if the-e is a body penetrating the water surface, the boundary con-

regards the ester region, may be suamwarized as: dition on the wetted body surface Hill bet

The problem is teo-dimensional and symmetrical and the water is

initially at rest. The water is assumed to be inviscid and n * V(t) '2 (4.d)

incompressible which means that the flo may be represented by a

velocity potential. The surface tension is neglected. where V as before is the vertical velocity of the body, P is the y-

Two typical situations which wilTl be treated, are illustrated in Fig. component of the unit normal vector to the body, which is assumed to

I.1. be positive into the fluid, and k- is the derivative along this normal
Sn

vector.

Y x The initial condition are set to be-

F . S on the free surface 0 * O (4.5)

The boundary value problem defined by eq. (4.1-4) has to be solved for

each timesten. This will be done by applying Green's second identity

to the velocity potential 4 and the function 4 defined by:

C (.c0 *(X.y) • In x
7

2w (yy)2

where (xI. y ) is a point in the fluil-domain.

We can then write-

1 d,. - Otids * o (4.6)

'he coordinate system and the notation is the same as introduced In S An dn

chapter 2. In this chapter it is assumed that the pressure distribu- ehere S' • S'*S. n S
8
aSp i S

1

tion over the water surface and/or the motion of the body 
is known,'

and the flow in the water is examined. There are several methods
which are illustrated in Fig. 4.3.

which may be asotied to obtain this flow. No detailed evaluation of

these methods has been made in this work. It was however a demand

tnatt he method should not have any other restrictions than those *en-

,tioned in chaster I and 2. 
xThe method chosen is a boundary-integral-equation technique with exact .

nonlinear boundary conditios based on Faltinnen (13). This method isI
described in section 4.2. Running of a computer program derived from SF

the method, shows that problems may occur in some situations. The (xOy
problems are connected to the intersection point between the body and n

the free surface. This will be explained in more detail in section 5

4.4.

Some effort has been made to overcome this problems. A modified ver- S,

sion of the method used in section 4.2 has been developed. This is L

described in section 4.3. The modifications have however not bees

very successful in solving the intersection-point problem. rig. 4.3

In section 4.4 some numerical examples are presented and compared by

the work of other authors. S is the wetted body surface. S. is a vertical control surface at

x - ta, S
8 

is a horizontal control surface far down in the fluid, S
F

is the free surface and Si is a cylindrical surface of small radius

S ection 4.2_A boundary-intesral-equat ion technique and with axis through (x,yI) perpendicular to the X-y plane.

Since the problem is transient with the fluid initially at rest, the

Let the water be infinite in extent and be of infinite depth. Since contribution to (4.6) from S, and So are both zero.

we have assumed irrotational flow in an incompressible fluid, there This means that eq. (4.6) can be written as

will exist a velocity potential A which satisfies the Laplace equation

in the iluid
"22 (x uy

| )
) -•yn anx),yl (4.7)

• - • 0 (4.1) (4.7)

3n 2 ay For *x* n nFt), where b
F 

is large compared to the half width of the

e sressure 0 in the air over the water surface may differ from the body b, we can, since the problem is symmetrical, approximate # to the

atmosoheric oresSure O. and since the su.rfar t nstin is nelt-d velocitv potential of a dtiol with tintiu lty in arig and wiv

the dynamic free surface condition can be written as: along the y-axis:

2 2 p-pIFO 1 . (it 2 ( n .( • (4.2) Ait 2 ax ay P 0(Xy) . -At- (4.6)
At 2'A2 

t
y 

0
n (n~y nx2Oy2

on y • C(xt)

where A at this stage is unknown.

ue'e g is the acceleration of gravity. OFt) is assueed to be so large that no wave has reached the points

'ne kinematic free surface condition is: x * IbFit), which means that the free surface outside those points
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-11 coincide with the x-axis. Hence the contribution to (4.1) frog Nf 2

the ort of s with bF I -lWso. y. )  j L

I (t~ ~ ifo yi - el.y;f..I Sn~x'yld y ~ ~ ) 2 '.9n)~y
aftfx~~~~y) aftx0y Y. II

and the contribution from the part of S, with x < -b, is A. A

"°p F ,(x Yv x .v,) ,,
I, 4(' o.y( " oxyx 1 y1  n y jd1 ymAJ(x1 ,y ) (4.0) For Ix I a bF. * is assumed to be given by eq. (4.e). We now assume

a that 0 is determined by this expression also on the element NF,
An

An l*ytical exo-esston for l(x,.y1 ) and J(x,. y) are given in A

-ef. ' mo3Oli

When solving the integral equation (4.7) at each timestep, will be
known on the body by the use of the boundary condition on the body Hence: A a - ONrh - (4.15)

(4.4). and * will be known on the free surface. At the first timestep
#will be known on the free surface from the initial condition (4.5),

which also determines the position of the free surface at thin time,. gathered on the rlqht-hand side of the enuation, we will have for

When the problem has been solved for one timestep, the free surface 1.2,... K,

conditions are used to find # on the free surface and the position of
the free surface for the net timestep. This is doneby the foloing k (y.)2

bytefloigZ A 
0
11(.n

i
)
2 

y y)ds

timesteyping procedure- If we follow a fluid particle on the free .I SS JI

surface, we can write-

ot at infox ayay jr An J S .5

Using the dynamic free surface condition (4.2) this becomes: -- y (4,16)

-g[. - * j • ta .1)Th Ia-an"y y) - (d.11h6

NF € x ).y )2 d

By the use of the kinematic free surface condition (4.3) we can "- a Iy do

further write-

QS *- (4.12) -. F xx yy}d

at ay *dx_ 2j 'l (yy;)
2 
ds

and

'or m n k, k2....NF, we will have similar eguations but with2R9 on the

5-(4.13) oetn -de of the enual sign.
t ax "Pese ecuat'ons may be written in matrix form as

ohe-e xF is the x-coordinate of the fluid particle. A fourth order

nuege-Kutta method is used to perform the timestepping. NO investiga- A * b (4.17)

tons have been done in this work to find out ehether any other

methods would have been useful. mNo-e t-e 4-rnowns are.

When solving the integral equation (4.1), the etted body surface and x * , .... .... NF (4.18)

that part of the free surface lying between x a -bF and x - bF are k l

divided into straight-line elements (see Fig. 4.4). A is an liP lip matrin with elementa:

y n n -. L. 1-2n/o x.y"- -
1 

, 1n) )y-y) dsx,y)
yt SS~xy

liP x im,....li NF

A x.b
f  

Jml ....k (4.1)

I. 2 Aij - I 1n/-i2(y-)2 ds(x,y) - olp6l(;,yi)n3(;1,Y4]x

U s l S j N F

im),..,NF

Fig. 4.4 imbo. .... NF

I I ln 47- -) dn(x,y)

the elements are symmetrically arranged. The total number of elements JI j S S.

are 2NF, while the number of elements on the body is 2K. (For the i-I . NF

situation illustrated in Fig. 4.1a, K will be equal to zero.) (4.20)

The midpoint of element number I are denoted (x.yd), and the surface NF .

of this element will be called Si It is asoumed that both * and At E * dy, - ,2,,..dI

are constant over each element. For element no, i these constants Jahol SJoS

will be denoted *i * (,y),1 and 0- respectively. Cue to the sym-

metry oa the problem it is clear that - and I. nt where #Ij in defined by'

If we now aoly the integral eq. (4.7) NF times, putting (XI,y1 ) equal

to (;,,iy). i # 1,2 ..... NF, the result is:
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I if I * j constant over each element. This corresponds to # varying linearly

over the elements. is this Constant value f - element no. 4.
ant

0 if , J, 3 We now need to introduce for each element two .)nctions w1 (xy) and

-2(xY). They are defined to vary linearly over the elements,

When the algeoru'c equat'on system (4.17) has been solved, the flow in w, decreasing from I no 0. and w2 increasing frog 0 to 1 When moving
along the elemtnt from the tyamettryoine &e outwards,

the fluid will be determined for the actual time instant we are
If we soply the Integral equation (4.?), putting (xyj) equal to

dealing with. In order to step the solution forward, the substantive

derivatives given by eq. (4.11-13) will be applied to the fluid par- 
(xi.yi) the result will now become:

tile at the midpoint of each element on the free surface. We then

need to know u-0 and@± for the midpoints. which can be calculate olved NF. h, w -s lni(- v

.men te equation system (A.17) has been soloed, The timestepping .2p4i ,) to .".yx1

wilt give new values for the velocity potentidal * on the free 
3 SS

surface, and new positions of the fluid particles where these #-values

are valid. Knowing these new positions for the fluid particles, new w 
2  

^-:)-17 dS'y

elements have to be arranged. The midpoints of these new elements . w in/ (
1

y I

Will not always coincide With the positions of the fluid particles.

and in toat case the value of 9 at the new midpoints will be deter-

sited by interpolation. - I 10/i-xi)n(y-y{)
2 

dS(x.yl

How the new elements are arranged and how the interpolation are a Sj.S.j

carried out, are explained in more detail in Appendix A. A(Xy,) + J(xi.Y4)
j  

(A.22)

After the fluid motion has been determined, the Bernoulli equation may By applying the same expression for A as before (4.16) and by

be used to obtain the force on the wetted surface of the body. gathering the known tire% on the right hand side. (4.22) may for

hewever. another procedure is used. This is derived by Faltinsen [13) '1-.2.... K be rewritten as:

and he finds thAt the force on the wetted surface of the body is:

I *•,cnS /,yndt (4.21) 2n, am , . y d

S S S SSSt

Section A 3 A Mlodified Method pK In I i -
3 'S on -xIS*ly-yi)? d

AS mentioned in section 4.1. some problems may occur at the intersec-

tin between the body surfAce and the water free surface. Is an

attemt to overcome the oroolems some modifications to he pre-

viously described method has been developed. The mo,714cat:Ons have f e
2  

1 - m y d13

been based on the following considerations- In the method in section

0.2 new position of the free surface and new values of 0 On the free

surface are calculated by timeStepping Of fluid particles at the mid-N n(_,2Y_, S

poits op the old elements. It is then necessary to create new free h1 f1 n S. y

surfuce elements and calculate the value of # at tht midpoints of

these. One way of doing this is described in Appendix A. However if 
!:co.y,,i J ,lsY,)J;2 it

the curvature of the free surface is large, 
the position of the new

elements are strongly dependent on the details of this new-element- NF

creution-orocedure. TO avoid this it would have been better to USe . pA I - n1. lon/(xx-1 lZ(yy)
2 

dS
the endooints of the elewents as fluidparticles which shell be given Swt ol S.

new position and new *-value by the timestepping procedure. This

would have determined the wee free-surface elements directly. (x 1.1-) I y* S)

Anot", consideration which has been made, was inspired by Lin ea.*. w
2 
aln I d

(14). mnay used the Vinje and Brevig (15) approach based on Cauchy's J - )

theorem and made one modification to this method at the intersection
point. In these methods the velocity potential + and the stroa func- a I2NF -I I a 2 ln 

x -x 't2 (v 
-yi 

'

O~rl 2  hnn0i v )yy2 dS

tion varies linearly over each boundary eleent. * is known on the SNF .NF2

body by the use of the body boundary condition, and * is knows on the
water free surface in the same way as in section 4.2. Vinje and Bre- K

vig chooses * to be the known function at the intersection point bet- * IS Inil(n-u 1

2
vlyyp

2 
dS (A.23)

ween the body and the free surface. The modifica''-- ade by Lin 3.1 I nI3$S $.

et.al. (14) was that they assumed that both 0 and 9 was known at the For I * k- ... NF, the term 2f#l will be on the other side. These

Intersection point, and reduced the algebraic equation system with one esuatitns may be written in matrix form:

equation, Lin t.al. (14) found that this modifications improved the

method and that the problems at the intersection point was reduced. A x

IV a similar modification Could be made to the method in section 4.2,

it would be north trying. with unknons

The above considerations has lead to the following modifications in v ift

the method in section 4.2- the wetted surface of the body and that K lk anf

part o4 te free surface which lies between x a -bp and x a b
F 

are

divided into 2HF elements as before. Now t-:& endpoints of element Ad t~e elements of the coefficient matrix A will now be:

no. 4 wi11 be (.iy,) and a"(x.lyi. 1 ). The velocity potential 9

varies linearly over each element. The value of 4 at the endpoint is

now denoted *, " 4(.1,Y). Hoever 0 Is still assumed to be a

an
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2U6Li(n/.-" 11."- l2 t. the dipole approxiaatios. eq. (4.8), are used far away from the
A, 2 S S In ) 2 dS(x.y) body, it tarS out that the contribution from S@ and S. is Zero. The

NJ tOtr"utio n t"o SF outside x - O
F 
my also be calculated by the use

J.of the dipole approximation in this area. Still assuming that is

co-stant over etch olement eq. (4.28) becomes:

~ 4 A"i 2n4SSr Link0 (4.2)

'.1.2. . .h
0  

Jot 4 F
) .32 ....k

vhnrr a65 is the length of eleaent no. J.

n _ l'.x
4

2,Iy.y7 5 (6.25) Using the tret expression for A as before tea eq. (4.15)), -mis can

S S 2e rewritten :

" , . , N 2
) ASJ (4.30)

A,; dSI tA)-S A F 4'In j
A.- f dv. .yy/,d o

" S sj.j 3* , =

.* awith the unknono ters on the left side.

6JNF [ (x 'Yi)-J(x vyd}_N 2  
This eouation kay be used Instead of one of the equations in the
equation system (44). If equation no. I is interchanged, the new

The eleaents of the vector b is: coefficients &-ra

A j 
n0

jE *,- I an y di

u45 *a~ * 6

SL I dS 2-6 J.ku,.... NFs J-1 1s an xl2(YY) I 6Jj)

-j-I --(J-2) k S-2niIi

(4.26) -j an 4 4.1

1 l/ 1 .') -y dS The iNtroduction of the eq. (4.30) corresponds to the use of * asNF.1 I "1 n inn)i-

SNF*S.NF 2 nknown at the intersection point in the Vinje-Brevig-method. This may

be explained as follomn. If we look at that part of the free surface

k.SF having x 0, it Is true that:

'12-n ln(x'x,).Iy-yj) dS

2*11 0 !hSt 22dsw,- (4.32)

C tO caSe k-0 an Sas as

which means that I i-ds 111 be known if *I, which is * At the inter-

i
2
(y.yi 

2 
d - 2o section point, is &i

v
en.

... I,.a The method described in this section is used in a computer program.

This has been run for thM case of a cylinder oscillating vertically

N; 1) in the free surface. The method has been tried with and without

1 0 1- Is In /(-_ - 1
2
dS interchanging one of the equation in the equation system (4.24) with

J.2 5. I' i i
the tuation (4.30). The only way to avoid instability in the solu-

tion is to interchange equation (4.30) with equation number K0t. This

I w
2
.. xl )2,F(yy)ds 8 means that the equation formed by setting (xl,y1 ) equal to the inter-

S" [ 2 a*s n dS " 6 section point (xku;,yk~t) In the integral equation (4.1), is not used.

In this form the modified method in this section has been compared

with the method in section 4.2 and with the numerical results obtained

-ha n X1 -x) (7y-}2. dSby other authors. This is presented in section 4.4.

N FtS.NF The numerical results shows theat the aoodifted method do not handle the

intersection point problem any better than the method in section 4.2.

in E f 47.7- 11)y-, d (4.2) f the modified method is used in the cane k.0, which means that there
j -1 Inj S jSv is no body penetrating the free surface, it is not possible to avoid

instability in the solution whether the equation (4.30) is used or

In order to step the solution forward, the substantive derivatives not.

given by eq. (4.11-13) will now be applied to the fluldparticles at Instability here means that on the free surface shows large
an

the endpoint for each element on the free surface. To carry out this, oscillations for each element when moving along the surface, see Fig.
ax nd have to be knows at the endpoints. However with the mdel 4.5. This is not unexpected since in this case the eq. (4.1) will be

used here, and ? will generally be singular at the endpoints. a Fredhola integral equation of 1. kind over the entire boundary.

This means that ao nd have to be calculated at the midooints of

each element, and then the value at the endpoints are found by inter- Section L.A Nuferical results and discussion

olation.

The Computer programets developed fore the two methods described in
Another modificaton to the method in section 4.2 is also made. Since section 4.2 and 4.3 are Compared with the work of other authors. For

the fluid is incompressible, we will have that: brevity the two programmes are called SLM and SLM*-od. respectively.

n (4.28) Two different cases are calculated.

5,5¢**.5 ' In the first case both programmes are used to calculate the force on a
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FORMc ON M~INDR IN HEAVE MiOTION

Fig. 4.5 QL- s

Cyl inder with forced vertical oscillation (position of center: ,-o

Yill - He sin wt). The results are comoared with results obtained by

Faltinsen using a orogrAMme based on the Same method descried in sec-

tion 4.2 and oresnhnted in (13), and also with results presented by

Vinje and Brevig 11t). Fig. 4.6 shows the results for the three

values of the &.plitudei Hia/r -0.1, 0.3 and 0.6 jr is radios of tihe

cylinder), ue'r/g - 1.0.
The good conformity between the results for H./r a 0.1 indicates that

there ore no bugs in the programmes, hut the deviation in lbe results
'00 10 2.0 0.0 4. 60

for ii0/r . 0.3 and 0.6 is difficult to explain. MGA4

The reason ohy the case Ha1r - 0.6 in not calculated for higher time _______________________________

Values. IS that the calculation breaks down shortly of ter because of

problems with the element lying closest to tb. Intersection point. In

Fig. 4.7 the elements on the cylinder and the free surfuce are shoes rig. i.6

for the two last tim"steps before the programme SilM breaks down.

As seen from the force curve in Fig. 4.6 the programme Sill-Kod. tend$

to break don even before.

The second case which are used to test the programme. is one which

are presented by Soctors [16). He uses a triangular pressure-element

acting on the free surface of the water. The pressure - leament as a

function of position x and time t is defined by Fig. 4.0. Tb. free

surface elevation ohich is the result of the pressore-element. is

calculated by a method ohich 'S based on potential theory and with FRoCE ON CYiLINDER IN HEuVc MOTION
lin'ear free surface condition.

p.

5~~W 5 A/ 0.0

-1 0 1 0 I 2

Fig. 4.0

In Fig. 0.9 results presented In [16) are compared with result. L

obtained by the programme Sill. because Sll Is based on exactly free

surface condition, the value of tb. parameter Ax has to be chosen.

Since the intention is to compare with the liner case. tb. parameter

an has to be chosen in such a way that the slope of the free surface OM.0 L.
is small, From the figure it is Seen that the. maximum value o1-

pwgC/pO is appronimately equal to one. So tb. choise has been made;

#mgAx/pO n 100 or ax m 1000 a.

rip. 4.6 b
The agreeeent in the results are good, and since this case are very

4Wieir in the %lumis ruse for lb. ti me-eriod before lb. body makes

contact with the muter, the programme UKl seems to be well suited for

calculating flat-bottoired slamming.

As mentioned before the programme S1.14-i40d. is not able to c.ICU8lat

this case properly because iton the free surface oscillates when

moving along the surface.
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FOXEc ON CYLINDER IN WfAVE MOTION OF FLAT-k0 ttOliO SkLO4IRG

As mentioned at the end of chapter 3 and A the programme C1HAR-S which

hence omptstsuw: was bated on the method described In Tel. (ll1 and the program"e
Kutu- *0.6 Sit which "as developed from section 4.2, will be used as subprogram-

0men in the overall calculation of the (lat-bottomed slaoming problem.

For each timeStep CHAR-S is used to calculate the pressure acting on
the water surface between x a*b and It a b. Outside these points the

ressure is sot equal to the atmospheric pressure. the value of the

Pressure at the midpoint of each free surface element are then used in

evut inn (4.11) in order to step the solution in the fluid forward.

yu.onj. /Is/ in the programme CHAR-S it is necessary to use much smaller tiMentep$
- L than will be used in the overall programme.

When the solution in the water region has been obtained at time t

than the Pressure in the airgop at t3 will be calculated. In this

____________________________catrtation hia.t) will be needed, and it is found by the use of
10.0 1:0 2.0 '4near interpolation between his~tj.1 ) and hix.tji.

OMEGA I.

'o calculAtod pressure distribution in the airgap and the above
Statement that the Pressure outside the gap IS set equal to the

Fig. 4.0 atmosphenric pressure together results In a pressure distribution
arting on the water surface which is not smooth at the edge of the

body.

Thu prossuro distribution before and alter the flow in the air has
reuched supversonic %Deed are illustrated In fig. 5.1.

lI- a reral case however the pressure distribution "Ill probably be
smoothed out over a distance in the order of magnitude equal to the

oldo, of thn airgap at the edge (see (61). In the present numerical

ritrutut,on, only the value of the pressure at the midpoint of each

------ rtrw surface elenent it used As input to the calculationoftelw

t 2.067 n the fluid. This means that the pressure distribution are amoothed

- 67 
out sver a distance equal to the 

siZe of the surface elements.

2 .ftee 
Phe litna hu rea hed

ran 4., soundary wienents for circular cylinder in forced sup",oonlo speed
heace motiocc, Yftl - 11,51ni-0, 11/r - 0.6, 1Cu -10

SIMACE cELEVATION OE TO PFIScoNE~ EL~EEN

-b b

Fig. 5.1

?he pressure. P. under the body And the surface elevation, . will be

calculated as a function of a and t. The parameters involved in the

Oroblem are;

Y!Dow I/walfuldth of the body i a
t1.4GMOeudrlse anglee -

wASS of body IS [hg/mj

, V t L 2Position of the body when the

rivrerical calcuIation starts ' m

Velocity at this point V0  (a/nj

-0.DnSlty 0. werp
0  (hg/maj

Atmospheric pressure 0o (Pal

__________________________________________________Oensity of air at Atmospheric pressure P0  (hg/cal

Adiabatic consta't y 1-1

rig .1 Acceleratloi of gravity 9 [c/S.1
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One ooss.bl choice is then to write that' ! order to Coaoare with the results presented by Koehler and

p/po and ()b are a *unction OF- Kettleborough (I], case A in table 5.1 has been calculated with three

diffeent deadrise, angles, In [1 y . 1.0 was used, but there is noStVo Vo V_ H Ho p0
X tvo o b , * , , soec'fic information about the number of elements. However the

S g b P11 figures in [7) indicates that NA - S. These values together with

NF - 20 has therefore been used in this comparison.

Here Vo/Iyp.O/po Is again the Mach nueber, and Vo/g has the same

form as a Froude number. Instead of H/Ab
2 

it would have been The results are presented in Fig. 5.2-S.

possible to use Mg/pob. but since the motion of the body will be dol- Fig. 5.2 compares the pressure-time history at the centerlite. The

nated by its sass and the pressure force on the body rather than the curves from [7] are translated along the t-axis so that the body has

gravity force, the former will be used. the position H w 0.0 at the same time as in the present calculation.

In sdition to these parameters hich describes the physical problem. In order to see the effect o- the choise of y, case A with 0 - 0.0,

the computer programe also contains parameters which defines how the NA • 5, NF - 20 has been calculated also with y m 1.4. In Fig. 5.10

free surface initially is divided Into elements. as well as the the pressure at the centerline is compared for the two values of the

interval 6tit) between the tilesteps. adisbatconstant.

In the Calculations which have been made with the programme, free

surface elements of eual length have been used. The number of elf- In section 5. it nas mentioned that the discontinous pressure at the

meets between x 0 0 and A • b is called HA, and NF is as before the edge of the body will, in the present numerical model, be smoothed out

total number of elements along the positive x-xs. This means that over a distance equal to the size of the surfare elements. To see the

the end of the last element is at the position, effect of this, case A with 0 - 0.0, y * 1.4 has also been calculated

with NA - 20. NF * 80. The results are given in Fig. 5.11-12. The

x - b, - NF b Influence on the pressure and the surface elevation at the centerlineto
is small, but the Shape of the free surfoce and the pressure close to

In the CHAR-S subprogrAmie. which calculates the pressure in the air. the edge of the body is very different.

the number of elements along the x-axis between x - 0 and x/b a 1.0 Is NA - 5 is probably far to less to handle the steep pressure-curvature

N - 2 NA. at the edge of the body. and this value of NA has only been used in

the present work to make the coparison with the results presented by

Koehler and Kettleborough [7.

It may even be that NA s 20 is to small but further investigation of

this has not been done.

Three cases which has been investigated in the litterature will be

used for comparison. The first one is one of the cases which "as As mentioned before, case A has also been investigated experimentally.

measured exoerimentally by Lewison and Maclean (5]. The same case was In (s) time-history curves at x/b 0.0, 0.5 and 1.0 are prestend. If

also calculated numerically by toehler and tettleborough (TJ. The those curves shall be compared with the present calculation, it is not

model used by tewison and Maclean was completely flat-bottomed, but clear where the t-axis shall start since the position of the body is

Koehler and Kettleborough made calculations for the same body but with not given. The sae nroblem also occurs when pressure-tim history

three different deadri%e angles IA . 0, 0 - 0.25 and a 9 0.5 deg.). for case 8 and C are to be compared with the curves presented in [$).

The two nect cases was investigated both experimentally and numerl- Koehler and Kettleborough assumes that the maximum Impact pressure is

ca;ly by Verhagen (6e. The model is the same for both cases but two reached at the moment of contact between the body and the water sur-

different drop heights are studied, face. This would of course solve the problem of locating the t-aXis

Data for all the three cases are given in table 5.1. since the time of maximum pressure is given in the curves presented in

[5) and (6). However the maximum pressure will probably not be

_______ _______ ______ - -reached as she moment of contact. The argument for this is that at

Case b M Oropheight Peference the timeinstant when contact is mde. results from the present nueri-

[i [kg/i ]  (n) Cal method shows that the downward velocity of the water surface has

not reached the same magnitude as the velocity of the body. Which

means that after the time of contact the airbubble under the body,

0.will be compressed for some period of time.
A4014.0 1.52 Is). (T) Verhagen [a] uses a simplified method to calculate the pressure in the

1 8 0.2 20.0 o.0i (1 airbubble after contact, but it is not indicated on the curves at what

L 0.2 20.0 0.40i [6) time the contact is made.

Table 5.1 Because of this problems, any direct comparison between the pressure-

time history curves presented in (6) and (6) and those calculated by

In the present work the starting point of the numerical calculation is the present method has not been plotted.

selected so that Ho/b - 0.2 in case A and C, and Ho/b a 0.1 in case C, The results of the present calculation of case 8 and C are instead

and then VO is calculated by essuming that only gravity forces are given I Fig. 5.13-16.

acting prior to this moment. For case A No was selected to be the

same ns used by Koehler and Kettleborough. The values of Ho and The pressure on the centerline at the moment of contact as presented

V. for the three cases are given in table 5.2. In Fig. ,5.12, 14, 16 is significantly smaller than the eaximum

pressure found in (51 and (6).
Koehler and Kettleborough explains this deviation for case A by

Ce vo l assuming that the larger maximum pressure ootained in experiments

occurs because the flat bottom of the bcdy may not be coPletely

{ ] /parallel to the water surface. This explanations may well be true,

-.. as the very large influence of small variations in the desdrise-

IA 0.3 -d.8H angle, which has bees calcualated both by Koehler and Kettleborough

I 5 0.02 -"0.26 It! ard in the oresest work, support this.0'i.0, 1*66
However the deviation between the pressure calculated at contact by

Table 5.2 the oresent method and the maxl pressure obtained in experiments

261



may also be partly explilned by assuming that tha, maximum pressure PRESSI DISTRIION0

will not he reached until a short time-period after the calculated

contact. The argument tar this was Stated abooC.

THETA - 0.00 d.9F b - 1.100
M4 4044.000 k/
40O 0.8005

PRE0&44E-IME HISTORY CURV4E V0 -,N2 al:1 0
0.0 ~ ~ ~ ~ ~ ~ W/ 0.0. . . . . . . . 2.0

419. 0.4 0.11111000.

9.NAC ~EV~I10f O P00113110000

10.~~~~~~~AC6~~~ 9~VIC4 M 0116 ~ 90 ~I . 0 00 d
II 4 400k/
l O .100 a0

0.00E20!A0: 0.00 1ag0 1:2 1! 6~ 'l

41~~I A, 44.00.09/

0.10 00. .4.96 s/a ;s tOO/b. 0.110000

0 ~~tVO/b0450

THETA 0:2W

b/

444. ~ ~ N .. 00c . ..

rag. 0.1 1seA.000
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P".96 ISR&0L PRSS51M DISTRIBUTION

TK TA - 0.250 dog T600 1 0.10 .

"D 0.30 I's, 0.100.
VO -4.8 V1. 00- -4. .8W

wF 20 NF. 20

t00/b - .60000 0/A .10

0.64100 0.132000
0 .684600 0.108 0. Mew0 ..6I8I0

0.600000.609,200
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SURFACE CLEVATI ONAN) fIO1 Oe1 1 y CHAPTER 6. CONCtLSIONS

The discussion at the end of the previous chapter shows that it It

T .necessary to calculate the pressure on the bottom of the body also

b o 0.2uo * after the ti me of contact between the body and the elevated water Sur-

S 20.0400 k I face. Without such information it is not possible to comare the

6V alS -2.65 /d pressure build-up calculated in the time-period before contact by the

o Ko * 20 present nuerical method with experimental results.

tVO/b"- 0,1820 As regarding the calculation of the flow in the water, this work*has01910

: 0.192 shown that the method described In section 4.2 may be used In the pre-
sent situation without instability problems, despite the fact that the

integral equation which is used Is a Frodhola integral equation of 1.

kind along the entire boundary. The comparison with Doctors which was

made in section 4. also indicates that the surface elevation due to a

pressure distribution acting on the water surface is calculated quite

correctly.

For the purpose of calculating the flow in the air, three methods have

been used. They suOurt each other, but no independent comparison

.1th other results has been made.
x/b

The results of the present work shows that the influence of a small

deadriseangle is very large.

rig. 5.15 Cast c. Y.4 The present work alto shows that the smoothening of the calculated

discontinuous pressure distribution has S large effect on the shape of

the water surface and the pressure close to the edge of the body.

REFERNCEs

(1) von Karman, T.H., "The impact on Seaplane Floats during
Landing', NACA TN 321, 1929.

(21 Wagner, H., Utber Stoss und Oleatvorgange an der Oberfliche von

FPIssigkeiten-, Zeltschr. f. Angeweundte Natheatlik und

PRESeic olSTslJRTiON Mechanik Band 12, Haft 4, 1932, pp. 193-215.

13) Chuang, S.L., 'Experimental Investigation of Rigid Flat-Bottom
Body Slaming', OTNSROC Report 2041, 1965.

b - 0,200
H- 20.00 kgd (4) Chuang, S.L., "Experiments on Flat-Bottom Slamming", JournalHal • .0 0o
V0 -2.0'0 wie of Shil Research, Vol. 10, No. 1, 1966, pp. 10-17.

NA 20
W S (S) Lewison, G. and Maclean, W.M., "On the Cushioning of Water

tvo/b - 0,19f0 Impact by Entrapped Air", Journal of Ship Research, Vol,

70510 12, No. 2. 1968, pp. 116-130.

161 Verhagen, J.H.G., "The Impact of a Flat Plate on a Water

Surface', Journal of Ship Research, Vol. 11, No. d, 1967,

o. 211-223.

f7l Koe'ile, SR. and Kettleborough, C.F., "Hydrcdynaalc Impact Of

a Fa;lfng Body upon a Viscous Incompressible Fluid', Jour-

nal of bhip Research, Vol. 21, No. 3, 1977, pp. 165-181.

0.0 0.2 0.4 0.6 0.0 1.0 6.2 .4 1.6 1.e e2.0 (S' va-a.nOto, Y., lids, K., Fukasawa, T., Murakami, T., Arai, i.

and Ando, A., "Structural Omaism Analysis of A Fast hn

Oue to Bow Flare Sliaming", Int. Shipbuilding Progress,

Vol. 32, No. 369, 1905, pp. 124-136.

Vi
7 

0.76 C..e C, -.6.4 r9I Abbot, H.s., "An Introduction to The method of Characteris-

tics", American Elsevier, hew York, 1966.

!.0! Aces, W.F., '"Nhjerical Methods for Partial Differential

ousations", 2. edition, Academic Oress, 1977.

265



(11) Landau. L.O. and Lifshitz. E.R., "Fluid Mechanics", Pergamon Sose of the endpoints cannot be found in this way. (See Fig. A.2.)

Press. 1959.

(12! Lister, H., "Mathematical Methods for Digital coeputers",

edited by Ralston, A. and Wilf, H.S., John Wiley & Sons.

Inc., 1960, pp. l6S-180.

(13! Faltinsen. O.M., "Nuaerical Solutions of Transient onli nar 1' Ps

Free-surface Motion outside or inside Moving Bodies. Proc. 0, P. js

Second nt. conf. Num. Ship Hydro., Berkeley, 
Sept. 1971.

op. 347-3 7. 
y 

tb F

(41 o. 3.., e.man, J.N. and Yue, D.K., "Nonlinear Forced L

MotionS of Floating Bodies", Proc. 15th Symp. Naval Hydro-

dynamics, Hamburg, Sept. 1964, Session 1, pp. 1-15. 7±g. hO

(15! Vinje, T. and Brevig, P., "Nonlinear Two-Dimensional Ship

Roteo-s
" , 

Proc. 3rd Int. Conf. Num. Ship Hydro., Paris,

June 1981, pp. 257-266 (See also "Nonlinear Two-Dimenslonal The endpoint P4 in Fig. A.2 is the intersection point beteen I and

Ship Motions", IS Report No. 18, NHL, Trondheim. 1980). 1 .

Endpoint P. "s the intersection p'int between 1 and 1

!161. Doctors, L.H., Solutsons of Two-Dimensional Slamming by Means The y-coordinate of endooint P. is-

ot Finite Pressure Elements", Proc. 3rd Int. Conf. Mum.

Shio Hydro., Paris, June 1981, pp. 559-577. y(
5 

) " 2 y(Q.) - y(P.)

:17: Faith, S., "A Nuaerical Study of Slamming of Two-dimensional and the x-coordinate is:

Bodies-, Or.ing.thesiso Division of Marine Hydrodynamics,

The Norwegian Institute of Technology, 1986. x(P) . x
b

The y-coordinat of endpoint P is.

This appendix describes how new elements on the free surface are y(od - 2 y(Q) - y(P)

generated and hos the velocity potential * at the midpoints of the new
elements is calculated in the programme SLM which is based on section and the x-coordinate of endpoint P is found by the condition that

4.2. P shall be on the body surface.

Suppose that the fluid-particles at the midpoints of the old elements The midpoints of the new elements will not coincide completely with

on the free surface are given new positions by the use of the time- the points Q, which is the position the fluidparticlen was given by

stepping procedure described in section 4.2. These new positions are the timestepping procedure. The time-steping also gives new values of

designated Qi (I I l.... 4) in Fig. A.1. * at the points Q. The value of * at the midpoints of the new eIe-

cnts are then calculated by linear interpolation along the free sur-

face. An examples of how this is done in detail is illustrated in

Fig. A.3.

0, and e are the values of the velocity potential at Q, and Qa .

Ol

Fug. A.1

P S

For the ne elements which will be generated, the position of the elme t.3
iht enoont of an element s comon ith the position of the left

enooint of the next element.

-he pos'tion of the endpoitn P lying between Q, and Q in Fig. A.l is

found as follows P is a newly calculated endpoint, and we want to find *, (new) at the

ne midpoint Q(new). s. is the distance PQ., s the distance

-s tne straight tine through Q, which Is purallel with the line PQ and s in the distance PQ,(new). The following expression for

between Q, and Q,. the new velocity Potential is then used:

I is te Str4ight line throngh Q which in parallel with the line

netveen Q. h inQ.. *(e" s( ,

1 is the normal at the midpoint on the lime between Q, and Q- i. i

P :g the intersection betheen I and 1

P is the intersection bet"teer I 9nd 1

aid finally P is the midpoint between P and P,.
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DISCUSSION Author's Reply

by J. Matusiak
This is of course a most interesting and

My question concerns the importance of air important question.

cushioning loads. First of all, since I only carry on the

It is obvious that in a case of flat plate calculation until the moment when the body

inspecting water surface it has a very makes contact with the water-surface, I do not

pronounced effect. However an increase of find the maximum pressure. Secondly, I did not

deadrise angle might significantly increase an make any comparison with slamming loads

"escape of air" and thus decrease its calculated without the effect of air cushion,

influence on slamming loads. Did you conduct a so I don't know the limit value of the

numerical experiment in which you calculated deadrise angle. But if you look at Figs 5.5-

loads (both pressures and total forces) for 5.8 in the paper, you can see that a change in

the air cushioning being included and the deadrise angle of half a degree gives a

disregarded. If so what is practical limit dramatic change in the result. So my guess is

value of deadrise angle for which air does not that the effect of air cushion will be small

cushion the slamming loads? for a deadrise angle in the order of one, two
or three degrees.
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Pressure Transients in Transitional Boundary Layer
over a Solid Surface

Sin-I Cheng
Princeton University

Princeton, USA

In classical hydrodynamics(1 ), a velocity
I. INTRODUCTION potential 0 with ui - vo - 8/8xi 0 is

introduced for. an irrotational (co - v x u - 0
flow, the continuity equation is reduced to v7

The Navier-Stokes system of equations of 0 - 0 which can be solved without any
an incompressible fluid, upon neglecting the reference to pressure under suitable boundary
gravity and other extraneous forces, stands formulation. For steady state potential
as: flows, the Bernoullis relation

p + pu2/2 - B as an integral of the momentum
Continuity: A - auu . 0 equation enables us to find p where.B can be

8xi (1) evaluated from the boundary data. For time
dependent flows, B- 8 /8t depends on both the

Momentum, LUL + u j Li. 1 ap+ a initial and the boundary data so that pressure
at axj p axi axjaxj transients are not so easily determined from

(2) the Bernoulli's integral even for potential
flows. The pressure p(t,x) and the velocity

The continuity equation (1) is a limiting form u(t,x) should be solved simultaneously from

of equations (1) and (2).

8Xi p. dt ( + uj a)p In the absence of a 8p/at, (1) serves asxi  p dt P a(3) a subsidiary condition that the correct p(t,x)
must evolve simulataneously with u(t,x) so as
to keep the velocity field solenoidal at all

for a compressible fluid, when dp/dt vanishes, times and everywhere. In the computational
solution of some discrete form of (1) and (2),

For a compressible fluid with a barotropic we can only solve them iteratively. We hope
Foreatn copressie flud wtas ar c that the successive iterations would yield

relation p(p), equation (3) stands as better approximations to the pressure and the

a a_) _ --(i) (3a) solenoidal velocity fields and that thet+uj P " pc ( axi  sequence might eventually "converge" to the

true solution. Given a solenoidal initial data
where c2 - dp/dp is the square of the speed of ui(O) at t - to and the corresponding initial
sound in the medium for the specified pressure field P(O). We wish to find ui(I)
barotropic thermodynamic process, which speed (to + 6t) that is solenoidal at to + 6t and
of sound becomes infinitely large for its corresponding p(l)(t 0 + 6t). We do not
incompressible fluids. Equations (2) and (3a) know the evolving pressure to advance ui from
define an initial value problem with the (2) throughout the interval 6t. Hence we take
specific choice of p(p) and the intial dataa it to be the known P(O) - p(tO, x) or some
for the solution of the four scaler unknowns p otherwise conceived pressure field P(O,1) for
and ui, i - 1, 2, 3. Equations (1) and (2) is evaluating the gradient ap/axi throughout x
a singular limit of (9) and (3e) when and during the Interval 6t. Equations (2)
d/dt p vanishes in the incompressibility then give the estimate ui(O,1) of ui(l). This
limit. There is no explicit means to advance estimate of ui(O,l) will possess some
pressure in time. residual divergence A(O,1) over the field. We

wish to devise some format to estimate the
correction to P(O 1) such that P(O,2) - P(O,l)
+ 6p(O,l) that wiil'generate a new estimate of
ui(O,2) with a smaller residual divergence
A(Oj); and its repeated application yielding
A(O n) - 0 almost everywhere at some
sufficiently large n.
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By taking the divergence of equation (2), Such computational difficulty of securing
we obtain detailed mass balance by varying pressure

prompts the development of computational
+ L -- a ) A + j Li. methods that avoid the determination of
at* uj 8xj'' Fxxj aXi axj pressure. Since the curl of the momentum

equations (2) eliminates the pressure
S 1 a2  explicitly to give the vorticity transport
P axjaxj (4) equations:

a 2
which should stand as the evolution equation at £ - v x ( x ) - u v
for the divergence A of the velocity field. (5)
Equation (4) is, however, often interpreted as
the Poisson equation defining the pressure where u - V x u
p(t,xi). In particular, for an incompressible (6)

fluid with A - aui/axi - 0, we have and

P _7_2 X -
2 a u xjaxj ui - -V x W (7)

~p " P a x j xi ~ ~

I (eiJ eij - wij wij) (4a) the vorticity w may be advanced by (5) and
4 ithe velocity u solved from (6) or (7),

apparently without any explicit reference to
so that the pressure field p(t,x) can be pressure. This approach has been quite
determined from the solenoidal velocity field successful for flows in two space dimensions
ui(t,x) at any time t. It is often that where the continuity relation can always be
P(0,2) is taken as some discrete solution of satisfied with a stream function, and the
(4a) as a Poisson Equation with the source vorticity vector with only one nonzero
terms estimated from the perturbed velocity component V2

1 T is always solenoidal. The
field ui(0,l) or some weighted averages of vector equation (5) is simplified to a scalar
ui(0,O) and ui(0,1). Alternatively, P(0,2) equation of vorticity transport. This stream
may be taken as some weighted average of the function 0, and hence the velocity-vorticity
solution of this Poisson equation with P(O,l) field, can be solved computationally.
for further iteration. There are numerous Presumably the pressure p(t,x) can be obtained
such alternatives. They give rise to a by integrating the momentum equation
pressure iterate P(0,2) with significant spatially. The pressure so evaluated at a
spurious oscillations that quickly become given point turns out to depend on different
chaotic and apparently diverging with repeated paths of integration even if *(t,x) has
applications. The use of smaller 6t fails to converged to some well defined steady
help. The spurious oscillatory field has to
be filtered and smoothed to keep the results state.( 3 ) Thus the pressure transients cannot
bounded.(2 ) Filtering and smoothing has been be determined with such stream function
very popular and built into many robust vorticity formulation even for flows in two
computational codes. The nature of such space dimensions.
filtering functions is obscure and its
desirable form highly problem-dependent. For flows in three space dimensions, the

flow field evolution is generally visualized
according to equation (5) as the processes of

Clearly, with A 0,1) - a/axi ui(0,l) 0 convection u'vw interaction w'Vu and
0, equation (4) should be used instead of dissipation vA2 w. The effect of vorticity
(4a). To solve (4) as a Poisson equation, we interaction is ofuen evaluated through the
need the estimate of a/at A which may be Biot-Savart Law as a consequence of equation
directly estimated from A(0,1) in a variety (7). Such numerical solutions have often been
of ways, such as +A(O,l )/6t, zero or - referred to as the solution of the Navier-
A(OIl)/6t depending on how (4 ) is supposed to Stokes system(4). Without ingenious smoothing
achieve physically in the iterative and filtering, such computational solutions
procedure.(2 ) Such iterative solutions of p quickly lead, however, to chaotic oscillations
from the Poisson Equation (4) also failed to even at Reynolds numbers significantly below
converge to some meaningful ui(1 ) and P(l) at the critical Reynolds numbers of laminar flow
to + 6t, but led to chaos. Such chaotic instability. Such chaotic oscillations are
fields are numerical turbulence generated by clearly of numerical origin (or numerical
the iterative procedure for solving the turbulence). The question of associated
nonlinear - -stem. They can hardly be pressure field is rarely mentioned. Why
suppressed or damped by any reasonable amount should the computational solution through
of artificial viscosity that might be vorticity formulations for the three-
introduced into the computational algorithm, dimensional flows be so much more difficult

than that of the two-dimensional flows?
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It is simple to verify that a planar II. Analysis of Artificial Compressibility
field will rapidly become three-dimensional Approaches
and nonsolenoidal under its own convective
motion and their mutual vorticity interaction The solution of (5) and (7) with
as is evaluated by the Biot-Savart Law. A nontrivial boundary is not really independent
nonsolenoidal vorticity field is of pressure. On a solid boundary at rest, for
mathematically incompatible with its example, the nonslip conditions require
definition equation (6). A nonsolenoidal I
velocity field violates the continuity V V x 0 - - Vp (8)
relation (1). The derivation of equations (5) under the solenoidal velocity and vorticity
from (2) implies solenoidal vorticity and the fields. Any approximate formulation of the
derivation of equations (7) from (6) implies vorticity boundary data in the solution of
solenoidal velocity. The popular approach of
considering vorticity transport and (5), such as .vx - 82/axjaxj ui evaluated
interaction in discrete form without due with the previous iterate, is actually some
attention of retaining solenoidal velocity and approximation to the spatial gradient of the
vorticity fields is fundamentally pressure field on the solid surface. With the
questionable. It is often tolerated in the appropriate pressure boundary data on the
construction of approximate solutions if the solid surface and those at infinity (or other
residual divergences could be controlled to closure surface), equation (4) or (4a) will
remain small, and the global mass define the corresponding approximate pressure
conservation can be monitored and likewise fields. The iterative solution of the
maintained. Thus, many forms of Mark and vorticity transport equation (5) with
Cell (MAC) and the Particle in Cell (PIC) successive approximate boundary formulations
methods were developed as early as 1950's for on the nonslip surface is equivalent to an

integrating (1) and (2) by introducing iterative process with the corresponding

Lagrangian particles to track the mass balance sequence of approximate pressure field.

of many sub-ensembles represented by such Accordingly, the iterative solution of (5) and

particles. Alternatively, the Navier-Stokes (7) through the intermediate variable

equations may be integrated in some mixed vorticity is simply an alternative form of the

Lagrangian-Eulerian formulations. The pressure iterative solution of (1) and (2) in

calculated flow field can appear quite terms of the primitive variables p and u1 . It

reasonable and even be made to reproduce suffices, therefore, to study the iterative
selected details of global experimental data; processes for the solution of (1) and (2) in
but adequate pressure field is yet to be primitive variables, ui(t,xj) and p(t,xj) , to
recovered from the computed velocity field identify some property conducive to a
that is not quite solenoidal. converging iterative process.

For flows in three space dimensions the We shall show that the iterative
velocity vector can be represented as u - V4 + processes described in the previous sections
VxA where the scalar potential 4 is defined attempting to reduce the residual divergences
through V24 - 0 and the vector potential A is cannot converge for nontrivial initial
related to vorticity as w - V x V x A.. The boundary value problems in three spacedimensions over a drag body (or surface).
pressure and the velocity transients are Freninc e sal refe o se
clearly not solely determined by the evolution For convenience, we shall refer to theseof vrtilty alne.For he oluton f 4methods as "Artificial Compressibility" in
of vorticity w alone. For the solution of 4'iwo qain(3 htayrsdaand w (or V x A), the nonslip condition u - 0 view of equation (3) that any residual
is split into normal and tangential divergence A - aui/axi represents the
components and applied separately. There is "condensation" or the rate of fractional

variation of fluid density, i.e.,no guarantee that the sum of VO and V x A will vari i lid desty, o e.,
satisfy either. It is not surprising that "compressibility." The sequence of iterants
computational solutions of such stream may be interpreted as describing the
function-vorticity formulation can hardly be succession of "compressible states" which, in
keep bounded without constant and repeated the limit of small residual divergence and
keepoouhindend wiuctnt. andle r ted icompressibility, was hoped to converge to the
"smoothing" and "filtering". While it is limit of incompressible flow. (5)(6)

possible to devise ingenuous "filtering"
schemes to reproduce some preconceived
solution, we hardly understand their physical We describe the succession of such
basis. Therefore we attempt to analyze the artificial compressible flows by the discrete

situation and then develop a computational equivalent of the following set of partial
algorithm free from such uncertainties. differential equations:

L - - .. 8u.axi (9)
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au+ Uj , With c non-negative the quantity E - p u2/2 4at axP £ p2/2 can serve as the measure or the
i a2 magnitude of the set of computed results,

( + Fi) + converging (or diverging) if aE/at : 0 (or >
0) at all later times.

Here, c is the function that describes how The first volume integral on the right hand
6 (0,1) - p(0,2) . p(O,) is evaluated from side of (12) represents viscous dissipation
A0Ml) in the iterative correction scheme to which is always negative and stabilizing. The
achieve A(O,n) - 0 for the time step 6t. last two surface integrals depend exclusively
It clearly depends also on the details of the on the formulation of the computational
scheme of discretizing (9) and (10) for boundary. Then for a given boundary
computational solution, formulation:

(i) The convergence behavior of an iterative
For a physical medium with Sp/6p ~ pc2 > scheme depends only on the choices of Fi

0 and A - p'1 6p/6t, e is always positive and (txj), i.e. the momenta carried by the mass
vanishes as A - 0 in a physical limit process associated with the residual divergence A, not
of approaching an "incompressible" state the details e how the pressure correction 6p
through successive "artificial compressible is evaluated from A. In other words, it is
states" of decreasing compressibility. A futile to devise different iterative
residual divergence A in an incompressible algorithms e of advancing pressure from
fluid is a volumetric source of the flow or residual divergence as is described in the
the mass source divided by fluid density. previous section, to promote convergence
This mass source will carry with it some A - 0.
momentum which should be represented by some (ii) The boundary formulation that determines
external force Fi in the momentum equation the surface integrals on the left hand side of
(10). Our attempt to construct a converging (12) is important. Computational methods
computational algorithm for the solution of highly successful for periodic boundary value
(1) and (2) is thus recast into finding the problems need not be as successful for
four scalar functions c and Fi such that a nontrivial problems as will be explained
converging solution of (9) and (10) through below.
some discrete equivalent system would exist
(and hopefully unique as a well posed problem) For periodic boundary values problems,
in the limit of A - 0 at all times. It is both the two surface integrals in (12) vanish.
therefore necessary that: The first volume integral is proportional to

viscosity and always negative. Therefore, if
lim C (a) - 0 we choose Fi - puiA/2 everywhere At e-ery
A - 0 iterative steps to render the second volume
lim Fi (A) - 0 integral zero, the iterative scheme will
A - 0 (11) always converge regardless of how the pressure

6p is evaluated from A. The convergence rate,
so that (9) and (10) will reduce to (1) and in terms of the weighted L2 or RMS norm
(2) respectively. The four functions e, Fi expressed as aE/8t globally, is proportional
are otherwise completely arbitrary, and may be to the fluid viscosity (or the dissipation).
distinct for different discretization details The standard L2 norm convergence rate of
through finite difference, finite element, pressure corresponding to a converginig
spectral, or any other method. We attempt to velocity field will, however, vary as c-1/2,
identify first the properties of e and Fi which can be troublesome as c - 0.
that would facilitate, if not secure,
convergence. Actual computational solutions of simple

By multiplying p into (9) and pui into periodic boundary value problems of (9) and
(10) and integrating their sum over the volume (10) with some preassigned small values of c
V of computation, the following temporal and Fi -puiA/2 for different simple test
variation of an energy integral E, is obtained problems have rendered highly successful
where the Stokes theorem has been used to approximations to the corresponding
convert some volume integrals into surface incompressible flow velocity fields (5,6)
integrals over the bounding surface S of V. although without as satisfactory pressure

results. The schemes of discretization and
aE a ( u2 + L dV various other details apparently do not
aT t iv 2 2 matter. Such solutions of periodic, boundary

r as au4 .. value problems can be much improved with

- - a- ) v sr,1ler F and throueh Richardson's
V j Extrapolation etc. The evaluation of the

pressure field is, however, more difficult as
+fVui [ u -Fi ] dv e 4 0 as is suggested by the theoretical

2 result given above. Computational methods,
have often been developed with periodic

r pu2  boundary value and applied to nontrivial
+ A j Xi ( ) dsi + p + ) boundary value problems. The results have
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been mixed. Various filtering and smoothing A reasonable iterative solution for the
schemes can be built into robust codes for pressure transients should be constructed from
computing the velocity fields. They are not velocity iterants that are solenoidal
solenoidal and cannot provide meaningful everywhere and at all times at least after
solutions of the pressure field. some fixed time to, i.e. iterations in

solenoidal subspace. The pressure field
In the presence of a drag (or lift) body associated with each solenoidal velocity

(or surface) in the flow field, the boundary iterate can be consistently determined from
formulation cannot be periodic. The last (4a) unique up to a constant. The evolving
surface integral in equation (12) representing solenoidal velocity field and its associated
the net outflux of the stagnation pressure p + pressure field will have to satisfy (2) or its
pu2/2 over the external boundary, will remain equivalent discrete set.
positive and non-zero even in the limit of A
0. With both viscous contributions small at
sufficiently large Reynolds numbers and with
Ji Fi(A) - 0, equation, (12) showns that III. An Iterative Solution Method

in Solenoidal Subspace
8E/at will eventually be dominated by the drag
contribution, (i.e. the positive surface The evolution of a solenoidal velocity

field ui(0 ) (to) under some prescribed smooth
integral Ed (p + ) ui dsi ) pressure field p(O)(t0) according to equation

i rP 2 (2) will not necessarily produce a solenoida]
velocity field. Indeed the A - aui/Oxi will

and remain positive as A-+O. Thus aE/at will evtlve according to equation (4). There is no
remain positive at sufficiently small A and reason to expect the prescribed pressure field
E will eventually diverge as A-O. Then these p(o)(to) and ui(o) to satisfy 4(a) so as to
iterative scheme of reducing the residual warrant the natural evolution into a
divergence cannot-converge. solenodial velocity field. In any case, the

flow system could be subjected to arbitrary
It is of course possible to choose Fi disturbance of pressure and/or velocity that

sufficiently large all the times so as to have violates (4a) and generate residual divergence
OE/8t < 0, and hence, an apparently converging in the course of time. Therefore we have to
iterative process. This converged solution is, face the question what is the physical meaning
however, not that of (1) and (2) since (10) of such a residual divergence although not
remains different from (2) with large Fi d 0. physically admissible to an incompressible
We do not know how such a converged solution fluid.
might render a satisfactory approximation to
our problem. In any case we never compute H. Lamb(1 ) introduced the notion that a
till A-0 and have to stop at some finite A or residual divergence in an incompressible fluid
c. We could presume that Fi would, from there is "equivalent" to a set of associated
on decrease toward the set of values puiA/2 or "impulsive forces". In otherwords, an equal
the like such that the E would decrease to and opposite set of associated impulsive
some Emin before diverging under the influence forces would annihilate the local residual
of Ed. Such an Emin could suggest some divergence to leave a solenoidal velocity
asympototic approximation to the solution of field, being disturbed by the set of
our problem. associated impulsive forces. This concept has

been little developed; but gives equations (9)
There can be a variety of choices of Fi and (10) a physical meaning different from the

including those ingeneous forms of smoothing artifical compressibility extension of the
and filtering. Such choices may render good equations system (1) and (2) for an
approximations to the velocity field incompressible fluid. The residual divergence
especially if we have some preconceived ideas. A is accompanied by an equal but opposite pair
For such an approximate velocity field, the of impulsive forces -Fi and Fi introduced or
asymptotic errors are concentrated in the developed at any point and any time. The -Fi
pressure field. In terms of the standard L2  will remove the residual divergence A to
norm, the r.m.s. error of the pressure field restore a solenoidal flow field. The Fi
will grow as C 1 /2 which can be very large if remains as the "equivalent" set of impulsive
the velocity field should be nearly forces acting on the solenoidal flow. Thus
solenoidal (c << 1). Thus the pressure (9) can be replaced by (1) with A - 0; and
solution has to be postponed. This is (10) by (i0) with Fi disturbances equivalent
reminiscent of the situation of the to the nonsolenoidal velocity disturbance A.
computational solutions described in section For a given residual divergence A, this set of
II. Our interest in the pressure transients. cq.. vlcnt impulsive Cuzeus Fi is not unique
however, are not well served by such methods and not in "dynamic equilibrium". An
of artificial compressibility including those impulsive force is a point source of
with suitable filter(s). "discontinuous" wave, propagating into the

flow field and modifying the local velocity
and pressure as it passes. The wave will
reflect from boundaries and interact with
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waves trom other sources to relax the p'air ot impulsive ±orces). The relaxation of
disturbed flow field to establish a new such impulsive couples will likewise be
"smooth" solenoidal velocity field with an "p.tential" and the equilibrated vortical
equilibrated smooth pressure field consistent field can be represented as
with (4a) and the physical boundary data. W/ ) ( + z () (to + t) + V (15)
This relaxation process is very fast in an

incompressible fluid where the wave speed (or with the potential function 0 governed by
the speed of "sound") is "infinitely" large.
The dissipative forces of friction and heat V2 - div M(1 ) (16)
transfer have no time to act, so that this
relaxation process is essentially "potential". to be solved with the appropriate mixed
This relaxed solenoidal disturbance velocity boundary formulation for nontrivial problems.
field can be represented uniquely by the If there is an external nonsolnenoidal
gradient of a velocity potential 0 as V vorticity disturbance, take it to be the

U~l)(to+ St (t + S) +VO (3) (l,l). If theie is no external disturbanceu(a) (to + t) - (I) (t + t) + v (13) dvance the initial solenoidal vorticity
to w(Ii) with the vorticity transport

This potential function is given by equation (5) under some approximate boundary

V20- -div (I) . . (11) formulation. Then obtain 0(l,l) from (16)

and can be solved with the appropriate and w(I,I) from (15) for future iterative
Dirichelet and/or Neumann type boundary corrections t-) obtain the converged value of
formulation over the field without altering w(ll). We find it much more convenient to
the physical boundary conditions of u(I). In obtain the disturbed velocity field u as
terms of the relaxed solenoidal velocity u(I) solution of (7) rather than as the induced
from (13), we can solve for the associated yelocity evaluated from Biot & Savat Law.
pressure field p(l) t + 6t) from (4a). This u(1 ,i) is then rendered solenoidal by vo
p() (to + St) and u(1 (to + St) is the first according to (13) and (14). If the updating
physical iterate at the first time step to + of the boundary data for the solution of (5)
St. It need not be consistent with the involves ressure, we would solve (4a) to
discrete form of (2) in stepping from to to to obtain p(. Otherwise, we can go direct to
+ St. As such, they have to be iteratively equation(5) for up-dating (1,1) to (1,2) etc
corrected. We designate this first iterate with some average values of it and p until,
for the first time step p(ll) and ti(lI) etc. .(l,n), u(l,n) and p(l,n) converge before
(i) If there is an external non-solenoidal proceeding to construct solution at to + 26t.
velocity disturbance, take the non-solenoidal
disturbed velocity field as u(I'I). If there In our earlier computations at rather

is no external disturbance, advance the coarse meshes, we usod the vorticity

initial solenoidal velocity u(O) to '(l
1) by formulation which avoids the differentiation

evaluating 8p/8x from the initial data p(O4 of the numerical velocity data to obtain
oe ati ep fthe ivorticity. In flow visualization experiments,
over the time step t. the flow fields are generally described in
(ii) Obtain (1,1) according to (14) and terms of vorticity. We know of no
u(i i ) from (l 13 ) experimentally measured pressure transients
(iii) Obtain p according to (4a) and then for checking or comparing with the presently
choose some average pressure computed results. The most time consuming
the improved evaluation of the spatial part of the solution in vorticity formulation
thesue predie tin o. tis to solve the 6 Poisson equations (3 in u-p
pressure gradient in (2). formulation). The solution of Poisson
(iv). Repeat (i) with the chosen average equation is tedious and prone to numerical
pesiur e u(1,) an oti aeae a fnting instability. We tried many "Fast Poisson
velociten 0(1 2), oobtai anw est e osolvers" extended to 3 space; but adopted the

classical method with experimentally
determined relaxation parameter which we found

remain essentially "unchanged" according to to be flexible, reliable and actually
some specified error norm. Take these considerably faster than most. We adopted
converged values as u(to .4 St) and p (to + also the simplest difference scheme of
St). They will serve as the initial data for forward time and centered space for
advancing the solution to the next time step discretization. Many discrete treatments of
to + 26t, etc.. As a standard initial value the outer boundary in integrating (5) or (2)problem without subsidairy conditions teotrbudr nitgaig()o 2
iterative convergence can be expected with have been tried to minimize the propagation ofmany standard difference schemes (both boundary errors that limits the number of timemant adard andsptifference shm (bot steps of computation before the flow field
temporarily and spaTially) foL buiZZO f development in the center of the computational

region is clearly affected. We tried many but
We can solve (5)-(7) iteratively in the adopted the format of simple extrapolation

vorticity formulation in a similar manner. A normal to the boundary.

residual divergence of vorticity is equivalent
to an impulsive couple (i.e equal and opposite

274



We studied computationally the (iii) A large peak pressure disturbance

development of dist'irbances in a uniform shear of 0(10-2) rapidly evolves into some
flow field between two parallel plates wtih asymptotic pattern of an expanding localthelop pielabtemo n ts owa planes wih a"turbulent" region. The pattern propagates
the top plate moving in its own plane with a and evolves slowly in details, reminiscent of

unit velocity relative to the stationary the circumstances revealed in many flow
plate. The flow Reynold number based on the visualization studies of "turbulent spots" in

separation distance between the two plates is transitional flows(7)(8 )(9 ). The asympototic
3000, a typical value in the transition range. stage of evolution of such large disturbances
Some computations were performed at Re - 300 is well formed at - 50 time steps in our
to verify the stabilizing effect of the lower computations of 45x15x15 resolution in
flow Reynolds .tumbers. Artificial IBM3081, well before the boundary errors
disturbances were introduced at a cluster of appear to distort appreciably the flow field
six mesh points mostly next to the stationary evolution in the center of the computational
plate. We began our study with the coarse field.
meshes (15-45) x 15 x 15 and At - 0.02 on the
IBM 3081 at Princeton University based on These qualitative features are confirmed
vorticity formulation. We introduced by finer mesh computations on CRAY 1 at NCAR
different types of artificial impulsive Colorado, with (31-45) x 20 x 45 meshes and At
disturbances of velocity and/or vorticity - 0.01. We wez. able to observe some flow
components cf wide range of magnitudes. They field details of the evolution in these finer
are artificial or nonphysical since the mesh results. Further mesh refinements to
disturbed velocity (and/or vorticity) field is (45-61x20x45) have been carried out on CRAY 2
not solenoidal and hence Pot physical. Each at Minnesota and CRAY XMP at Illinois for more
such artificial disturbance field u(1 ,1 ) detailed studies of the evolution of selected
and/or w(ll), is accordingly equilibrated to cases. We recomputed some cases with the

olenoidal velocity disturbance field u(I ) primitive variables, i.e. u-p formulation and
,L.. or w(1)) and its associated pressure evaluated the vorticity field by numerical
disturbance p(l) to serve as a physically differentiation of the computed velocity
valid initial disturbance. Both the field. These results of vorticity agree to at
equilibrated u(1) and p(l) are highly least two significant figures everywhere and
oscillatory over the entire field of at all times with those computed directly from
computation, with large peaks and valleys next the vorticity formulation. Thus most of our
to where the impulses are applied. Away from recent computations at fine meshes on CRAY 2
such peaks, the wide spread oscillations are and XMP use the u-p formulation to half the
an order(s) of magnitude smaller. They are memory requirement and the computing time.
highly variable In details. For convenience, The results reported in the next section have
we shall refer to each case as the evolution been computed with both formulations, which
of the impulsive velocity (or vorticity etc.) our graphics can not distinguish.
rather than the natural evolution of the
complicated pair of the physical initial data The peak pressure magnitude of a given
in u(1), c(oM and p(l). initial cluster of impulsive disturbances

decreases rapidly as the cluster receeds from
For unit impulses of velocity and/or the plate surface. Thus most of our computed

vorticity components clustered in different cases are for clusters in the proximity of the
localities, the resulting pressure stationary plate. For such clusters next to
disturbances vary considerably in peak the plate, unit impulses of all vorticity
magnitudes. The magnitudes of their zomponents turn out to be "small" while unit
solenoidal velocity disturbances remain 0(1) impulses of transverse velocity components are
while those of their peak pressures vary from "intermediate" disturbances. Unit impulses of
0(10-2) to 0(10-4). We computed the evolution streamwise velocity component is the only
of dozens of such disturbances. The behavior "large disturbance". Thus, the magnitude of
of their evolution falls into three the artificial impulse appears irrelevant as a
categories, each of which turns out to be measure of disturbance "strength". The peak
characterized by the initial peak magnitude of magnitudes of the equilibrated pressure
the numerically small equilibrated pressure disturbances correlate well with the eventual
disturbances, course of evolution as is described above

despite that they are much less than those of
(i) A small peak pressure disturbances the associated solenoidal velocity

of 0(i0 4) rapidly decays to restore uniform disturbances. This is physically
shear flow within numerical noises, understandable from Newtonian Mechanics, that
commensurate with the available resolution, the evolution of the velocity field d/dt ui

(or 8/t ui) is primarily driven by the
(ii) An intermediate peak pressure unbalaticed pressure forces, (at least at large

disturbance of < 10- 3 spreads rapidly to form Reynolds numbers). We are therefore much
some locally "turbulent" region but rapidly interested in the evolution equation of
decays to restore some disturbed laminar flow. pressure in an incompressible fluid.
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By inverting approximately the Poisson from the plate is "intermediate" or marginally
operator in (4a), we have large. Unit u2 impulses directed toward the

a 1 2 a plate or u3 impulses are "intermediate" and

-p +a (ui - eV ui) _L p marginally "small." All unit vorticity

a2  aimpulses are "small" disturbances that decay

- Cij -axix P + Pijk axiaxjaxk P + .... monotonically. The detailed profiles of all
(17) these disturbances, vary considerably but

without significant implications on the course

Here cij and Pijk are the diffusivity and of development of such disturbances.

dispersion tensors of the field, both as
complicated functions of the instantaneous We take the evolution of the set of unit

velocity field and the flow field boundary and streamwise velocity impulses u I as the test

a is a constant depending on the boundary case for detailed study. The evolution

geometry only. If one dimensional model could history of the peak pressure over section J-2

be any guide, the pressure evolution according is illustrated in Fig. 4. The preciptous drop

to (17) would be dissipative and heat like if of peak pressure in the first few time steps

II eij fI/ 11 Pi 11 > > I, and dispersive is accompanied by a broadening of the high

and wavelike if ft qi fl/ i j Pijk I << I in pressure region and signficant changes in the
support of the three Aifferent courses of shape of the profile, including the

evolution as depicted by our computed results. "disappearance" of one of the initial peaks
with the creation of many others around it.

We are reasonably confident in the An asympototic shape begins to form at about
eventual convergence of our algorithm in the 20at, followed by some rise and fall in the
limit of zero mesh sizes without smoothing and peak magnitude with significant broadening of
filtering; but not so confident in the fluid volume under high pressure. The peak
quantitative aspects of our results of such pressure magnitude rises and falls but manages
coarse mesh computations. Neither are to stays at - 10-3 up to 20O0t, the longest we
quantitative experimental results available to have computed so far. Each time step (0.01
check and guide our computations. The global H/U) at Re - 3000 corresponds to a physical
features of flow field evolution described time " 10' sec. Our computation has thus far
above are common to our results at different covered only a couple of milli-second in
mesh resolutions, and appear to be in physical time during much of this period the
agreement with experimental observations. In pressure transient in Section J-2 has been
the next section, we report some flow field developing in some complicated "asympototic"
details as have been observed in our finer or "quasi-steady" form.
mesh results.

The pressure elevation in Section J-2 at
time step 20At is given as Fig. 5. The

IV. Evolution of Large Disturbances in a downstream initial pressure peak has all but
Uniform Shear Flow over a Wall disappeared while the upstream initial

pressure peak at 1-19 of magnitude 0.39x10"I

We focus our attention on the evolution has become the only dominant peak at 1-20,
of unit impulses of streamwise velocity K-15 of magnitude 0.96x10"2. There are now
components in the immediate vicinity of the four lower peaks surrounding the main peak
plate (J-l) applied at a cluster of 6 mesh and many smaller ones further out forming
points (I.J.K.) - (20, 2, 14-16). The almost a ring of emerging peaks. The pattern
equilibrated pressure field over section 3-2 is evolving slowly, convecting downstream and
is illustrated in Fig. 1 with two distinct spreading out with additional "rings". Fig. 6
peaks of magnitudes - 3x10 2. The pressure displays the pressure distribution at 20At
over the transverse section 1-20 inbetween over a vertical section perpendicular to the
the two peaks is shown in Fig. 2 and that over stationary plate at K-14, i.e. one Az off from
section K-14 (off from peaks in K-15) ip given the peak in the J-2 plane to illustrate the
as rig. 3. The point (20, 2, 15) appears to three dimensional nature of the many peaks and
be a "Saddle" inbetween the two peaks. There valleys.
are two valleys in the transverse section. The The pressure elevations over Section J-2
two distinct high pressure regions over the at the successive time steps, 40, 80, 120, 160
plate surface appear to be two neighbouring and 200 At are given as Fig. 7-11. The
isolated globules or half domes encased in a primary peaks rise and fall as they propagate
low pressure valley in the shape of some semi- outwards so that the location of the largest
spherical caps in three space. This is pressure peak can suddenly shift in the plane
typical of "large" initial disturbances that J-2. The secondary pressure peaks proliferate
promptly evolve into propagating local and also very in magnitudes extensively
turbulent regions. When the maenitude of the especeally at later times. Their general
initial artificial uI impulses is reduced to pattern as an expanding entity of high
10.1, it becomes marginally an "intermediate" pressure regions remains unchanged despite the
disturbance that fails to reach the asymptotic great variations in details and the rapid
state of development. Likewise a set of unit increase of the number of secondary and/or
impulses of ug normal to and directed away emerging pressure peaks. The pressure
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transient has apparently reached some local instantaneous velocity vector at a point
asympototic stage of dynamic development. The in the Section 1-20 onto the section. It is
proliferation and the conspicuous variations designated as "Streamlines" in the figure for
of the outer emerging peaks clearly suggest convenience, which describes the perturbation
actual wave dynamics (rather than numerical velocity in the section over the uniform shear
and/or graphical uncertainties). The pressure flow u-y perpendicular to the plane. Note
elevations over Section K-14 remain little that the initial artificial U1 impulses are
changed through out the evolution in so far as applied at J-2, while the equilibrated
the variation in J are concerned. The dynamic solenoidal disturbed velocity field appears to
development of the pressure field appears to "converge" to a much higher point at
lie largely in the streamwise direction. j - 7 to 8. This "node" might be interpreted
Therefore, the dissipative K.D.V. equation as a "sink" in the transversal surface and a

+ p a2 P "source" for the longitudinal (streamwise)ax + p . + (18) flow. It is also apparent in Fig. 13 that the
at 8x flow next to the surface below this node is

too complex for our computation to resolve. A

with its well known asympototic behavior(I0 ), similar projection of the velocity vector for
at least in the nondissipative limit, may surface J-2 (Fig. 14) suggests the presence of
serve as a useful model of (17) for studying counter rotating spiral fluid motion at this
the global qualitative aspects of the "node".
pressure evolution in a transitional flow
field as mentioned in the previous section. This node in the transveral plane 1-20

shifts toward the surface and reaches halfway
To better appreciate the three at 8Mt. By 144t the transversal flow appears

dimensional aspects of the pressure transients to collapse toward the surface as is
next to the plate surface we give in Fig. 12 illustrated in Fig. 15. This collapse is
the colored 3D elevations of the pressure strengthened and widened at 20At suggesting
field in J-2 from different view angles. The che formation of a counter-rotating vortex
color illustrates the magnitude corresponding pair next to the wall (Fig. 16) that becomes
to the scale in the figure. We note that the conspicuous at 120At (Fig. 17). This vortical
valleys appear as deep as the hill's height. pair disappeared from the surface at 140At
The streamwise pair of the peaks are always (Fig. 18). It is apparently lifted from the
accompanied by a crossstream pair of valleys wall, displaced outward and replaced by a jet
to form a "quadruple" and the number of such of fluid toward the surface as in Fig. 15.
"quadruples" increases at later times. The Such a transverse flow pattern is evident in
pressure elevations at planar sections with Fig. 19 at 160At and Fig. 20 at 200At, with
somewhat larger values of J are similar the emergence of a new set of rapidly
although with different magnitudes and expanding counter-rotating vortices of

distributions. Thus the dynamics of pressure opposite sign midstream. A strong transversal
transients appears to be describable by the flow away from the surface (i.e. theevlutransino a s "udes"crossbe b"ejection") is accompanied by the fluid flowevolution of such "quadruples" across down toward the plate surface, displacing thelocalized half dome of high pressure region existing complex flow pattern next to theencased in a shell of valley in three space. surface outwards. The successive events
As such it might be possible that the dynamics appear to result from the arrival of a local
of each quadruple may be governed by some high pressure globnle with its associated
equation like the dissipative K.D.V. equation vortex pattern in the transveral section

1-20. Under the "convective" motion, such

high pressure "domes" or "quadruples" carryThe evolution of the vector velocity and with them the spiral flow pattern generated bythe vector vorticty field appears much more the large local pressure gradients. The
complex and extended much further out than successive patterns at 1-20 reflect the
that of pressure. It is difficult to describe simultaneous flow patterns over-the various
with a few planar sections. We are unsure neighbourng transverse sections as a high
that the movie in preparation can describe nehuri trser sectios as ai
fully the complexities of the evolution of the pressure "dome" or "quadruples" passes by
contorted fields of u and w. The local according to the disperiton dynamics of
variations of velocity with time are chaotic, pressure described by equation (17).
similar to those "measured" hot wire Fluid elements, "collapsing" or
responses. There appears, however, some "converging" toward a high pressure "dome are
"Order" out of the "Chaos" when viewed "c egi w to a i n aeressure
globally. Such a global order is likely deflected sidewise to fall into a pressure
associated with the quadruple structure of the valley on the side, temporarily trapped in thepressure disturbances. v .. valley. They may esca e nd frhen trapped
initial velocity impulse in Fig. 13 over the again further downstream into the next spiral
transverse section 1-20 inbetween the two of a neighorbouring oncoming pressure dome.
distinct pressure peaks at 1-19 and 21 Or they may escape collectively as a vigorous
respectively (Fig. 1). The curved lines in jet away from the plate in the absence of an

Fig. 13 are formed by the projections of the immediate oncoming high pressure dome, i.e.
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chaotic flow as flow transition and
"Ejection". Different fluid elements will turbulence. With the magnitudes of the
undergo "spiral" motions of different
dimensions and intensities from "Collapse" to pressure peaks and valleys generally some
Ejection". Such an event will generate fraction (> 10-

3) of the dynamic head (pU
2) of

intense chaotic fluid motions further out. the relative motion of the solid surface with

the "outer free stream", pitting would
There results then a turbulent or chaotic flow naturally be more serious nearer to the tip of
region centered around an expanding array of a propellor or for propellors of higher
spiral vortices with repeated collapses and speeds.
ejections next to the solid surface. The
phenomena of "collapse" and "ejection" and the A pressure quadruple in the proximity of

formation of counter rotating axial vortex the plate surface around a given point gives
pairs have been widely observed in flow rise to a surface pressure pattern like Fig.
visualization experiments

(7 ,8,9 ). We are much 12. This surface pressure pattern will set
encouraged to have reproduced all these the plate into vibration in some
without numerical artifices. It appears that characteristic manner. The multiple of such

the "Burst" into local flow turbulence at a convecting pressure quadruples in a local
point is associated with the passage of a high turbulent region is thus a powerful
pressure dome or quadruples over this "acoustic" source, with identifiable
observation point. characteristics, directionally, spectrally

and/or in selected correlation functions to
The motion of the pattern of dispersive distinguish itself from the prevailing noisy

pressure waves described by equation 17 is environment. Better understanding of the
much different from the local instantaneous quadruple structure of the propagating local

velocity ui. Where the local pressure turbulent region in a transitional flow field
gradient is large with sufficiently large v 2  could have far reaching implications. The
ui or v x w, the motion of the high pressure absolute magnitudes of the "large"
region can differ much from the local fluid disturbances that will generate propagating
velocity ui. Thus fluids are "drawn" toward pressure quadruples - 10-3 pU2 at Re - 3000
the pressure quadruples, "stirred up" through are of the order of 10-1 Kg/m

2 (or 2 x 10-1

the spirals and "ejected" into neighbouring lbs/ft2 ). They are comparable to the pressure
flow region as chaotically moving fluids. The differentials produced by a rather small or
quadruple nature of the pressure field even insignificant free surface waves in open

transients appears to be crucial in driving sea. Thus at Re > 3000, turbulent flow
the laminar to turbulent transition. The conditions will likely prevail over a

substantial velocity differential of the fluid submerged solid surface. A 100db noise in
and the quadruple motion is responsible for air will generate such quadruples at Re - 3000
the spread of the "chaos" or "turbulence" to cause flow transition.
beyond the confine of the propagating pressure
quadruples.

When the water (or other liquid) IV. Concluding Remarks
saturated with dissolved air (or other gases)
is swept over by such pressure quadruples, the We developed an algorithm to compute the

rapid decompression accompanying the arrival evolution of the pressure and the velocity
of a pressure quadruple will lead to the disturbances in a flow field of an

formation of "air bubbles". Such air bottles incompressible fluid with the Navier-Stokes

moving with the fluid will escape the equations system through iteration in
quadruples and remain in the fluid after the solenoidal subspace(s). The discrete

passage of the quadruple. Accordingly the equivalent of the initial value problem can be

proliferation of such quadruples in a obtained through any simple, consistent and

propagating local turbulent region becomes a stable schemes with At satisfying the

powerful source of "Cavitation". The condition of zone of dependence without any

pressure elevation on the solid surface (j-l) numerical aritifices of smoothing, filtering

around a pressure quadruple is well and/or damping. We computed the evolution of

represented in Fig. 12. Air bubbles are many artificial impulsive disturbances of

generated in the pressure valleys; they need different types and magnitudes in a uniform

not "collapse" there. The cavitating bubbles shear flow between two parallel plates at Re -

3000. Computations have been repeated at

can escape into the surrounding turbulent successive mesh refinements and both in terms

region, be drawn together (Fig. 14, 15) by of the primitive variables (u,p) and with the

some oncoming quadruples, and "coalesce" into help of the derived variable vorticity w.

large bubbles before their eventual
"eeilnne" The collapce of a reasonably sized The eventual course of evolution depends

bubble can be a "large" pressure disturbance primarily on the peak magnitude of the

of magnitudes comparable to 10-2 - 10,3 PU 2  equilibrated pressure disturbance, not so much

i.e the local Froude Number based on the on the profile details, nor on the nature of

bubble diameter U
2/gD < 10

2 or 103. Such a the artificial disturbances generating it.

collapse generates a new local turbulent Small disturbances are dissipqtive and stable.

region to perpetuate the propagation of
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Intermediate disturbances are diffusive.
spreading out and decay rapidly.
Sufficiently large disturbances will propagate
and proliferate to become asymptotically a
multitudes of propagating local high pressure
regions each surrounded by valleys. Over the
planar section next to the stationary plate
they appear as quadruples with spiral vortices
attached to the sides and fluid ejection and
collapse fore and aft. These convecting
quadruples generate "chaotic" motions of the
surroundings fluids. The flow is in
Transition from the "Laminar" to the
"Turbulent" state. Such asympototic "Order"
persists, nevertheless, within the apparent
"Chaos".

The evolution of the pressure field can
be described by a three dimensional analog of
the dissipative KDV equation possessing the
different limiting properties described above.
As such the propagating large pressure
disturbances are likely dispersive waves whose
"convective" velocity can be much different

from the local instantaneous velocity of the
fluid. If the "Solitone" like character of
the solution of KDV equation should prevail,
"Turbulent" flows would retain such "orderly"
transitional structure, even if not as the
strict superposition of such "quadruples".
Such convecting quadruples of pressure are
powerful acoustic sources that may possess
distinct characteristics for recognition or
identification. For water "saturated" with
air, a pressure quadruple is a source of
cavitating bubbles to help spreading
turbulence through the collapse of coalesced
bubbles.
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Large Eddy Simulation by Using Finite-Difference Method

Y. Doi
Hiroshima University

Hiroshim, Japan

Abstract introduced artificially in order to damp
numerical disturbances with short wave length.

Turbulent channel flow is studied The numerical dissipation, which damps

numerically by using Large eddy simulation numerical disturbances caused by numerical

(LES). Finite difference method is employed in truncations, must be distingu:,shed from SGS

the LES. The simulation is stably executed by model which expresses the sub-grid scale
using the 3rd order upwind difference scheme effects.

which dissipate numerical errors. First, In this paper, several numerical

a computing test is performed for a laminar experiments are performed in order to
flow past a circular cylinder. After that, investigate the effect of numerical
several pilot tests are performed with respect dissipation on turbulent flows. First,
to a turbulent channel flow, in order to computing test is performed for a laminar flow

investigate the effect of the numerical past a circular cylinder. After that, several

dissipation terms on the turbulent flow pilot tests are performed for a turbulent

structures. Turbulent flow structures in parallel channel flow.

turbulent channel flows can be well simulated
by using the 3rd order upwind difference 2. Formulation

scheme.
2.1 Governing Equations for the Large Scale

l.Introduction

Large eddy simulation is a relatively new We consider an incompressible flow whose

approach to the calculation of turbulent time evolution is given by the Navier-Stokes

flows. Since the first application of LES was made and continuity equations for the velocity

by Deardroff[l], many attempts on LES have components ui;(i=1,2,3) and pressure p,

been made. Hcaever the typical LES

calculations are limited to the flows in the aU, 8(UgUj) ap
simple configurations in order to resolve the at axi aX,
p:ecise struct.;re of the turbulent flows and

to calculate the turbulent flows stably. For a u,

the practical engineering applications, the +(I/Re*) a~ a (1)a Xk aXk
application for the flows in or around the

more complicated configurations is necessity. aUk/aXk=O (2)
For the convenience to simulate the flow

around an arbitrary configuration for qeneral

purposes, boundary fitted coordinate systems where i(j)=1,2,3 correspond to xlx 2,x3
end regular grid systems are usually respectively, where O-xlx 2 x 3 is the Cartesian
introduced, although they cause numerical coordinate(xI is in the downstream direction,

e-rors which diverge the calculations. So that x 2 is the direction normal to boundary,x 3 is
there needs ,ome numerical damping, the lateral direction, see Fig.l). Subscripts

Soie attempts to calculate LES have been denote the pertial differantiation with

done for the flows around the complicated respect to the referred variables. All

configurations by use of the finite difference variables and coordinates have been made

method((2],( 3). Ir theze methods, the 4th dimensionless by means of tnie length scale D,

derivative numerical dissipation termc are distance of parallel channel, and the friction
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velocity of the parallel channel(u*). where is Kronecker's delta. K is SGS
eddy coeficient, which is modeled by

2.2 FiItered Momentur, and Contii, t ouations Smagorinsky et al.41 as follows,

In LES, each flow variable "f" is K=(A)2 {ai/axi(aV,/axj
decomposed as fol lows, +a j/ax,) P/2 (10)

f:4f' (3)
c is Smagorinsky's constant, which is

where F is the resolvable grwo s-ale(GS) statistically analysed by Yoshizawa[5]. Here c

component and f is the resid,,al sub-grid is taken as 0.1, which is a standard value

scale(SGS) component. We denote th grid scale used for a parallel channel flow.
field as, Leonard term and Cross term are

approximated as follows by use of Taylor

?(X1,X",X3)=fff G(X 1-Xj ',X2X ',XY3') series expansion,

M/A 2 a 2(j)
24 axkaxk

In the present study, Top-fiat filter is used
as G, A 2  a 2ij - a 2i,

clj---- (U, - + 113 (12)
24 aXkaXk aXkaXk

G(x,xx 3)= t/A 3 ; I xxI' -Ax,/2
(A3 =Ax 1 AxPAx) A2 al, a_ jLi,+Cij=- (13)

0 ; other (5) 12 aXkaXk

After applying the filtering operator to the Substituting eqs.(7),(8) to eq.(6), we get

momentum equations and the continuity the following momentum equations.
equation, we get the following equations for
the filtered field. aiit a [ut'j-K(aV,/axj+ a'u/axt)]

at axj
au, a 6, ,u ) ai

- 4- -

a t axj ax a (A 2/12. ail/axk,- a ,/ax)]
a 2aj a Xs

+ (/Re') -
(6)

axkaxk a (-2xt) a i,
In the present study, following assumption is +(1/Re*) -! (14)
applied. a axkaXk

uij=Uij+Rij+Lij+C 1 j (7) F=i+i'i'/3+2xt (15)

RiJt- uj Here the quantity a(2X)/ X in eq.(14) is

LtJ= uIJ-uIuJ (8) the dimensionless gross downstream pressure
gradient in ase of parallel channel flows.

C j=U1Uj +U1iUj The term uk'uk'/ 3 
is subtracted from the

The terms Rij, Li- and C. are SGS Reynolds Reynolds stress terms and added to the

Stress term, Leonard term and Cross term which pressure term.

must be modeled in terms of grid scale
components to proceed the calculation. 2.4 Wall Damping Function

2.3 Representation of SGS Reynolds Stresses. Near the w-Alls, Smagorinsky model is not
Leonard Term and Cross Term appropriate because of the inhomogeneous

SGS Reynolds stresses are modeled as filter length A is multiplied by the Van

follows introducing SGS eddy viscosity K. Driest exponential damping function fD after
Moin-Kim[6J as follows,

- K " aii1-axa-" '/ 3 f D= ( 1-exp (- y */A) ) (16)= - K ( a U,/ a x ,+ e / a x ,) (9) X2 3*0 g 2 9 .5

y2=x6R 0 :x2 O.5
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0.55x51.0 The first term of eq.(22) is 4th ordercentered difference approximation and the

where A+=25 and y is the distance to the wall second term is 4th derivative artificial
in the wall unit dissipation.ceis the dissipation coefficient.

It must be noted that the artificial
2.5 Boundary-fitted Curvilinear Coordinate dissipation terms depend on the velocity with

System respect to the reference frame. Therefore the
momentum equations fail to be "Galilean

The basic idea of transformation of the invariant" and the dissipation is larger where
Cartesian coordinate to the boundary-fitted the velocity is larger. In the present study
curvilinear coordinate is to carry out finite- the effect of the artificial dissipation term
difference computations in a regular rectangle on the calculated result is investigated.
mesh system without extensive interpolation, Fractional Step method is employed for the
though transformed partial differential time derivative. The term Z is approximated
equations become more complicated, by Adams-Bashforth method and the term A is

The physical region (xlx 2 ,x 3 ) is approximated by Euler explicit method.
transformed to the imaginary computational
region (xl,x 2 ,x 3 ). The basic equations (14) in ( (23)
the transformed region are as follows,

aq a(F-2x,) (1 7"=V- At a(F-2x,) , (24)
-- = Cg' +A (17) ax'at axl

a a a V
((,,I)aq) K - (j .I- g = - -'/,&t (25)

ax' ax j  ax ax' axl

When a=1/2, the time derivative is called
a aK - a q Adams-Bashforth method. The time derivative
X- + -g' ( ) becomes Euler explicit method for a=0. The

(18) pressure equation(25) is given by taking
divergence of eq.(24), requiring the

divergence of the velocity at t n + l must be
A=(K+I/n'e')(- a-l.- )...).1, zero. So that if the pressure p satbsfies

(19) eq.(25), the velocity field satisfies
continuity at tn+l. It is important to note

'-grad(x') (20) that the difference operation of the Poisson

equation (25) can not be chosen independently

Z=Ut 1 ,+I 2 +U 3T3  (21) of the operator used in the momentum and
continuity equations. However, 2nd order

where g is the covariant base vector and 1i centered difference operator is used for the
is the unit vector directed to xi axis. divergence of the pressure gradient which is

expressed by 4th order centered difference

3. Numerical Scheme operator in order to avoid the wiggles in
numerical solutions.

3.1 Finite Fifference Forms
3.2 Initial and Boundary Conditions

Regular grid system is emp .oyed in the
present study. The derivatives in the momentum The initial conJitions are given as the
equations are discretized by 4th order superposition of a random function to the
centered difference approximations uxcept for mean velocity profile U, and U2. The mean
the convective terms. For the convective velocity profile of B. is given as the
terms, following 3rd order upwind difference following law of the wall and the log law,
approximation is used in order to stabilize
the computation, U,=(lOg y*)/0.41+5.0 y-10.80

U a f/a x 0;y10.80 (26)
=U, (-f,+2+8f,, 1 -8f,- 1 +f ,-)/12Ax y , =.Y2l-x Re O 5x29l.

+a I U1 I (f, 2-4f, ,+6f,-4f,-irf-2)/ 4Ax ( -x ,)*-Re 0.5:xe51.0

The velocity component 63 is determined to

-Uaf/ax+a I UI (Ax) 3/4. a 4 f/ax (22) satisfy the continuity equation. The magnitude
of the random function is 5% of the mean
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velocity, calculated result agrees well with them.

Cyclic boundary conditions are imposed for In Kodama's calculation, 4-th order

velocity and pressure, in downstream and artificial dissipation terms were also added

spanqise directions. No-slip boundary to the momentum equations in order to

conditions are imposed at walls. Zero gradient stabilize the calculation. Kodama analyzed

of the pressure normal to the wall is imposed, the truncation errors and indicated that the
artificial dissipation terms were so small

4.Computed Results that the accuracy of the solution was not
degraded by them.

4.1 Computing Test for Laminar Flow Without the 4-th order artificial
dissipation terms, the calculation diverges

Before the LES calculation, computing test always. Although the 2-nd order artificial

is performed for a laminar flow past a dissipation terms distort the calculated

circular cylinder. Although the flow for this solutions, the distortion of the 4-th order

case is 2 dimensional one, the computation is artificial dissipation terms is not so large.

performed by 3 dimensional code in order to
check the code. In this ca-i, all variables 4.2 Computed Results for a Channel Flow

have been made dimensionless by means of the

cylinder diameter(D) and the uniform flow SimulLions are performed for a parallel
velocity(U). The number of grid points are 80 channel flow. Reynolds number(Re* ) based on
in circumferential direction, 40 in radial and tha channel breadth(D) and the friction

5 in axial of the cylinder. The diameter of velocity(u*) is 500. The calculated region has
the computational domain is about 28 times of a downstream length of 3D and a lateral width

that of the circular cylinder. The minimum of 0.75D. The downstream length and the
spacings in the radial direction, in the lateral width are subdivided into 30 equal

circumferential direction and in the axial grid intervals. Therefore, the intervals in a

direction are 0.01D, 0.008D and 2.0D, downstream direction(x I ) and lateral
respectively. In this calculation, Euler directio(x 3 ) are as follows,
explicit method is employed for the time

derivative. The flow around the circular AX1=0.1 Ax=0.025.
cylinder is accelerated from U=0 to the staady

speed(U). The acceleration is set to be Non-uniform grid systems are used in the
l.0112 /d. The time increment is set to be normal direction. The minimum and maximum

0.OO1U/D when the flow is accelerated, and intervals in the normal direction are as
after the acceleration the time increment is follows,

set to be 0.00156/D.
No-slip boundary condition is imposed on AX2 .1 A. 0033 AXe-ax=0 .0728.

walls. Zero gradient of the pressure normal to

the wall is imposed. On the outer boundary, In this calculation, Adams-Bashforth and Euler

the pressure is fixed to zero. With respect to explicit methods are employed for the time

the velocity on the outer boundary, a linear derivative. Smagorinsky's constant 'c' is set
extrapolation is given except a upstream to be 0.1. The convergence condition of the

point at which the velocity is given by the Poisson eq.(25) is set as the divergence of
inviscid flow solution. Cyclic boundary the velocity is less than 10-2.

conditions are imposed for the velocity and Dependency of the artificial dissipation
pressure in the axial direction, factor a on the calculated results is shown

Tn this case, the flow is laminar so that in Figs.4,5. Figs.4-a,-b show the turbulence

the Smagorinsky's constant 'c' is set to be intensities normalized by the friction

zero. The artificial dissipation factor a is velocity. From top to bottom, they are

set to be 1.0. The convergence condition of <(u 1 ") 2 > 1 / 2 , <(u 2 )2> 1 / 2 , <(U3)2>1/2,
the Poisson eq.(25) is set as the divergence respectively. The angular brackets ( > denotes

of the velocity is less than 10- 3. the xl-x 3 plane average of a quantity and the

The calculated pressure distribution on the double prime " denotes the deviation of a

circular cylinder is shown in Fig.2 together quantity from the xl-x 3 plane average. They
with the experimental data[7] and the are compared with the experimental data by
calculated result by Kodama[8]. Reynolds Clark[10] and Hussain-Reynoldsll] and with

number(Re) based on the cylinder diameter and the calculated result by Moin-Kim(6]. The

the uniform flow velocity is 40. The computed calculation diverges when a is less than

result shows good agreement with the 0.03. Therefore artificial dissipation is

experimental data. In Fig.3 drag coefficient required for ihe stable calculation. However,

is compared with the Tritton's experimental the serious effect of the artificial

curve[91 and Kodama's calculated results. The dissipation on the turbulence intensities is
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shown in case of a =0.06. the artificial dissipation terms are greater
The profile of the mean velocity non- than the SGS model terms, the calculated

dimensionalized by the friction velocity is turbulence intensities are not so much damped
shown in Figs.5-a,-b. The solid line but agree with the experiments. In Fig.l0,
represents the law of the wall and the Coles' the profile of the mean velocity is shown. The
log law. The experimental data by Hussain- velocity profile calculated by Euler method is
Reynolds(ll](Re =1280) is also plotted in almost same with that of Adams-Bashforth
Fig.5. The calculated velocity in the log law mcthod except the middle of channel. When we
region is higher than the experimental one. take a larget dissipation factor, the
This discrepancy partially depends on the turbulence intensities are damped in the
difference of Reynolds number. A noticeable middle of channel as shown in Fig.ll. This
discrepancy does not exist between such a tendency is the same with the case of Adams-
change of artificial dissipation factor Bashforth method(Fig.4-b). Figs.12-a,b,c show
a=0.03 and 0.06. However, if we take a large the instantaneous velocity vectors on x 2 -x 3
artificial dissipation factor, for instance plane. Although the velocity fluctuation is
a=1.0' so called Kawamura's scheme(12J), the attenuated in the middle of the channel for
velocity profile is seriously deformed[13]. a=0.06(Adams-Bashforth), the velocity

The order of magnitude of each term in the fluctuation is not so much attenuated for
stream-wise momentum equation is compared in a=0.15(Euler). When we chose a dissipation
Figs.6,7. The contour lines shown in Figs.6,7 factor suitable for the calculating method,
are the convection terms, artificial even for Euler method, the global feature of
dissipation terms, the SGS model the turbulence flow can be obtained.
terms(Leonard, Cross and SGS Reynolds terms)
and the viscous terms on xl-x 3 plane. The Conclusions
convection terms are dominant in the middle of
channel, whereas the convection and the Turbulent channel flow is qtudied
viscous terms are dominant near the wall. The numerically by using finite differe method.
SGS model terms are too small compared with The simulation is stably executed by using the
the convection terms or the viscous terms. In 3rd order upwind difference scheme. The
order to implement the LES calculation, the numerical dissipation terms attenuate the
artificial dissipation terms must be smaller turbulence intensities. When we chose a
than the SGS model terms. In case of a =0.06, dissipation factor suitable for the
the artificial dissipation terms are greater calculatin method, turbulent flow structures
than or the same order as the SGS model terms in a turbulent channel flow can be well
in places on y =22.2 plane. Because of this simulated. However a problem still remains
artificial dissipation terms, the turbulence how to determine the dissipation factor.
intensities are excessively damped in the
middle of the channel. As a result each term The present study is partially undertaken
is damped as shown in Fig.7-b. as a student project at Hiroshima University.

Even for the case of a =0.03, the Author is indebted to Mr. K. Murakami who
artificial dissipation terms are the same discussed and helped the author in the course
order as the SGS model terms in the middle of of this study.
the channel. So that, there still remains room
to improve the present computing r heme. The computations were executed by apollo

DN10000 and HITAC M-680H at Hiroshima
When we use Euler explicit method instead University.

of the Adams-Bashforth method, the scheme of
the time derivative is only first order
accuracy. To proceed the stable calculation,
the artificial dissipation factor must be References
greater than 0.15 for Euler explicit method,
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a) a)

b) b)

CC
c) c

d)-

Fig.6-a Contour lines of each term in the stream Fig.6-b Same as Fig.6-a
wise momentum equation on xlx 3 plane, a =0.06, y =22.2, t=10, Re*=500,
a =0.03, y =22.2, t=9.5, Re =500, a:convection terms interval 50,a:convection terms interval 50, b:artificial dissipation terms interval 2

b:artificial dissipation terms interval 2 c:SGS model terms interval 2, d:viscous
c:SGS model terms interval 2, d:viscous terms interval 10
terms interval 10

a)) a)

b) b)

c) -~Cc)

Fig.7-d Sdme as Fig.6-a Fig.7-b Same as Fig.6-a
a=0.03, y+=250, t=9.5, Re =500, a =0.06, y+=250, t=l0, Re =500,

a:convection terms interval 50, a:convection terms interval 50,
b:artificial dissipation terms interval 2 b:artificial dissipation terms interval 1
c:SGS model terms interval 2, d:viscous c:SGS model terms interval 1, d:viscous
terms interval 10 terms interval 1
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Computation of the Flow past Shiplike Hulls

J. Piquet and M. Visonneau
ENSM

Nantes, France

Abstrt features as well as differences among which the following

appear important. (i), used coordinates and grid generation
The present work first details the implementation techniques, adaptivity of the mesh ; (ii), type of master

problems of a numerical procedure for the solution of the equations and retained approximations -ail of which depart
Reynolds-averaged Navier-Stokes equations in boundary- from thin boundary layer assumptions-; (iii), turbulent
fitted coordinates. The procedure is validated using well models, how are they used and with what specific
documented experiments on the HSVA tanker and the boundary conditions ; (iv), discretization schemes,
comparisons demonstrate the ability of the method to pressure velocity coupling me.hods, iterative modes,
predict ship stem flows, solution methods used for tho linear systems ; (v),

acceleration means; (vi), initia, and boundary conditions.

1 Int cioD All the methods (including this one) that have been
published, but [5][617], rest on the use of Reynolds

For a long time, wind tunnel or towing tank averaged Navier-Stokes equations (hereafter called
F s ave eng te wn practical way to get RANSE) presented in §2 and written in a body-fittedexein h n hefowmances becurvilinear coordinate system. Except worksinformation on ship performances because of the

restrictions of inviscid or boundary layer models. With the [E3)9][10][11], only the independent variables are
development of computers, it becomes possible to obtain transformed from thephysical coordinates x (horizontal
numerical information with an answer turnover and a level along the axis of the body), y (horizontal, orthogonal to the
of details which are hardly possible with experiments. The axis of the body), z (vertical) to the curvilinear coordinates
prediction of shiplike afterbody flows, which is considered 7.i =(l TI, ) while the dependent variables are retained in
hereafter, is necessary for the knowledge of viscous the physical domain : the velocity components are the
resistance and, more importantly, for propeller and control componetts in a cartesian frame with the noticeable
surface design as both are immersed in regions where exception of [12][13][14], where cylindrical velocity
viscous effects are significant. Classically, such problems compor ents are preferred. In order to allow more easily
were handled solving first a potential problem with panel comparison with experiments, the coordinate planes
methods. The inviscid flow field on the body was used as .-const. are identified with x=const. planes. In the
a boundary condition for thin boundary layer equations,
the solution of which allowed the determination of viscous following (§2.2), I will refer to the coordinate away from
corrections. Unfortunately, it was demonstrated during the the wall such that the equation of the wall i5 i = I ; will
SSPA-ITTC workshop on ship boundary layers I1] that refeir to the girthwise coordinate. The other alternative
such a procedure failed in the stem region because of the (8][9][10][ 11] uses contravariant coordinates. This
rapid thickening of the boundary layer in this zone. The simplifies the continuity equation but introduces Chriatoffel
limited success of generalizations of thin boundary layer symbols in the momentum equations, the full treatment of
equations involving high order corrections, see e.g. which is cumbersome (usually a lot of terms are omitted)
[2][3][4], was subsequently demonstrated so that the and either time or storage consuming.
tendency towards computing the full solution of the
Navier-Stokes equations became stronger and stronger for Now, considering the master equations, ie. those
increased computer ressources became more and more which are discretized numerically, they usually involve a k-
available at continuously decreasing costs. However, e type of c
significant obstacles to progress in the treatment of such a uerlosure with a wall-function approach which
thrcedimensional flows remain, the most important being avoids numerical troubles often associated to the sink-
the difficulty in describing with enough resolution the source terms in the e equation while saving storage for the
geometry of the physical domain in which the body is nodal unknowns. Some works depart from this trend by
immersed, even if, as here, no free surface effect is the use of either a classical mixing length model [8][9] or
considered. Another important difficulty is the need of of a subgrid scale model [15]. Considering more
reliable data to validate computations insofar as the sophisticated Reynolds stress models does not seem to
compair-sons between the experiments and the improve significatntly the results [16]. In the following, a
computations involve systematic interpolation procedures. k-- model is retained-but the wall function approach is

Table I summarizes the main characteristics of the avoided.(§2.4) Only the i'_iaation iibpassed close to the
presently available methods which share several common wall. For a significant increase in numerical troubles and in

295



'1~~ 1a - -aa

1"s ~~ ~ H S~ Z ~ 5,

T 0 z :

f

A A
-. ~~~ 1. 1 -. ~ ~ 4

* 2 . 0 0 0

2 c. 22 2. Is 1 a. al

F. '2= E- 9

E E

*~~: Z

96 909



computing time, the delicate problem of the pressure equation, in such a way that solenoidality is
threedimensional orientation of the log law specification, satisfied at convergence. In the ship applications, both the
dealt with only in [14], is avoided, as well as significant advection and the diffusion of momentum are implicit in
overestimations of the velocity profiles, close to the wall, time ; the updating procedure being handled on each
in the propeller disk region.[17][18]. equation by the well known "SIMPLE" [33], "SIMPLER"

[34], or "PISO" [35] methods. One of the dominant
From the closed RANSE, the master equations are aspects of such techniques lies in the way the pressure

almost invariably obtained -except [14][191- using the so- equation is handled as the pressure solver controls the
called partially parabolic approximation in which global convergence of the method (and therefore, its
longitudinal %-transport due to viscosity and turbulence is robustness on fine grids), and as it generates the greatest

part of the computational cost. The present work strongly
neglected (ie, if is the advected quantity, only the OX), differs from similar computations (12][13][14] by the
terms are dropped). This approximation is usually characteristics of the pressure and pressure correction
developped for viscous flow fields in which pressure is the solvers which become critical as soon as grid clustering is
dominant transmitter (f influence in the upstream direction. strongly increased by the removal of the the wall function
In certain conditions, it does not forbid the presence of - approach.
seldomly present- longitudinal flow reversal (along %)
which may occur close to transom sterns or when a Such modifications are necessary for the following
propeller is in operation. In this work, the master equations reason. Because only the independent variables are
do not involve such an approximation for reasons which transformed, the directions of the velocity components
will he made clear; therefore the fully elliptic equations are differ from the direction of the curvilinear coordinates. As
used. a first consequence, the projection phase of the pressure-

velocity coupling does not connect always the driving
Turning now to the numerical aspects which are component of the pressure gradient to the corrected

studied in §3, a general prerequisite is a method for velocity component. Because of the strong grid clustering,
generating the body-fitted grids. The most common choice, the stiffness of the "threedimensional" pressure matrix is
including ours already detailed in §2.3, rests on elliptic so much increased that standard relaxation techniques
solvers [20] because they are easy to use and because they usually retained do not converge anymore. This argument
allow a priori controls of the quality of the grid close to the will be clarified in (§3.3) As a second consequence, the
body. A possible alternative has been proposed in possibility of pressure odd-even oscillations is recovered
[8][91(l 191r2lvbhere twodimensional grids, generated even if the grid is staggered (the most common choice, see
via cont .... tr~i '; nation designed, for instance, from Table 1). They are classically avoided, as when, as here,

heSci ' tel theorem, are stacked in the X colocated grids are used, with weighted averages of
the Scoefficients defined during the projection phase. For the
direction. 5. , .4d transverse orthogonality to methods belonging to the third category, the discretization
the price of distorsiuui problems in the X direction, close to of the advective terms rests often on strongly diffusive
the aft sections. Other algebraic techniques have also been classical hybrid schemes. In this work, we use (§2.1) the
used [22][23][24][25](26] but they appear often so-called finite-analytic method of [37] applied, for
abandonned. instance, in [13][14][15][18].

The most important aspect of the numerics lies in the This quick review of methods would stay incomplete
way the incompressibility constraint is enforced. This may without consideration of initial and boundary conditions.
be done in three ways. A first category of methods They will be specified in % when the results are studied.
includes those where the pressure-velocity coupling is While the iterative procedure is usually initialized from
simulated with a suitable modification of the continuity rest, from uniform flow. or from potential theory, the
equation. Compressible flow methods used for low Mach considered domain boundaries usually extend from a
numbers belong to this category, although severe midship station to several lengths behind the body.
difficulties are usually found in the limit of vanishing Mach [5][6][7][15][38][39] depart from this choice on model
numbers. The artificial compressibility method [27], ships and start from a uniform flow field far upstream. In
systematically used in some institutes (see e.g. [28]), and this work, we follow the common practice which considers
applied to ship flows in [29][30], gives also rise to that the inlet flow at midship stations can be characterized
convergence problems and needs a careful selection of by some simple integral parameters and that the crossflow
numerical parameters such as the pseudocompressibiitty at midship can be neglected. These integral parameters are
fact6'.The second category includes methods in which the obtained either from experiments or from thin boundary
continuity equation is satisfied identically at each iteration, layer assumptions used upstream. This allows to save
Apart from unsegregated methods [31], such methods computer ressources and to avoid transition problems in
follow the boundary layer practice in which the flow the fore part of ship models. The flow domain extends
domain is swept from upstream to downstream, implicit usually to some ship lengths downstream and to one ship
differencing of momentum being used for marching length away from the axis of the ship. Symmetry
stability. Upstream influence through the pressure field has conditions are retained on the vertical plane -the so-called
to be accounted for, and this is done introducing some keel plane- (only one side of the ship is handled) as well as
form of forward differencing for the streamwise pressure on the horizontal plane -the water plane-. Only the so-
gradient which allows departure-free behavior [321. For called double-model probi,:.t is therefore treated, except in
ship applications, such methods have been mainly [5][6][7)[15][38] where free surface effects are
developped in the framework of the partially parabolic considered. Related to the flow domain choice, is the wake
approximation in [8][9][10]. In this work, we have topology which involves, the most often, a singularity line
followed (§3.2) the most common so-called pressure either of the polar type or of the parabolic type. In the
correction methods in which the pressure velocity coupling former case, transverse grids are topologically equivalent
is solved iteratively, updating successively the velocity to concentric circles (1 = const.) and their radii (C=
variables in the momentum equations and the pressure in a
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const.). In the latter case, the singular line starts from the becomes a parallelepiped in the computational space in
bottom of the ship, in its vertical plane of symmetry into which the discretization consists in stacked unit cubes of
the wake, defining a line of separation between the upper sides AX = Ail = AC = 1. Each unit cube of the
part of this vertical plane of symmetry (the "fictive rudder") computational space is a curvilinear hexahedron in the
which is a (symmetry) surface il =1 that extends the wall physical space, the "sides" of which are measured by the

surface (rl=l) in the wake, and its bottom part which is a modulii of the covariant vectors ai = ar/Rgi.
(symmetry) surface =2. 2.2.2.Useful Relationships. The transformation

Among the available experimental information which necessarily involves byproducts from the basis aj. Of
has been extensively reviewed in [40][41], we shall mainly particular interest are f20] :
focus (§4) on the HSVA tanker [44][45]. For this case, (i) Tih area vectors b = ajxak (ij,k in cyclic order) which
very detailed mean flow measurements are provided in measure the oriented area of a small surface of unit sides
several x = const. planes ; this minimizes interpolation
processing. Moreover, the data are free from blockage along XJ and Xk on a Xi = const. surface in the

effects because a wind tunnel with slotted walls was used. computational space. bi appears as built with two small
Uncertainties on the inlet conditions appear therefore to be triangle-likes surfaces in the physical space.
an admissible penalty. The paper is outlined as follows. §2 (ii) The Jacobian J of the transformation from the
presents the equations and the main features of the used computational space of the coordinates (XI) to the physical
method ; §3 focusses on the numerical aspects ; §4
discusses the results and presents significant comparisons space of the coordinates (xa}. J measures the "physical"
with the HSVA experiments. volume of a parallelepiped of unit sides in the

computational space ; this parallelepiped appears as an
2. The Master Equations hexaedron-like volume in the physical space.

(iii) The covariant and contravariant metric tensors
2.1. The Primitive Form. gij = ai.aj ; g1j = bi.bJ/detgij where the determinant of gij

The full RANSE (2.1) for the mean velocity field U is the square J2 of the foredefined jacobian.
and for the mean pressure deviation P

V.U=0, DU/t + (U.V)U + VP = Re-I V2 U - V.5i-i (2.1) An important relationship to be used is the following
need a closure assumption for the Reynol: tresses -Wui simple restatement (2.6) of the chain-rule derivative
which is taken under the isotropic form (2 1 formula:

u = 2k 1/3 - VT [V U + VTU] (2.2) aXk/axa = J-1 bak (2.6)

where VT = Cik 2 /E is the turbulent v . :s the which allows the computation of the standard followingwher VT C9operators :

turbulent kinetic energy and e the so- :T", , . ,ion of V.U = j-o p(JUi)/ati = J-1 D[bojua]/aki (2.7)
turbulent kinetic energy. k and c ,e ; , , I by the
standard following transport equation . and (2.4) where Ua and [V ]o are the physical components in the

ak/at + U.Vk = G - e + V.[ RklVk] (2.3) cartesian orthonormalized physical space.

a/Dt + U.Vr = CE IeG/k - Ce 2 /k +V [RE -IVE ] (2.4) [VO]ca = J-1 bczk a aXk (2.8)

G is the rate of production of turbulent kinetic energy - 2 [ d iki 1 1 a [ gi

uu : VU, Reff is the effective Reynolds number defined V k= div ga x 1- x Jgk I

by Reff' 1 = Re-1 + vT while Rk"1 = Re - 1 + VT/ ok and

R a -1 = Re- 1 + VT/E . Unless specified, model 2.2.3.The Grid generation method. Because the values of
"constants" are given by their standard values : the curvilinear coordinates Xi are specified on afl, the

CR =.09,C6 1 = 1.4 4 ,CE 2 = 1.92 ,k = 1,Le = 1.3 (2.5) values of Xi inside Q result from a boundary value problem

2.2 Physical space and computational space in which the dependent variables are the (Xi) and the

221 The problem. The physical domain Q2, where the independent (unknown) variables are the {x~c), the

flow is studied, is bounded by the ship hull B of surface correspondance between (x0 }) and [ Xi) being one-to-one.
aB, by the outer boundary Z, by the inlet station U, by the If (2.9) is written for V2x = V2 y = V2z = 0, the resulting
outlet station D and by the vertical V and horizontal H partial differential equations (2.10) may be used to generate
planes of symmetry. Equations (2.1 to 4) which classically the coordinates:
involve the cartesian velocity components 2

(Ua}-{U,V,W) are partially transformed from the V 1 I a = 1 a[Jgik] a t . a , ,
cartesian rectilinear coordinates {xa}-{x, y, z} in the V = +"T-T wth 4=x -tx,y,z) (2.10)

physical space, to the curvilinear coordinates xi =_ {fxi, } Because the coefficient of the first order derivative,
in the so-called computational space. The coordinate in (2.10), is the laplacian of the curvilinear coordinate:
transformation is designed in order that the boundaries aB 2 k 1[Jg
and Z become ii = const. surfaces, that the boundaries U j i [jgikJ (2.1)

and V become X = const. surfaces and that the planes of The common practice is to specify it as a grid clustering

symmetry become C = const. surfaces. The domain 0 control fk = v2xk. In this case, (2.10) becomes (2.12)
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2 1k 2 4Re f  •V =g I k -- +f0- (2.12) * - [ 9 ~

aax~ Dx Reff [b j~
Now, if V2 xat is computed with (2.11) rather than with 2B = T lbj Ot - (2.15)

(2.10), fk must be equal to the rhs. of (2.12). Therefore,
when (2.12) is used to compute the diffusion terms (for 2C = Rff bI J. f

*=U,,WX e=, the iterative method for solving the mesh -- Lb,
must be solved to convergence. In all that follows, only Rth= a Rff; S4,=s4,-2 [gesh + g 4 + g I
the special case X = X (x) is considered so that and
fl=-g11 xxX/xx -- 2ag I1 [12][46] results from the

assumed longitudinal grid distribution x(X). Thus, only the (x0=a, U-J- [b, vTA + bl VT,,,+bl vT,;]  (2.16a)
equations for y and z need to be solved, once control
functions f2 and f3 have been specified. 2 ! , + VTj+b I (2. 16b)

f2 and f3 are connected to gij in such a way that a
3 1 23

2b=-f 2/g22 = Srr/SIS and 2c=-f 3/g3 3 = 4g/4 (as well a 0=a, W-J"1 [b; VTi+b3 VT,+b 3 VT,;] (2.16c)
as 2a) are frozen during the iterative use of (2.12) for The index refers to any of the advected quantities,
*=y,z. They are prescribed according to (2.13) whore S is Thme index Vreferseto any ofdthesadvected quantities,the urvlinar bscssaalog th ct lies nd isthe namely U, V, W, k, e ; the indices X, 11, refer to the
the curvilinear abscissa along the = cte lines and is the partial derivatives ; coefficient a is equal to I except
polare angle in the x const. correction.

ak = ok, a6 = cr=. Source terms so for U, V, W, k, r are
S obtained from (2.17) written with cartesian derivatives

=Frd,-) for X XA F (2.13a) indexed x, y, z.
S Su--Reff [p"- gradvT • - (2.17a)

_g2 1 =n axf2=FB(l,;) for X , ; FB= g22  i (2.13b)

Sv=Reff [py- gradvT. - ] (2.17b)
f2-Fc(,%C) for %A-<-XB ;

(2.13c) aU

C (X-%)FA'Q.-A)FB Sw=Reff [pz - gradvT ."] (2.17c)
Fc=

% A -%B Sk= -akReff (G-e) (2.17d)
a,b,c are fixed from an initial guess taylored to the 2)problem (see §3). The numerical solution of the gridL 6

equations uses exponential schemes similar to (3.6) -see Se= -o Ren-C-- G - (2.17e)
inifra- in both directions; it considers crossed second-order e eer G-C
derivatives as source terms which are discretized, as well
as metric components, with centered schemes. The 2.4 The Turbulent Model
solution of the resulting linear systems endly results from Two reasons for the eviction of the wall function

approach have been already mentionned in theSLOR alternate il and C sweeps. The grid generation introduction, namely the problem of specifying the
procedure thus defined has two aims : it first allows a directional dependence of Ur and the practical
correct clustering of grid points close to the wall, and, as
important, it smoothes the grid. So, zero machine overestimation of velocity profiles. A third reason is the
convergence of the procedure is not necessary. The f2 and noticed strong dependence of the pressure level on the
0onvernco thresul fromdures atneesry. Tweep are location of the grid points close to the surface. As, at leastf3 functions that result from (2.13) after SLOR sweeps are
not used in the Navier-Stokes solver. Rather, the discrete the r equation is avoided close to the wall, it is necessary
equations corresponding to the Poisson operators are to specify the closure assumptions to supply. For the
considered as a 2x2 linear system whose solution gives the HSVA case (§3), a one equation is used in the inner zone
needed f2 and f3 . in order to make the closure problem free from the

estimation of Ur (whose sign may vary in the domain).
2.3 The Flow Equations The closure assumptions (2.18, 2.19) follow the choices

Apart from the continuity equation -see (2.7)-, the of [47]
transport equations for the mean momentum, for k and 6 e = k3/2/11 : VT = Cgk l (2.18a,b)
can be written under the following Master Equation (2.14) where the scales of the two equations differ [48]:
for '! : l.= C1 n [1 - exp (-Re, k n / Ap)] ;
g1 1 4pXX + g2 2 <Zrl1 + g33 d = 2AOO l = C1 n [1 - exp (-Rek n / A6 )] (2.19)

+ 2B rD + 2C¢OO + R4t + So (2.14) The constant C results from log law assumptions, n is the

where normal distance to the wall, which give C1 = KCgt 3/4 ; the
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asymptotic behavior of vT when n-40 fixes A6 = 2C1 ; 3.2. The Pressure Velocity Coupling.
= 70 allows to recover the 5.45 constant of the flat 1.1. The algebraic problem. The discrete solution of
log law. The (straightforward) patching of the k er RANSE is written
model with the outer k-e model is locater fE-A) V + G P = f ; D V = g (3.10)

,"hiee V and P are the vectors of nodal unknowns for the
Rek n = 200-250. ,;locity and the pressure. Boundary conditions and known

tcrates from time tn- l are gathered in f and g. D and G3. The Numerics refer to the discrete form of the divergence and of the

3.1 The Transoort uations gradient operator which may involve interpolation

The numerical method for the treatment of (2.14) procedures so that, in general, D * GT . E-A gathers the
implicit part of the advection and diffusion terms in (3.9),

closely follows [ 12] [14]. Coefficients of (D derivatives are E being the diagonal matrix of the coefficients C at node P.
evaluated at the center P of the control volume and The concrete form of E and A is not important for the
coordinates are normalized in the following way. argument; let us only mention that, with the finite analytic
X* = X/'4gl1 ; I* = T, /4g 22 ; * = /4g 33  (3.1) method, diagonal dominance implies that the spectral
so that the normalized form (3.2) is obtained: radius of E-1A is less than one so that an iterative method

=2A ,+2B which gives V from P through (3.11)+ 1 + %* =2A * + 2B'IV = (E-A)- 1 (f- GP) (3.11)
+ 2C 4 .* + R O)t + (SO)p (3.2) converges quickly. If (3.11) is substituted into (3.10), the

with: pressure is obtained with (3.12)
A = (A0)p/4g33p; B = (BO)p/4g 22 p; C = (CO)p/4gl 1p [D(E-A)-IG] P = D(E-A)-lf - g (3.12)Pressure correction techniques rest on the use of the
R = (Ro)p (3.3) approximate inverse E- 1 for (E-A)I.
for a parallelepipedic volume (in the computational space)
whose sides are given by (3.3): 3.2.2. The "PISO" Procedure [351. It consists in the
AX* = I = /4glP I ; Ai* = k = 1/4g 2 2 ; A * = h = 1/4 g3 3  following steps, starting from a guessed solution (Vn-1,

pn-1) from which (Vn, pn) is computed in the following
Now, the equation (3.1) is splitted as follows [14]: way.

2C X* - ,,+ R !t + S = G(*,1, *, t) (3.4) (i) prediction step. The velocity predictor V* is first
computed solving -step 4 - (3.13):

+ (D*v - 2A Ov - 2B 0l* = G (3.5) (E-A)V* = f- GPn- 1  (3.13)
Assuming that G and So are constant on each element, a V* does not satisfy the continuity equation (DV* * g) and
backward time derivative reduces (3.4) and (3.5) to a one must be corrected. Two correction steps are used to
dimensional and a twodimensional advection-diffusion generate (Vn, pn).
equation, respectively. The solution of (2.4) is written as : (ii)first correction step. The first corrected field (V**, P*)
0 = a [exp(2cX*) - 1] + bW* + c (3.6) to be computed is such that:
Substituting (3.6) into (3.4), one is left with: EV** - AV* + GP* = f ; DV** = g : step 1 (3.14a,b)l

The momentum equation (3.14) specifies V** from V
d2efined by (2.15a)

= (CU+CD)OP - CUOU - CDOD + 'IR()p4pnI-)+ V = E- 1 (AV* + f) (3.15a)1

+(So)p (3.7) according to the following projection form - step 2 -:
with V** = V - E-IGP* (3.15b)l

C exp(Cl) C exp(-Cl) while the pressure equation for P* is obtained from a
Cu = I sinh Cl ; CD= I sinh CI substitution of (3.15b) into (3.14b) - step 3 - :

DE-1G P* = DV - g (3.16) 1

,c is the time step, the index n-I refers to the known (iii) second (mandatory) correction step. The second
state, indices U and D refer to upstream and downstream
nodal values respectively. The resolution of (3.5) is corrected field (V***, P**) = (Vn, pn) satisfies
classical and the result can be written under the form (3.8) EV*** - AV** + GP** = f ; DV*** = g (3.14a,b)2

Therefore, equations (3.15a,b)2 and (3.16)2 result from
op Cnb 4 nb - Cp g (3.8) (3.15a,b)l and (3.16)lif the following substitution is

nb performed : V*--V**, V**-+V***, P*.--P**. It our
The index nb refers to neighbouring nodes NE, NW, implementation, where only the steady state is looked for,

SE, SW, NC, SC, EC, WC (fig.1). If the relationship the second correction step is not performed so that
(3.8) characterizes compact schemes (the molecule of Vn=V, pn= p*.
which involves at most three points per direction), the
values of influence coefficients Cnb, CU, Cp depend on 3.3 Implementation problems.
the type of discretization in the plane il, . Following -Step 1- In the cell-centered colocated grid approach,
[12][37][40], we use the finite analyuc discretization. 'ibe where velociLy components pressure and turbulent
resulting values of Cnb are omitted here. Combining (3.7) quantities are defined at the center of the control volume,
and (3.8) gives (3.9). the momentum equations (3.9) can be written under theR form (3.17).

1+ Cp (Cu+CD)+ Cp R Op (3.9) f 1
R (3) u= 1+Cc(C+CD)

Y1Cnb!)b+CP PeCk, CDC+-4TO-(4%)~ R n-1
nb L p Cnb nb+CC CuUu +CDUd + - M IUd)-Su
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1 components havp to be specified in (3.20) for the
evaluation of div V in each rontrol volume

I+C(Au1 A I A A~
div V + + bW) - (b t + b V N )

C.bV.b+Cc Cu +CDVd + ( (Y. (b bV 2 3) 2 3V)

1 + (blU + b2 + bt). - (b1U' + bV + b3W) (3.21)
We= Y+Cc(Cu+CD Because of the definition of the control volume, the

whole set of velocity components has to be reconstructed{ 8R from the known centered velocity components. A simple
C.W +Cc VIuu +CDWd + R (Wn 1* We).Sw interpolation is used for that purpose. Because of the

I. T structure of the retained discrete molecule, the discrete
CC is the finit.- analytic coefficient computed vt the pressure matrix is symmetric.

colocat!d velocity ,node (in the standard MAC method 149] -Step 4- The computation of the non solenoidal V*
Cd, for Ud, Cn, for Vn, Ce, for We are computed at the field uses (3.17), the pressure field resulting from step 4
staggered velocity nodes). The matrix E is built with being present in source terms. The correction procedure
coefficients like I+CC (CU+CD), etc...The matrix A starts only when the field V* has been computed

gathers terms like Cnb CCCU, CCCD, ...Terms like R / throughout the complete domain.

are in f. The G matrix for pressure contributions is inside 3.4 Solution of the linear Systems
source terms (SU), (SV)... 3. 4 .1 The Problem
-Step 2- Equation (3.15b) van be written Before discussing the technical solutions which have

A 1  1 2 3, allowed correct solutions to be obtained, let us point out
UfU-J D(bIoP+ b1̂  +, "'. the origin of the difficulties. Pressure equations and
V=V-"1 D(b2P + pressure correction equations are almost invariably solved

'r X 2 n _ ) (3.18) with SLOR type methods applied to the seven point
A 1i 1 2 3 molecule induced by the treatment of under lined terms in

V=W-J- D(b;Pj b3P + b3PQ (3.18,19) as source terms. The main interest of this
where approach is, as already seen, that the P matrices are now

CcR symmetric and, usually, diagonally dominant. SLOR
methods can therefore be expected to converge. Moreover,

I+ CC(Cu+ PD) the coding of the needed tridiagonal matrix algorithm is
The underlined terms in (3.18) are generated by the straightforward. Unfortunately, due to the problem of

misalignment between the coordinate lines and the misalignment, dominant terms are omitted in the system
directions of the velocity components. With respect to the and treated as source terms. As a conseqguence, global
staggered grid approach, ir is seen that the D coefficient for convergence of the metrod is made more difficult. Unless
the pressure gradient does not depend now on the strong departure from orthogonality is admitted for the
corresponding velocity component. grid, this is not dramatic when wall functions are used
-Step 3 - Substituting (3.18) into the continuity equation because grid clustering in the direction il remains rather
(3.19) : weak : the first points away from the wall being located so

[biU + b'V + biW] + [b2U + b2V + bW]n+ that 50 < y+ < 200. When wall fuctions are avoided,strong grid clustering implies a dramatic increase of the
[bl3U + b2V + b3Wl = 0 (3.19) pressure matrix stiffness so that, for threedimensionalproblems, divergence of the iterative procedure occurs,
gives the pressure field (3.16) which can be viewed also as mainly through a too important pressure correction in the
the solution of the continuous equation (3.20) wake. If the pressure matrix is enriched, [18], (using e. g.

A 0 ) P nine points at the current station X = X1) it becomes more
a 3 - = =" div V; a" = D~g3 = DY1 X bk b (3.20) difficult to invert. Thus, improving at least the pressure

axL 'J k= 1 solver is necessary.
Equation (3.20) is now discretized with a centered

scheme. Usually, this gives a 27 node pressure molecule 3.4.2 The pressure solver
(9 in the upstream plane, 9 in the central plane, 9 in the It has been found [50] that convergence was
downstream plane). Seven points : U, D, N, S, E, W, P systematically achieved in practice with an incomplete LU

come from second order derivatives a2 / aXiaJ, i=j ; the preconditionned biconjugate gradient (PBCG method).
themcrossedmsecondnd order dConjugate gradient techniques are used as acceleration

other twenty points come from the crossed second - order methods in which the elements of the pressure matrix
derivatives 2 / Ri, i * j. Because of the retained (hereafter called A) are generated at each iteration, without
discretization, the pressure molecule involves only 19 any need of storing the full matrix. The CG method
points (five points in U and D planes). Among the whole satisfies a minimisation property so that a monotone
set of contributions to the pressure matrix, it is necessary decrease of the error is possible as well as a convergence
to keep all the fluxes in order to allow a complete disruption to which is associated a monotonic decrease of
construction of the aij coefficients, i = j, because of the the error. This is not verified in practice because it is not

the full pressure matrix that is solved. Because the
misalignment problem. Extradiagonal coefficients i 0 J spectrum of the A matrix is continuously distributed,
arising from crossed second order derivatives are preconditionning is necessary as a means of improving the
connected to the level of non orthogonality of the grid. convergence of the BCG method : the system to solve Ax
They are not retained implicity but rather treated as source = b is replaced by the equivalent system By = c where
terms. As a result diagonal dominance and symmetry of the
discretized pressure matrix is easily obtained. 18 velocity K(B) <K(A), where ic is the condition number of the
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matrix, so that eigenvalues of B are more clustered thaD [39] to compute the flow past a complete full shape,
those of A. Whaj is neeoled is an approximate invqrse A starting from far upstream. Apart from difficulties
for A such that AAx = Ab or By = c where B = AA ; c = connected to the transition specification -a problem on ship
Xb. B being "not to far" from the identity, the CG method models, not on full scale ships-, the flow becomes then
for B converges quickly. somewhat sensitive to the level of the turbulent viscosity

outside the viscous zone so that consideration of these
The A matrix is selected so as to preserve the aspects is left for a future study. Other boundary

sparsity of A. Here, an incomplete LU decomposition 151] conditions are either wall-type conditions or symmetry
[52] -no fill in- is used - the so-called LU (1, 2) conditions. Neumann boundary conditions are used for the
decomposition performed worse than the retained classical pressure, except for r = L where P is taken equal to zero.
LU (1, 1) decomposition - . The solution of the LU 120 global iteration are usedwith a local time
systems involves recursions which cannot be easily stepping procedure. Local time step is divised to ensure a
vectorized so that the solutions of these triangular systems fixed amount of diagonal dominance will respect to
is time consuming. Fortunately, a Neumann series method discretized momentum equations.
applied to the L and U systems has been found to converge
nicely. The argument is presented for L. If L is written Fig.4 presents longitudinal pressure distributions. A
under its Jacobi splitting L = DL + EL, L = DL [1 - 1] sensible grid effect in the longitudinal direction is present
where I = DL-1EI,. It appears in practice that I is a in this case. Girthwise distributions agree reasonably well

of linear algebra with experiments although some more resolution should be
convergent matrix. A classical theorem of linear1algeb necessary (fig.5). Comparison of secondary velocities with
then indicates that 1-1 is regular and (1- 1" = 1+1+12+... experiments [44] is given in fig.6. The convergence of
The Neuman serie is truncated to in terms and the resulting streamlines, which starts to develop at midship, increases
approximate inverse of 1-1 can be computed with the more downstream and gives rise to a counterclockwise
Homer scheme. The whole set of computations can be primary vortex in the hollow of the stem. The primary
vectorized with a speedup ratio higher than 30. Further vortex is close to the keel plane both in the computation
information on the PBCG algorithm are given in [51]. and in the experiments which indicate a "blind" zone for

x/L > .95, where the longitudinal velocity component is
4. The Results, HSVA Tanker. too small to allow significant measurements. The

longitudinal vortex where the hull terminates is also found
The flow domain covers 0 < X < 6 where X is to agree with experiments. If isowakes are now considered

adimensionalized with L, the ship being from X = -1 to X (fig. 7) -they are defined as isovalues of the component U
= 1.05 ; rs < r < L where r is the radial distance from the in crossplanes-, it is found that the experimental trends are
axis of the ship y = z = 0 and rs is the radial location of the correctly captured (except, of course, for string effects
hull. The flow domain is discretized with 80, 40, 31 points which are not present in the computation, see e.g. x = 38
in the axial, radial and girthwise directions. Starting from mm, 0 mm, 100 mm, in [44] data-). It must be mentionned
an a-priori specified surface grid distribution, a volumic that a bilinear interpolation is used to specify isowakes so
grid is firstly generated using a transfinite interpolation that it is misleading to compare isowakes .95, 1, or 1.05
procedure [20][55] which is modified in order to allow as corresponding velocity profiles are usually very "flat"
clustering of points in areas of strong concavity. The close to U = 1. The apparent overestimation of the viscous
resulting grid is irregular as the discontinuities on the body thickness close to the waterline is probably due to the fact
surface are propagated throughout the domain. The elliptic that the inlet viscous thickness does not depend on girth,
grid generation method is used to smooth out the grid while it should thicken from the keelplane to the
irregularities. Fig.3 presents a perspective view of the grid waterplane.
which appears to behave correctly.

Velocity components U, V, W as well as pressure
Inlet conditions, written at X = 0, are estimated in data can be compared more extensively (fig. 8a to e). U and

such a way that results at X = .291 roughly match with V are presented on tl'e upper left and right sides,
experiments [1]. The main undetermination lies in the fact respectively, W and P are presented on the lower left and
that specified data [1][44] involve 011, 81, Cf and H12 , right sides, respectively. For each series of plots, the
where: evolution is considered with respect to y at a given station

X = const., for several depths z = const.. In general, it is
seen that the calculations are in correct agreement with the

U data, especially on V and W, except, for U, in small
dy ; 8= dy regions close to the hull or in the neighborhood of the

wake centerplane. This discrepancy is believed to be due to
0 (4.1) the hull shape modifications. Due to the large amount of

1 2 grid points which would have been necessary to account
H12 = 011 /8 ;C -  w / - for the hub support boss located for -19 mm. < x < 0 mm.

ffU a(in [40] data), this detail of the geometry has beenfrom which needed values for 8, Ut and Qe are estimated elmntd(i.9.Ascoiaelns()11=I =eliminated (fig. 9). Also, coordinate lines (L) : 1"1 = 1, =
(3w =_ 0). These estimations allow the generation of inlet const. evolve continuously from the ship hull into the
velocity profiles by the method of Coles & Thompson vertical plane V of symmetry of the wake. They define a
[53]. It is therefore necessary to briefly mention the results family of curves that describe the hull surface for . <
of the sensitivity analysis of 8, Ut and Qe data. It is found Xw (X) where 2Xw (X) defines parametrically the
that, if the influence Ut is very weak, the result of thecomputations depend on the level of the overshoot of Qe intersection of the hull-surface DB with V ; this intersectionwithorspctato d nd of the loca of ths overshoot, is located for .95 < X < 1.05. For X < Xw(X), lines (L)with respect to 1, and of the location 8 of this overshoot.

We consider that this is the most serious weakness of this are almost rectilinear in V, ie. z(rl = 1, given) depends
approach and this justifies recents attempts [6] [291 [30] only weakly on X. In V, the line ? < ?,,(X) usually
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consists of a vertical line located at X = .95 for zb z : k-e model. The use of wall functions is avoided ; instead,

zr. For zr 5 z 5 0, the line X < %w(X) (which is a a one equation model is used close to the wall.-Bypassing
piecewis 0,te linearfunctionof X) is rather cl h t a the wall functions implies a very high grid resolution in the
piecewise linear function of X) is rather close to a straight direction normal to the wall as well as high aspect ratios forline, the equation of which can be written the discrete molecules. Due to the resulting increased
Z/Zr= 1 +10 [.95 -X] stiffness of the pressure matrix, it has been found

so that the hull has disappeared in the cross plane X necessary to improve the pressure solver in order to get rid
= 1.05. Now, the approximate hull profile in V is not of convergence problems. The numerical method has been
described exactly by X < Xw(X) but rather by a "stair" described and evaluated on one ship hull for which
function (fig.9) consisting of a succession of lines experimental data are available. From the presented results,
X = const., each of them separated by a line close to the following conclusions can be drawn.
z = const.. The no-slip condition is evidently written on theresutin "stir urfae" B swhih isa cudeWith respect to the modelling of physical flow
resulting "stair surface" aB s which is a crude characteristics, the main features of ship stem flows appear
approximation of the "longitudinal geometry" while correctly captured. In particular, the viscous inviscid
crossplanes are correctly body-fitted. As a result, the interaction gives rise to a pressure field in good agreement
description of the viscous layer is rather poor. with experiments. The method allows also a correct
Nevertheless, a comparison with [14] -where a similar description of the mean velocity flowfield in the thin
treatment is present- indicates that the slight improvement boundary layer, provided suitable initial conditions are
obtained on the secondary flow can be attributed to the fact available [51]. In the thick region, close to the aft, where
that wall fuctions are not used here. The discrepancy thin boundary layer methods systematically breakdown,
between the computed and measured U components is the overall features of the flow are also captured :
important, especially in the wake. Apart from the fact that secondary velocities and even longitudinal vorticity
this discrepancy is already present upstream, another components are correctly predicted. Where discrepancies
possible explanation could be the incorrect account of the are found, they may be attributed to the technique which
loss of no-slip which results from the turbulent model. has been used to approximate geometrical details in the

framework of a monoblock structured grid. Improvements
Fig. 10 presents the comparisons between the in the description of the flow close to the propeller disk

computed and measured longitudinal vorticity component region therefore require a more detailed resolution of the
isolevels . In spite of the uncertainties involved in geometry.
processing both the measured and computed data, such a
comparison allows examination of differences of velocity With respect to the methodology, ship stem flows do
gradients rather than velocity themselves. This test is not appear to involve too strong a viscous-pressure
therefore more stringent. As a result, it is found that the interaction. Therefore, the segregated approach seems well
computations reproduce both the general features of the adapted. Apart from geometrical grid aspects,
contours and the magnitudes. It is also evident that the improvements could result from one of the following three
diffusivity which is present in the viscous region is more points.
correct, with respect to experiments, than that which would (i) The convection diffusion scheme. The finite analytic
result from the use of wall functions [14]. The differences scheme only roughly accounts for the correct physical
in the shape of the isovalues, in the wake, could be imbalances : pressure gradients vs. diffusion in the near
foreseen from the differences in the velocity distributions, field, pressure gradient vs. convection in the far field, for
Fig. 11 presents a color picture of lines of wall friction , the fil possible convection velocity directions. More
hull is coloured with the pressure field, high Cp and low particularly, the hypothesis of local uniformity of the
Cp being associated to red and blue colours respectively, influence coefficients and of the source terms, which
The flow which looks clearly twodimensional at midship allows locally (finite) analytic solutions to be computed, is
enters an oblique low pressure region which deviates the probably too restrictive, especially in the direction away
wall streamlines. The resulting convergence of these from the wall, where the convection velocity and the
friction lines implies a thickening of the viscous layer, source terms vary rapidly, owing to strong gradients of
close to the aft, that makes thin boundary layer methods turbulent quantities.
breakdown [1]. A vertical convergence separation line (ii) The Poisson solver. This is the most time-consuming
seems also present, close to X = kw (=.95). Due to the part of the method, especially on threedimensional grids

approximate characteristics of the hull geometry and to the where the aspect ratios can be very high. The conjugate
fact that the U velocity component is very low here, the gradient technique appears very well adapted to the
materiality of this result remains to be confirmed from problem in spite of its induced storage increase. It can be
experiments. The maximum pressure levels are found on noticed that it may be somewhat unreasonable to compute
tephulls X m-1.025. Moredonsream, thesae ori the pressure -which is regular and does not vary
the hull X - 1-1.025. More downstream, the vortical significantly close to the walls- on a grid which appears
structure of the flow is confirmed : streamlines associated rather well suited for the velocity distributions and for the
to the secondary velocity components V and W are drawn turbulent quantities in that they especially vary close to the
for two crossections X = const. walls. Because less points are needed for the pressure, the

use of a multigrid procedure should e2ficiently cut down
S.Coiclusion cpu times. Because relaxation is a local procedure, a

multigrid technique might be also a way of improving the
A fully elliptic numerical method for the solution of solution in the boundary-unfitted region close to the aft.

the full Reynolds-averaged Navier-Stokes equations has (iii) The Turbulent Model is also a potential source of
been applied to the computation of the flow past a shiplike uncertainty for the description of near-wall flows where
hull. The method uses a system of numerically generated strong curvature effects are present. Although the flows
curvilinear coordinates and retains the cartesian velocity considered are mainly pressure-controlled, improvements
components as independent variables. The turbulent in the turbulence models might lead at least to improved
closure of the equations is handled with the well-known length scale predictions (the turbulent kinetic energy is
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310



X lOOmm0

C\
CL0

F 0

0 OR2 .uq .0G .06 .1i 12 1
Fig. 10 -Contours of isolevels of the longitudinal component of the vorticity field in transverse
cwosssections. Left, experiments [44] ; right, computations.

Fig.9 - Detailed view of the aft part of the HSVA tanker. -- , (x) exact intersection between V

and aB ; _, present approximate "stair" representation of this line (note: the sting is omitted
in the computations).
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Fig.1 1 - Perspective view of the aft part of the HSVA tanker; skin-friction lines.
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DISCUSSION (M) the exact geometry is not well
by Y. Kodama represented, so that the no slip

condition is not written at the right
You used a non-aligned grid system near place in the plane of symmetry.

the stern, which greatly reduces load for grid (ii) the development of the boundary layer
generation and improves grid orthogonality. below the overhang is not correctly
However, I think a special treatment should be captured because of the lack of
needed in order to satisfy conservation there. discretization points and a distribution
Did you do those treatments there? If not, law which is not in agreement with the
what is your opinion about the effect of strong variation of the velocity profiles in
possible violation of conservation there on the plane y=0. Due to the used topology
the computed results? this weakness is not easily surmountable

because the grid lines which are supposed to
Author's Reply describe the overhang symmetry line boundary

layer come from the surface of the hull.
Because of the use of an H-grid associate

to the constraint x=x(E),the grid which has It is believed that the correct
been built here is no more body-fitted in the representation of the body surface is more
intersection between the overhang and the important than conserving momentum on a
plane of symmetry(y=O). This implies two geometry which is incorrectly reproduced in
consequences; the symmetry plane. The best remedy to this

fundamental weakness is to relar. the
constraint x=x(C), working on more general
(and less orthogonal) grids.
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Simulations of Forces Acting on a Cylinder in Oscillatory
Flow by Direct Calculation of the Navier-Stokes Equations

T. Kinoshita
Univertisty of Tokyo, Tokyo, Japan

M. Hinatsu
Ship Research Institute, Tokyo, Japan

S. Murashige
University of Tokyo, Tokyo, Japan

Abstract where Ko-U.T/D, 0 =R./Ko, R. is the
Reynolds number, R.-U.D/v, U. denotes

Flow around floating vessels the maximum velocity in a period, D the
sometimes accompanies separations, and diameter of the circular cylinder, V
is unsteady in ocean waves. We select the kinematic viscosity of a fluid, and
the flow around a circular cylinder in T the period of oscillation. He
an oscillatory flow as a preliminary related the position and strength of
study for it. vortices around it to K.. For example,

a very interesting half Karman vortex
In this paper, the two dimensional street in the transverse direction was

Navier-Stokes equations for it are observed in the range of 7<K.<13.
directly computed using body-fitted Honji[2] performed the same experiment
coordinate, moving mesh technique, 3rd as Williamson atKo<4 and 70< 0 .700,
order upwind scheme, and the MAC method and indicated that structures of flow
at the Reynolds number, R.fl04 and the field become three .dimensional in
Keulegan-Carpenter number, K.=5,7, and special range of K. and $ . Tatsuno et
10. al.[3] performed the same experiment as

them in the more wide range of K. than
The computed results simulate the Honji at K.<15 and 0 <150, and

effect of the K. number on the flow classified the flow patterns minutely.
field in excellent agreement with
published data both qualitatively and For the small sectional size of
quantitatively, cylindrical bodies compared with wave

length, in-line force per unit length,
Moreover, we examine the validity of Fi., is commonly predicted by the

this computational scheme. The good following equation.
agreement with analytical solutions
gives reliability of it, and we Fin pCdDu ul + 1 7rpC .edu-
consider the effect of it n of the 2 4 dt (1)
grid and the effect of the Reynolds
number minutely, where the coefficients Cd and Cm denote

the drag and inertia coefficients,
1. Introduction respectively, D the width .of

structures, p the density of fluid, t
The flow around a circular cylinder the time, and u the velocity of the

in an oscillatory flow is idealization ambient flow. First, Morison et al.[4]
of the flow around floating vessel like proposed it intuitively, and later
semi-submersible in ocean waves. It Keulegan and Carpenter[5] evaluated it
accompanies separations and is systematically. Equation (1) is called
unsteady. Hence, we must sometimes the .Iorison equation and means that the
understand mechanism of the separated in-line force is assumed to be given by
vortices to estimate hydrodynamic a linear sum of the viscous drag and
forces acting on it. inertia forces. According to Keulegan

and Carpenter[5], assuming an odd-
Flow visualization gives a lot of harmonic in-line force of f=27rt/T,

valuable qualitative information for i.e. F±.( 8 )=-Ft.( O+n ), expressing it
it. Williamson [11] oscillated a in terms of a Fourier series, and
circular cylinder in water at rest at neglecting the high frequency terms in
the Keulegan-Carpenter number, K.<60, them, we get the Morison equation (1).
and the frequency parameter, a =255, The coefficients Cd and C. are
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expressed under the condition of virtually identical in the range of
U=U.sinO as follows: their validity, i.e. for large 0. On

the other hand, Bessho[9] obtained the
analytical solutions for this problem

3Z F dsinO using Oseen's scheme and showed the
Cd - /DU coefficients Ca and C. as follows:

2 7__ f dO Cd TeC (7)C" D (2)

C, - 2 + 4(rA)' (I - -4c)
Sarpkaya[6] carried out an analysis ( 2 (8)

of the experimental data of Keulegan
and Carpenter[5] as well as his own Numerical analysis is another way to
data, and showed that the coefficients this problem. Recent advances of a
Cd and Cm depend on not only K. but super computer have enabled direct
also R.. In particular, it is calculation of the Navier-Stokes
interesting that Ca increases and C. equations, and some flow fields have
decreases with K, in the range of about been solved. Baba and Miyata[lO]
5<K.<15, of which region corresponds to carried out an analysis of a flow
that of transverse half Karman vortex around a circular cylinder in an
street observed by Williamson[l]. He oscillatory flow at R.=lO00 and K.=5
also pointed out that the Morison and 7 using the finite difference
equation (1) cannot express the method and showed qualitative agreement
experimental data well in the range of with observations.
8<K.<25.

Objective of this paper is to
Experimental estimation of the accurately simulate instantaneous

coefficients Cd and Cm as well as lift unsteady flow field around an
force coefficient, C. requires oscillating circular cylinder and to
considerable number of trial, because estimate hydrodynamic forces acting on
the ambient flow field is affected by the circular cylinder quantitatively at
plural parameters. R.=IO000 and K.=5NlO . Namely, increase

of Cd and decrease of C. with K. in
For this problem, some analytical this range as well as drastic change of

solutions have been obtained, the flow pattern are simulated. For
Stokes[7] was the first to show that these purposes, the authors adopt
the force acting on a cylinder direct simulation of the Navier-Stokes
oscillating sinusoidally in a viscous equations. Although the number of mesh
fluid depends on both K. and R. or $ . is limited, we consider that simulation
The force is expressed in terms of the of newly generated predominant vortices
Morison equation (1) by noting that which mainly affect the flow field is
Icoselcose is approximated by only required, while energy cascade to
(8/3n)cos8 over a period, and the very small vortices is less important
coefficients are expressed as follows: to this problem.

-3In this paper, the Navier-Stokes
Cd- ((7)' + (0)_' + 0()] (3) equations are solved for flow around a

sinusoidally oscillating circular
cyliuder in a fluid at rest, using the

C, - 2 + 4(ng)' + 0(70)', (4) finite difference method. The flow is
identical with flow around a circular

Equations (3) and (4) are valid only cylinder fixod in an sinusoidally
for large values of 0 . Wang[8] oscillating flow except for the
extended this analysis to O[( wB )-3/2] constant gradient pressure (see
using the method of matched asypmtotic Appendix). In the former case, we
expansion. His solution, which is need the moving mesh technique which
valid for Ko<<i, R.xK.<<l, and 0 >>I, moves a computational grid with bodies,
may be reduced to because the circular cylinder moves

every moment. In addition to this

1, -problem, the moving mesh technique
Cd -K L ... -4' (5) enables computation of a flow aroundbodies which instantaneously change

their shapes like fish. Accordingly,
C, - 2 + 4(rg)' + (7)i (6) the present computational procedure can

be widely applicable.
The equations (5) and (6) differ from
(3) and (4) only in the last terms. All problems are two-dimensionally
Stokes and Wang's solutions are solved. Although three dimensional
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computations are necessary to take into
account the three dimensional coherent
structure of the shed vortex sheets,
they remain as a next step of the ,\\,\ , ,
research. This paper shows two ,%V 4,/ $'.
dimensional solution to this problem.

In order to use the present
computational scheme as a practical cut
tool, we must determine the validity of
it. We compare the computed results
with the analytical solutions and /
examine effects of total number of grid J.\!i&\'. """
points, minimum grid size, time
Increment, and the Reynolds number on
the computed results.

2. Governing Equations
Fig.1 Grid

The two dimensional Navier-Stokes
equations are written in the normalized circle. The number of grid divisions
form as follows: are 120 in the circumference direction

and 50 in the radius direction. The
I all+ uL + au grid is clustered near body surface
K t using geometric series to obtain high

resolution. The minimum space adjacent
p + R (&i2 + ) to the body is set to 0.005.

e aX a 8 j Introducing a cut line along the

I 8v + u IV + v positive part of the x-axis in the
T -t + o x -I - physical plane (x,y) as shown in Fig.l,

+ _± (_V + we transform the plane (x,y) into the

ay Re 2 + P) computational plane (9,n) whose grid+ X - (9) increment is set to be constant and
unity for each direction as shown in

where u and v denote the velocity in Fig.2.
the x-direction and the velocity in the
y-direction, respectively, and p the
pressure. The velocity is normalized by o u t e r b o u n d a r y
the maximum velocity of oscillation in -

a period, U.-, the pressure by P U.-2 ,
the length by the diameter of a
circular cylinder D', and the time by
the period of the oscillation T-. A J

superscript of asterisk denotes the
dimensional value.

The continuity equation is written 2 -'
in the normalized form as follows: b o d y s u r f a c e

)u + " - 0
0X a - (10) Fig.2 Computational plane

3. Computational Procedure Actual computation is performed in this
computational plane ( ,r).

3.1 Body-fitted Coordinate System 
and

Moving Mesh As noted in the introduction, the
moving mesh technique is adopted. Now

Body-fitted coordinate system makes we can consider two ways to move the
it easy to compute flow around a body grid as follows : (1) the way to fix
of arbitrary shape, especially to treat the outer boundary and move only the
boundary conditions through coordinate inner boundary, (2) the way to move the
transformation. In this simulation, outer boundary with the inner boundary
the grid is generated as shown in Fig.1 simultaneously. Case (1) requires
and the system Is an 'O-grid'. In this longer computational time than case

grid, a circular cylinder of unit (2), because the grid must be

diameter forms the inner boundary. The regenerated every moment. Hence, case

outer boundary is a circle whose (2) is adopted in this paper. The

diameter is 40 times that of the inner relations of partial differential
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operators between the physical plane (2) Outer Boundary (J=JJ+l)
(x,y) and the computational plane *The velocity is set to zero.
(g,n) are written as follows: *Using linear extrapolation, the pres-

sure is set as follows:

a, - aOa + bo pa = 2p3 -.% - pa-a

ay - Caf + don pa.x = 2pa - pa-m (13)

azr + a, - of + 6 at, + 6an (3) Outside of Cut (i=-1,OII+l)
*The velocity and pressure are set as

+ aot + ia,, follows:

at - - (axT + cyr)O( - (bxT + bYT)Oa, + a q_.x q_=
(11) q0  =q-

qX =qX
where t denotes the time in the q ...1  q2  (14)
physical plane (x,y), T the time in
the computational plane (C,n), and where q denotes velocity or pressure.

This condition is called 'periodic
o - -- -.Ju condition'.

c - v -Jx , d - - Jxt 3.3 MAC Method and Discretization

- a2 + c2  6 - 2(ab + cd) In the present computation, the MAC
method[1l] is adopted as a

6 - + dcomputational algorithm. In this
a + ban + ccf + dc, method, pressure p is obtained by

solving the Poisson equation which is

- +b( + bb, + cdc + ddn derived by taking the divergence of the
Navier-Stokes equations as follows:

Yf -~ -*(iV) J _j - e +..LI..
Kcat Re

(15)
All physical quantities, i.e.

velocity and pressure, are estimated at where u denotes the velocity vector
each intersection point of grid, which and c is written as
is so-called 'regular mesh'.

S- il + ilL
3.2 Boundary Conditions ax ay (16)

Indices (i,J) of grid points in The condition of the continuity is
the computational plane(C,r) are shown imposed as follows:
in Fig.2. Each boundary condition is
as follows: On _ .0

it (17)
(1) Body Surface (J=l)
*The velocity is set to that of a where it denotes the time increment,
circular cylinder, and n the time step. The reason why
*The first derivative of the pressure the local dilation term of the n-th
is derived through the Navier-Stokes time step is left is that it prevents
equations (9) and the orthogonality of the accumulation of numerical errors.
the grid on the body surface as Velocity is obtained by solving the
follows: Navier-Stokes equations (9) using the

Euler explicit time differencingOp-
o (yUt - xfVt) scheme. The flow chart of computation

is shown in Fig.3.
I O-U + dV) (yu, - xfv,))

- The governing equations are

+ 4 (- + dV)(yfu,, - xfv) discretized as follows:

+ I{-Ut(zu + eu,,) + xs((v, +41) (1) Space differencing
The terms except the convective term

(12) are discretized by 3-points central
differencing scheme for all regions.

where U and V denote the motion The convective term is discretized by
velocity in the x-direction and that in 1st order upwind differencing scheme
the y-direction of the circular (18) for J=2 and 3rd order upwind
cylinder, respectively, and E - x + differencing scheme (19) for J 9 3
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time increment must be set lower than
the above value in actual computation.

In this computation, it is set as
move body from (n)-th time follows:
step to (n+l)-th time step
and set body surface ve.- At - 0.0002 for Kc - 5 and 7
locity U" X, v - x

+ At - 0.0001 for Kc - 10 (23)

compute pressure pn-x by 4. Computational Results
solving the Poisson 1
eq.(15) The computations are performed at

R.=10000 and K=S,7 and 10. In order to
realize asymmetric flow field,

compute velocity u- x, sinusoidal motion of a circular
v' by solving the Navier cylinder in the direction vertical to

r -Stokes eqs.(9) the oscillation is superposed on the
oscillation at the first quarter period

no of the oscillation as follows:

U - sin (2irt)

yes - 0.1xsin(4rt) for t - 0.0-0.25

-0.0fort0.~ (24)

Fig.3 Flow chart

where U and V denotes the motion
velocity of a circular cylinder in the

U() , - x-direction and that in the y-direction, respectively. The amplitude
- i (ui-2a-,+ui.) and period of the superposed sinusoidal

2h (18) motion are 1/10th and half of the

oscillation, respectively.

(_ u ~ U, (U,-2-8U,-+8U,1-Ui-u2) For all computational conditions,
12h the circular cylinder is oscillated for

+lUil (Ui-2-4u +ui-4Ui i +Ui2) eight periods, and the results are
4h (19) discussed for the data in the 8-th

period.
where h denotes the grid increment.

4.1 Hydrodynamic Forces Acting on a
(2) time differencing Circular Cylinder

The Euler explicit method is used as
f)llows: (1)In-Line Force

n_1- Published experimental data of
8__U (U-u hydrodynamic forces are arranged by the
3t t (20) drag coefficient, Ca, and the inertia

coefficient, C., or the added mass
3.4 Stability coefficient, C., where Cm=l+C. (see

Appendix). Before describing the
The limitation of the time increment computed results, we should note that

is given by the von Neumann method, as there are scatters between the data
follows: published by different researchers as

taX shown in Fig.4.1. The time history of
Kcxu (21) in-line force shows a qualitatively

same pattern ineach cycle, but the
where it denotes the time increment, magnitude and phase vary to some
ix the local grid increment and u the degree. The dfferences yield the
local velocity. scatters. For example, Kato et al.[12]

showed the time history of pressure
In the case of K{5 and u 1.0, Lhe distributions, in which the magnitude

limitation of the time increment is differs more than 50 per cent in some
given as follows: cycle. Thus, since the value of the

coefficients depends on how to average
it a 0.001 (22) and estimate them, they may scatter

even in the same experimental facility.
Since the von Neumann method is Besides the differences of experimental

valid only for linear equations, the method and conditions, the reasons of
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the differences of the magnitude and Next, in order to examine that the
phase in each cycle are considered as present computation simulates unsteadyfollows. With progression of R. and/or phenomena accurately every moment, timeK., irregularity of shed vortex sheet histories of in-line force are shown in
which has three dimensional coherent Figs.5.1,2 and 3.
structures[2][3] is superposed on that
which has two dimensional coherent
structures. As a result, complicated
flow field which shows strong (P U.*,D,/ 2
Irregularity is formed. Hence, the computed
scatters are not only due to errors 3 - Morison
but also due to essential nature of
flow field. Furthermore, the
coefficients Ca and Cm (or Ca) are
considerably varied by even a little U 7
phase shift of hydrodynamic force time 0 L
history.

The computed results of Cd and C.
are shown in Figs.4.1 and 2 with
experimental data of Sarpkaya[6] and -
Tanaka et al.[i3] and the analytical
solutions[8](9] which are rewritten by
equations (5) '\(8) by noting Cm=l+C. , " . " ...
These figures show that these Phase ,.2,," '.computational results simulate very Fig.5.1 Time history of in-line forcewell the effect of the K. number on the (K0=5)
drag coefficient Ca and the added mass
coefficient Ca.. F pU.'', 2

Val. * la V I.. 
o,

-r computedC d 23 Morson
l .........Mo i n
Exp. by Sarpkaya o -

1. 0 t

o Computed W
00

I.O - : ,

/
<,Theory by Bessho 2 ,

\ . ........... Theory by Wang - 1 .0 10 21 , 0 C! . s0 ./----- 0- Ex- 2anat'eta

0.01 s
0' 1 1 i f I I I I I IFig. 5.2 Time history of in-line force

K c (K==7)
Fig.4.1 Drag coefficient, C2

Ca

-- computed....... . ........ .... 30 . ... Morson
0 Theory by Wane

040

0')

0 /"

U, o\\. -

Exp. by Sar ka a"

o Computed

" 0 2 i 2

Phase 0 ' 2.,"*,"
Kc Fig.5.3 Time history of in-line force

Fig.4.2 Added mass coefficient, C. (K.=10)
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Almost no experimental data of time P.,. 2).,. 22

histories of in-line force have been .
published, but we can get the
approximation for them by substituting
the experimental data of the
coefficients into Cd and C. in the V

Morison equation (1). The broken lines 0
in these figures denote the
approximation. Here it should be noted \
that the Morison equation assumes an
odd-harmonic in-line force, neglects > -
higher frequency components and cannot
express the experimental data in the C 2

range of Ko=8u .25. The first
assumption means that the flow field -,
repeats every half period of the .
oscillation. At K= 5 and 7, the 22 22 42 , 2 6 0

computed results are in very good Phase 0 ., 2 .1' .
agreement with the approximation by the Fig.7.1 Time history of transverse
Morison equation as shown in Figs.5.1 force (K.=5
and 2. While at Ko=1O, they are not in
so good agreement with them as at K.=5 'i.. i.,-ou.,- 2)

and 7 and are not odd-harmonic ..
definitely as shown in Fig.5.3. This
matter is discussed in Chapter 4.2 more 24-

minutely. 0)

(2)Transverse Force o
The comparison of the computed

results of the maximum value of )-C.) -

transverse force, Ftran.max with
experimental data of it[6] is shown In "C)
Fig.6. I 4

F tr a.a 0 -4.0 "V . . . . . . . .' '

3.0 -- Exp. by Sarpkaya CC 22 20 22 4.0 20¢ 2 ,

2.0 0 Computed Phase 0 2. T

0 Fig.7.2 Time history of transverse

/44..F force (K.=7)1.0/ (\,oo' ... .. 'D."

0 0 
1

0. 20 0-00 L

0

000 0
0. '0 s o o,0 o K

Fig.6 Maximum value of Transverse 2

force, Ftrn.mx - -

The experiment was not performed at Phase o .,,,1 ,-

R.=1O000, but the computed results seem Fig.7.3 Time history of transverse
to show dependence of it on K. and R. force (K.=10)
fairly... ,ll. Thc cxpcrim^nt shows that
the ratio of the frequency of
fluctuation of transverse force to the
frequency of the oscillation of the We consider that a transverse force
cylinder is two in the region of the K. depends on positions of vortices
number set in this computation. Time strongly. Time history of transverse
histories of transverse force in force is a good measure of periodicity
Figs.7.1,2 and 3 shows that. of the flow field.
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4.2 Time Evolution of Vorticity aspects of vortices.

Time evolution of vorticity is shown Further it is noticed in Fig.8.2
in Figs.8.1 and 2 where the time that the aspect of vortex shedding is
increment is set to 0.1, contour pitch different between in the first half and
2.0, a solid line denotes a in the last half period at K.=10. In
counterclockwise vortex, and a broken the first half period, two vortices
line a clockwise vortex. The circular shed, i.e. vortex D' sheds at t=7.3 and
cylinder is oscillated from side to vortex D shed at t=7.4. While, in the
side along the x-axts, a black circle last half period, one vortex sheds,
in each figure shows the position of an i.e. vortex E sheds at t=7.9. It
oscillating circular cylinder, and it affects in-line force. The computed
is located on the left end at t=7.0. results of in-line force time history

is not odd-harmonic as shown in
Williamson[l] classified aspects of Fig.5.3. The peak value in the first

vortices around the circular cylinder half period is lower than that in the
into some groups by K. for R. of the last half period. It means that the
order 103, and in the range of K.<13 Morison equation can not express the
they are summarized as follows: experimental data well in this range of

K. as pointed out by Sarpkaya, who says
(a) K.<7 that the range is 8<K.<25 at R. of the

Vortices which are generated in a order 104. Figs.5.1,2, and 3 show that
half period become a pair with vortices in-line force becomes less odd-harmonic
which are generated in the last half with the progress of K.. They show the
period. He called it 'pairing of at- same tendency as Williamson's
tached vortices', although one of the observation at R. of the order 103.
pair is not attached but shed.
(b) 7<K.<13 Tatsuno et al.[3] pointed out

The pairing of shed vortices is recently that the flow field patterns
formed, and a street of vortices moves are classified by periodicity and three
away from the cylinder roughly verti- dimensional coherent structures of flow
cally to the oscillation. He called it field more minutely with 0 and K. than
'transverse street'. Williamson's classification. For

estimating in-line force more
The computed results are as follows: correctly, we must understand in what

period the flow field repeats. The
(1) K.=5 (Fig.8.1.(O)%(9)) period is not necessarily an integer.

At t=7.0, the vortices A and B which
grow at t=7.0"v7.5 are already 5 Discussions
generated in the vicinity of the
cylinder surface. Vortices C and D at In order to examine the validity of
t=7.2 and vortices E and F at t=7.8 are the present computation, we consider
typical examples of 'pairing of the following six points.
attached vortices'. It is noticed thatthe flow field is asymmetric. (1) Comparison of computed results with

analytical solutions

(2) K.=10 (Fig.8.2.(O),%(9)) The computed results obtained
At t=7.0, vortex A which grew at without the initial disturbance, which

t=6.5^.7.0 turns to the opposite side is the oscillation in the y-direction
and is divided by vortex A'. Vortex B' in the first quarter period, must agree
was shed at t=6.5%7.0, moves away from with analytical solutions in the range
the cylinder nearly vertically to the where the theories are valid, Ko<<l,
oscillation at t=7.0% 7.3, and become R.xK.<<1, a >>J. When the Reynolds
'transverse street'. At t=7.2, vortex number is fixed to 104, the valid range
A amalgamates vortex D. At t=7.4 and is Ko<<l. Figure 9.1 and 2 show that
7.5, vortex D is shed. the computed results are close to the

analytical solutions in this range and
The flow patterns are not clarified that the present computation is

yet at R.=10000, but it is interesting reliable.
that the computed results agree with
Williamson's observation at Re of the (2) Effectof initial disturbance
order 103 very well. As mentioned in For examination of the effect of the
section 4.1 (1), increase of Cd and degree of the initial disturbance on
decrease of C. with K. are simulated the flow field, we carried out the
very well in this range of K.. We computation using the following
consider that the changes of Cd and C. equation instead of equation (24).
are due to these drastic changes of
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I) t: . 7. t: 6

(2) t=1.2 7 : .

:>I <: I

(3) t 73 ( 8) t:7.8

(4) t=7.4 (9) t=7.9

Fig.8.1 Vorticity contour, pitch=2.0, Ko=5

solid line: counterclockwise, broken line: cloLkwise
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_______________ 
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(3 ) l 1=7. ") i 7.,

Fig.8.2 Vorticity contour, pitch=2.0, Ko=10
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Bessho

0.20 - Wang H

0.00
0.00 1.00 2 00 3 00 4.00 2.00 -2 0

22 20 20 20 40 $0 8 '2Ka. Phase 2 ,.,'

Fig.9.1 Comparison of drag coefficient,
C8 between computed results and Fig.l0 Effect of initial disturbance
analytical solution~s that the difference between computed

results with the different initial
C. disturbances as shown in Fig. 10 may be

2.20 obtained under different experimental
Wang conditions.

2.05

.0Bessho (3) Effect of total number of grid
2.00 points on Ca, C., and flow field

.95 The grid used in the present
computation is determined by the

,90 total number and the minimum
increment. Resolution of flow field by

15 finer grid is higher, while stability
of the solution is lower if the same
time increment is used. Since we280 * computed cannot compute so long, minimum time

,.75 1 ,1, , increment is limited. Hence, we cannot
0.00 1 00 2.00 3.00 4.00 0.0 make the grid infinitely fine. Table 1

Ko shows that C8 and C. computed by the
grid 120 x'50 and 140.x 60 are in the

Fig.9.2 Comparison of inertia coef- range of scatters of experimental data,
ficient, C., between computed but that those by the grid 100 x 30 are
results and analytical so- clearly not in the range.
lutions

U - sin(2irt) Table 1 Effect of total number of grid
points on Ca and C.,

V- 0.Olxsin(4rt) for t - 0.0-0.25 (K.=5, R.=10 4 )

- 0.0 for t > 0.25
(25) 100 x 30 120 x 50 140 x 60

In equation (25), the amplitude of Cd 1.031 0.480 0.664
superposed sinusoidal motion in the y-
direction Is set to 1/10th of equation Ca 0.649 0.795 0.809
(24) and the period the same as
equation (24). There are S)
differences between the two results
qualitatively. Time histories of In-
line force are shown in Fig.l0. Here
It should be noted that It is Figure 11 shows that the computed
difficult to get the same disturbance results by the grid 120 xSO and 140 x60
in different water tanks, even though qualitatively agree with experimental
same experiments are performed. This data very well, but that those by the
is one of the reasons why experimental grid lOOx 30 do not agree with them.
data scatter. Although it is almost
impossible to express the disturbance
in the tank numerically, we consider
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(4) Effect of minimum grid increment on Cd
Cd and C. __0
We can do the same consideration as

the total number of grid ponts. Finer 1.60 0 Computed

grid increment near the surface of the
cylinder makes the resolution of e,0 U Exp. by Tanaka
boundary layer higher, but the 1.20t
stability of the solution lower if the
same time increment is used. Table 2 1.00
shows that the coarser and' finer
minimum increments than that used in 0.00 U 0 0

the present computation do not give 000 .
good results of C4 and C.. a

0.40

0.20 1.104

Table 2 Effect of minimum grid 0.00 0.50 1.00 1.0 2.00 2.0

increment on Cd and C. R.
(K,=, R.-104) Fig.12.1 Effect of the Reynolds number

on drag coefficint, Cd

A X-0.003 A X=0.005 A x=0.007 Ca.

Cd 0.703 0.480 0.703 1.00

Ca 0.469 0.795 0.469 o.a0 a a

0 0

0.0

(5) Effect of time increment on C4 and
C8  0.40

Through the consideration of the
stability, finer time increment makes 0 Computed
the stability of the solution higher 0.20
and give a solution closer to the true M Exp. by Sarpkaya
one. But finer time increment makes 0.00
time derivative of the residual of the 0.00 0.30 2.00 2.20 2.00 2.0
continuity equation larger and the Re
results may not suffice for the mass
conservation law. Table 3 shows that Fig.12.2 Effect of the Reynolds number
C4 and C. using it=0.O001 are not in on added mass coefficint. C.
the range of scatters of experimental
data. Why can we get very good solutions at

R.=104 ? We can consider the reason as
follows. As noted earlier, the big

Table 3 Effect of time increment on Cd vortices generated every half period
and Ct are predominant for the flow field.
(Ka=5, R=104 )  Hence, in the computation at R.=104 , we

can consider that 3rd order upwind
scheme controls the transition to
turbulence near the surface of the

t=0.0001 it=0.0002 At=0.0004 cylinder and the flow field outside it,
including predominant vortices, is

Cd 0.814 0.480 0.654 correctly estimated. For this reason,
we can obtain very good results at

Ca 0.668 0.795 0.739 R.,=10'. Then we need to consider the
effect of numerical dissipation on the
solutions. At the higher Reynolds
number, the local effective Reynolds
number near the surface of the cylinder

(G) Effect of the Reynolds number on Cd becomes too high for 3rd order upwind
and C. scheme to control the transition to
The experimental data by Sarpkaya[6] turbulence there, and, as a result, the

and Tanaka et al.[13] indicate that C4  numerical dissipation makes the
decreases and C. does not vary with Reynolds number lower. We need to
progression of the R. number. Figures consider the cause of some errors in
12.1 and 2 show that the computed more detail to estimate the dependence
results do not simulate the tendency. of the Reynolds number on the flow
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field. (6) For more precise estimate of
hydrodynamic forces around an

For more precise estimate of oscillating circular cylinder,
hydrodynamic forces -acting upon a structures of the flow field must be
circular cylinder in an oscillatory observed for long period and regularity
flow, the following is hereafter of it must be investigated. Since
required; three dimensional coherent structures
*observations of phenomena for long of the flow field may affect the
periods regularity, we need three dimensional
*simulation of three dimensional coher- simulation to discuss them more
ent structures of the flow field, completely.

In this paper, all computation is The authors acknowledge some useful
performed using FACOM VP-100, and it comments by Prof.Y.Ikeda of the
takes about 70 minutes for 8 periods of University of Osaka Prefecture and
the oscillation under the condition of Dr.Y.Kodama and Dr.T.Hino of Ship
the time increment it=O.0002 which is Research Institute.
40000 time steps.
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Appendix Relations Between Flow Around

an Oscillating Circular _ aLP + V( 2v + 02V)
Cylinder in a Fluid at Rest P ay aX2 a+
and Flow Around a Circular (C9)
Cylinder Fixed in an
Oscillating Flow (All au + av- 0
quantities are dimensionally ax a Y (30)
defined)

where U=U(t) denotes the velocity of
(a) Flow around an Oscillating Circular the oscillatory flow.

Cylinder in a Fluid at Rest
Assuming that a circular cylinder Boundary conditions are written as

oscillates in the x-direction, the follows:
governing equations are written as
follows: (U = -U at r

v= 0 tr~
IL + au' +u' au' + v au. " u 0

dt at ax' 1 a 0 at r - a

- ap +V(a2U + 82U') 0
" 5 - ax ax.2 ay.2) (31)

or" + u. aV + V-a "  In infinitely far field from the
at x Oa" circular cylinder, the velocity is

__ +ap + a2+ ) written as- P ay--', ax'2 a--

(26) (U = -U (t)
a' a. 0' V = 0
Ou' *Tj "- (32)

ax ay' (27)
Thus, equation (29) in the far field

where U=U(t) denotes the velocity of becomes the following equations:
the circular cylinder, a superscript of
prime the value in the coordinate
system which moves with the circular d la(3.a
cylinder, and v the kinematic dt P ax (33.a)

viscosity. (33.b)

Boundary conditions are written as ay-

follows: where Pi.r denotes the pressure in the

far field, i.e. the pressure in the
u' - uniformly oscillatory flow. Equation

-0 at r- (33.b) represents that the pressure In
the oscillatory flow, P±,n., is a
function of only x and t, i.e. P±.n =
P, r(X,t).

,, =- a The pressure is divlded Into twoSV, 0 parts as follows:

(28) P = Pt- + Pdl=v (34)

where r denotes the distance from the where Pdl=z denotes the pressure due to
center of the circular cylinder and a the disturbance caused by a circular
the radius of the circular cylinder, cylinder. Using equations (33) and
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(34), equation (29) is rewritten as Equation (26) is the same form as
follows: equation (25). The only difference

between the flow(a) and the flow(b) is

dL + L + au a, that thc pressure includes the
dt at ax ay additional term P,±e whose gradient Is

required to accelerate the undisturbed
IaPdit + ( + a,2 flow in the flow(b). Integrated around
" -Ox (O a!? the cylinder, P,.e gives rise to an

inertia force, which is p(m a2)-0U/8 t
SV + uTV + v~y per unit length. The inertiat a acoefficiont, C., which is defined in

-As) the flow(b), is related to the added
+ x'AL + -V) mass coefficient, C., which Is definedP dy a;? in flow(a) as follows:

C . 1 + C. (36)
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Numerical and Analytical Investigations of a Stationary Flow
past a Self-Propelled Body

N. P. Moshkin
Institute. of Theoretical and Applied Mechanics

Novosibirsk, USSR
V. V. Pukhnachov and V. L. Sennitsldi
Lavrentyev Institute of Hydrodynamics

Novosibirsk, USSR

Abstract A- Re a8/ax-,rvp = Re v

A stationary viscous incompressible 
1 0,

liquid flow past a body is considered. and the following boundary conditions:
The liquid velocity distribution on the - = 1,
surface of the body is prescribed so (1.2)
that the total discharge through it
equals zero. The velocity vector tends V-* 0 (1.3)
to a nonzero constant vector at infini-
ty. The following equations are to be when X-
fulfiled:

Here a is the vector-function satis-
S = 0, (*) fying the condition

T = O, (f*) f . it d = 0, (1.4)

Here S and T are, respectively, the whijst still arbitrary in other respects,
momentum and the moment of momentum, n is the nuit vector of the external
transfered by the body to th %liquid normal to the boundary of the domain g.
(for two-dimensional flows, and Equations (1.1) have been written down
are the above-mentioned values, related in dimensijnless variables, so that
to the unit length). These conditions Re = V% ,, is the Reynolds num-
form the boundary-value problem for the ber, V is the kinematic viscosity
Navier-Stokes equations, which we call coefficient, 1 is the characteristic
the problem of stationary flow past a linear scale (e.g., 1 = diam. 9 ).
self-propelled body. Though the problem The value of V (velocity of flow past)
of the flow past of a self-propelled bo- is a natural ve'locity scale, and the
dy has a natural origin(self propulsion pressure seal is assumed equal to
executes inhabitants,ships and airplan- p V V / 1 , where p is the liquid
es)and though it has a practical impor- density.
tance,the number of works concerning it
is very limited.This work contains the Further the surface of Z will be as-
results of investigations of different sumed to belong to the Hilder class
models of a self-propulsion of a body C 0 0.<a <i, and the components of
in a liquid obtained by abalytical,nume- vector a - to belong to the class
rical and experimental methods. C 2 4 " ( E ). Problem (1.1)-(1.4)

with the fixed function was consi-
§ dered in a great number of works. The

most significant results were obtained
by R.Finn [8] and K.I.Babenko [2]. If

1.1 Let E be the bounded closed surfa- a = - e1  , we come to a classic prob-
ce in R3and 9 be the domain exter- lem of a flow past a body with an unmo-
nal with respect to Z . The problem vable impermeable boundary E . It is
of defining vector-function (x)(the well-known that in this case the resis-
difference between flow velocity at the tance force of the liquid exerted on
point X -,and constant velocity at in- the body differs from zero. Thus, to
finity, ej = (1, 0, 0)) and scalar realize a stationary regime of flow
function p(x) (pressure) which satis- past a body, it is necessary to corifi-
fy the stationary system of Navier-Sto- ne it to the liquid flow by external
kes equations in the domain 2 : forces. The classic problem of flow
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pasr a body therefore should be called - (1.4) and equality (1.5)o form the
the problem of flow past a towered body. problem which will be denoted by (1.1)o

-(1.5)o and called the problem of momen-
Here our particular emphasis will be tumless flow past a body in the Stokes
placed on the problem of momentumless approximation.
flow past a body, or problem (1.1) -
(1.4) with the additional condition(*). In contrast to (1.1)-(1.5), problem
In the terms 7, p the latter is exp- (1.1)o-(1.5)o is linear, and the Stokes
ressed by the equality operator generated by system (1.1)o is

a self-conjugated one £14]. The above-

f f[-P7.i + Rel(l + e). ]dZ--O(l.5) mentioned circumstances make it possib-
le to find an effective solution of
problem (1.1)o-(1.5)o in terms of eigen-

Here F is the resistance force, Pv functions of some spectral problem. It
is the stress tensor corresponding o may be formulated as follows.
the velocity and pressure fields (V
and p , respectively), having the el- It is required to find number X and
ements vector-function ( ( x ) 0 O, determi-
(Pv)ij =-P6i. + avi/axi + 8vd/axi  ned on the surface Z,which satisfies con-

U - (i, j = 1, 2, 5). dition (1.4), from the relation

It is clear that in the model under con- 0
sideration condition (*) may be provid- A = (
ed only by the mobility and (or) the per-
meability of the body boundary E . In Here A denotes a linear operator,
the latter case it is natural to be ex- which puts in correspondence with func-
pected that the total discharge of a l- tion (P the valVe of the trace of the
quid through the body surface is equal stress vector Pv on the sur~ace E
to zero, that is expressed by (1.4).The calculated from the solution V4 P -of
condition of momentumless flow past a problem (1.1)o-(1.5)o, where a = (P .
body (**) is not imposed here upon the Operator A ,_nit ally determined on
solution. the functions 1 4 E (Z) , admits

It is well-known that with fixed a self-conjugated expansion up to the

problem (1.1)-(1.4) has at least one operator, acting to i" ( e from

solution for any Reynolds number, Re?:o of te f t A t li of the trace

[2, 8, 14). With low Re , its solution of the functions d ( 9 ? n the

is unique [2). From here it follows surface E are denoted by

that the problem of momcntumless flow and the closure in the Dirdchlet integ-

past a body, (1.1)-(1.5) is solvable, ral norm of a set of solenoidal vector-

generally speaking, only if the additio- -functions, smooth in Q , and equal

nal conditions on the function a( ) to zero at sufficiently high values of

are fulfilled. In other words, this I -/ is denoted by 1u (at). The spa-

problem is to be considered as a prob- cc to ( ) is conjugate with res-

lem of a join4 definition of functions pect to (E ). Using the theory, de-

l, p and a from the relations (1.1)- veloped in [151 it is possible to find

-(1.5). In this case condition (1.5), the following properties of operator A,

equivalent to three scalar relations, (i) it has an inverse A-  , which is

admits a wide rbitrar',iess in choosing continuous and self-conjugated; (ii) the

the function a , whica may be consi- spectrum of operator A is discrete and

dered as a determining function. it finite-fold; (iii) all the eigenvalues

should be noted that by virtue of the X4<?2<X1 ... are positive; (iv) X-c

law of momentum, condition (1.5) is when i. o ; the cigenfunctions (pk

equivalent to the equality to zero of and p corresponding to the oigenva-

the liquid pulse flow through any cont- lues oth and X / X( , are orthogo-
rol surface covering E , in particu- nal both in metrix rd( E ) and tat

lar, an infinitely distanced control generated by a scalar product

surface [18]. The totality of eigenfunction ( Pi }
forms a full system both in X( E) and*fr/i (z ).

1.2. The existence of the solution to
the problem of momentumless flow past Now it is not difficult to formulate

a body has not been considered so far. the solution algorithm for th problem

The existence problem may be solved ra- o momentumless flow past a body CIn.khether effectively in the simplest case Stokes approximation. Let ak = 0(00I,
thereffctielyin te smplst ase denote the Fourier coefficients of ex-

when the Reynolds number is equal to denoe te Function o ex-

zero (193. Let us denote system (1.1) pans'on of the function a (X) n basis

when Re = 0 (Stokes system) by (1.1)o { (k o
and the relation (1.5) when Re = 0 by Then the condition (1.5)o may be written

(1.5)o. System (1.1)o, conditions (1.2) as follows:
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01.3. Now let us consider an asymptoti-
Z ( Xka1  (k,id E) 0 (1.6) cal behaviour of the solution to prob-
k =1 i = , 2, 3), lem (1.1)-(1.5) when r = I I I - • Fornow, let us ignore the additional con-

where k is the i-th component of dition (1.5) and recall that the exis-

vector (k,"i Condition (1.4) means tence theorem for (1.1)-(1.4) "as a

that k whole" is solid in the class of vector-

0-functions V having Dirichlet fini-

Z (ak k " d Z) 0. (1.7) te integral [141,
k=1 E: vdx < (1.8)

Let us choose an arbitrary element
leTIV2(E) satisfying conditions (1.6),
(1.7) and then solve problem (1.1)o - In [21 it was established that any so-

- (1.5)o. In so doing the velocity vec- lution of the above-mentioned problem

tor f is defined one-valued, and the satisfying the inequality (1.8) admits

pressure p is defiend accurate to the estimate

the additive constant. Thus, in the so- -- 1/2- e when r -+ o (1.9)
lution of (l.1)o-(l.5)o being he prob- 1V~ x)I. Cr
lem of determining functions V9 P and

, there is a functional arbitra- with some positive constants C and E
riness. Therefore, determining the fun- As was shown in [8], any solution of
ction t from the condition of mini- problem (1.1)-(1.4) satifying inequa-
mum power functional is considered to lity (1.9) has an asymptotical beha-
be natural: viour

Jf P;V p' ild.E
E (x) = (x) + (x). (1.10)

The value of J is equal to the work
expended per unit line in sustaining a Here I is constant vector determined
stationary self-motion regime, by the formula (1.5), and t x) is

the remaining term, for which the fol-
In the general case the problem of de- lowing estimate has been obtained (
termining minimum J under certain nr- is high):
tural restrictions upon the function a
is solved by the method of Lagrange in- _3/2+
definite coefficients. Let us consider I I r C (1 + s)-  9(l.11)
the examples of such restrictions:,the
function a + 4has the support E
which does not coincide with the whole Here s = r - , s> is arbitrarily .surface of E p~ial the case small, and C = const. > 0. SymbolE(i)
whenfae reof Z (pisically t as e denotes the fundamental tensor of Oseen
when the region E c E is sufficient- system, corresponding to (1.1). The ex-
ly small is of interest); function
9+ e has a zero normal component (the pressions for the elements of tensor B
boundary of a self-moving body is im- may be found in [8].
permeable); function + e4 has a ze-
ro tangential component (the body sur- It follows from (i.lO),(l.i) that the-
face is unmovable). If the surface E re is a paraboloidal region of the wake

is a sphere, the minimization problem which d t(ro). Beyond any circulal
of functional J for the second and whiehvi the a. B e ted a ln
third type of the above-mentioned re- -e ).The field asymptotics terms
strictions is solved explocitly with V * the r - 12

theuseof he esutsobtin~ in[10. (x) of the order of r~2 obtainedthe use of the results obtaind in [ 01. 1n [33 on the assumption of the colli-In both cases the minimum o J is nearity of vectors V and '-+, .(This
achieved on the functions ,c cor- naiyo etr n Tirchesd o the regimeiofspotentiaassumption is fulfilled, for example.responding to the regime of potential in he case of axisymmetrical flow past
flow past a body. It is unknown if this i surfcae of axiymutica fo pastproperty of extrernals of functional J a surface of revolution E , thereby
hoperty fo an trary ofsfuncti l J the condition (**) being also fulfilled).
holds for an arbitrary surface E . In [3, 6) the velocity vortex ehaviour

The matter of solvability of problem at great distances from the body is in-

,.,wi Re > 0 is Pather oom- vestigated, and the vortex is shown to
plicated. However, it is hoped that its decrease exponentially outside the wake.
solution may be positive for low Reynolds Formula (1.10) means that far from the
numbers. The solution asymptotics for towed body, the velocity field distur-
a classical problem of flow past a body bance (accurate to the smalls of higher
( 1 = -) when Re -* 0 [9) is the order) will be as that of Oseen flow
basis for such an optimism. "flowing past" a concentrated force
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The velocity field asymptotics in the In an axisymmetrical case the number of
problem of momentumless flow past a bo- these parameters decreases to eight.
dy proved to be determined by a much Identification of the elements of tensor
higher number of functionals Q being some functionals of the so-

characterizing both the body shape lution to problem (1.1)-(1.5) is of par-
and the way of realization of self-mo- ticular interest. This problem has not
tion regime. The basic result may be been solved so far.
formulated as follows [20].

One of paradoxical results, related to
Let 4, p be the solution of problem the classsical problem of flow past a
(1.1)-(1.4) from the class (1.8) satis- body for the Navier-Stokes equati ns,
fying the additional condition (1.5). is as follows. Let in (1.2) a = -a (This
Then when r-+ c the asymptotical repre- means immobility and impermeability of
sentation of V(x) in the form the body boundary). Then for any solut-

ion v, p of problem (1.1)-(1.3) satis-
V(X) = R iDE(x)+ (1.12) fying the condition (1.8) we have

is valid. Here R = (Rij ), Q = (Qg4)are
the constant tensors ( i,j = 1,2,3).
The elements of tensor R are express- Such a statement related to the energy
e4(explicitly in the terms of function of disturbed motion in the problem of

(x) . Symbols DE and VE denote viscous flow past a body first appeared
the third-rank tensors having the ele- in (7].
ments I a E

(DE)ijk = - (.._ + .aE_), It is obvious that a self-moving cannot
) 2 a x ax. contribute such a great disturbance in-

1to a flow. An appropriate enact formu-

(VE)ijk = l lation is as follows. Let Y, P be the
solution of problem (1.1)-(1.4) satis-

i,j,k = 1,2,3. Summarizing in consoli- fying the additional conditions (1.5),
dation R : DE , Q : VE is made with (1.8). Then

respect to indices i and j . Func- - 2
tion i(x) admits the estimate Vi1  < (1.14)

V (X), : 0 2 r - 2 + , (s + j) - 1/ 2 (1.13) The property of the solution of the
problem of momentumless flow past a bo-

when r -+ oo , where s and 02 are the dy expressed by inequality (1.14) dis-
positive constants, C being arbitra- tinguishes it among all the possible
rily small, s= r -x . solutions of problem (1.1)-(1.4) if

function a entering it is varied. We
Formula (1.12) is derived on the basis hope that this property may be used to
of integral reperentation of problem investigate the existence of the solu-
(1.1)-(1.3) obtained in [9]. To estima- tion of problem (1.1)-(1.5), if the lat-
te the volume integral ter is considered as some optimization

(X) = -~) y d) *problem.

QThe two notes are to be made in connec-
when r -, c , the results of [3] have tion with the velocity field asympto-
been used. tics at great distances from a self-mo-

ving body. The first of them deals with
According to (1.12),(1.13), in the re- the velocity vortex behaviour with in-
gime of momentumless flow past a body creasing the distance from a body. When
we have V O(r-3) in a paraboidal re- r - , the vorticity in the solution
gion of the trail and V = 0 (r-/zb) of problem (1.1)-(1.5) decreases quicker
beyond any cone having the axis ej. than in a calssical problem of flow past
Thus, a quicker decrease in velocity a body both inside and outside of the
disturbance at great distances from a wake [61. In the exceptional cases the
self-moving body, as compared to towed wake may be absent. In [16).such a si--
one, is evident. Representation (1.12) tuation is illustrated by a plane poten-
also means that (at least over the tial viscous flow past a self-moving
wake region) the main terms of veloci- "body". Its boundary consists of two
ty field asymptotics in the problem of symmetric coupled components, on each
momentumless flow past a body are cha- of them a normal velocity component be-
racterized by 18 parameters, they are ing equal to zero, and a tangential one
the elements of tensors R and Q . being constant.
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The second note is connected with the 7 = (1, o, o); Re x a V./V is the
velocity asymptotics in a turbulent flow Reynolds number ( V is the kinematic
regime. In this case, based on the con- coefficient of the liquid viscosity);
sideration of [201 and additional assum- A is a function of Re ; f is an
ptions related to the Reynolds stress add function of the angje B bet een
behaviour when r' -* (for a self-moving the vectors T .and X1Z + Y I ( j =
body these assumptions are discussed in (0, 1, 0); f = f,; sin M a; f
[5)), it is possible to obtain represen- are constwnts; f4  0; fl 0); &
tation (1.12) for the averaged velocity = hW ( X = (0, 0, 1); f is the
field. However, here the elements of unit external normal to the cylinder
tensors R and 4 are the functionals boundary).
of the solution of unclosed system of
Reynolds equations. These equations are The dependences f on G and X on
treated as the Navier-Stokes equations Re are prescribed so that = 0.
with the density of external mass for-
ces g =-2*Re • div 11 where N is the In [21] the problem (2.1) was solved
Reynolds stress tensor having the ele- approximately for low Re . The fol-
ments n44 -- 1I (it j = 1,2,3). lowing asymptotical formula for the li-
Here condition (*I changes its form in quid velocity at great distances from
comparison with (1.15) and is as follows: the body was obtained:

2 n 1/2 fe a V1/2
f[P -- -'+R- ' +I A+.'

V Y ( V MY )  (2.2)+R I en ]d =0. -)ezp (---- ]
2v 4vX

§ 2. for K/a - + 0 and constant Y2/(aX),Re.

In accordance with (2.2) for the plane
flow past a self-propelled body, the

2.1. Liquid flows at great distances disturbance of the lijujd velocity va-
from self-propelled and non-self-propel- nishes by the law X' (for the pla-
led bodies can be significantly diffe- ne flow past a body which receives from
renC. the liquid per unit length per unit ti-

me a non-zero momentum the disturbance
Let us consider the problems of asta- of the iniuid velocity vanishes by thetionary flow of a viscous incompressib- law X- 1/ 2 [51 ). The formula (2.2)le liquid past self-propelled bodies lwX~ 5) h oml 22
le1, lu ptehas such a form as the formula for the
[21,22). velocity of plane liquid flow far from

a). The body is a circular cylinder with a self-propelled body founded in [5].

a moving body. The cylinder axis coinci- b). The body is a ball with a liquid-
des with the axis Z of the system of -permeable boundary. The ball centre
the rectangular coordinates X, Y, Z. coincides with the origin of the coor-
The liquid flow is plane and symmetri- dinates X, Y, Z. The liquid flow is sym-
cal in relation to the axis X in the metrical in relation to the axis X and
plane X, Y. The body boundary moves so is non-swirling around it. On the body
that the correlation (*) is fulfilled, boundary the liquid velocity component
The correlation (**) is fulfilled by normal to it is distributed so that
the reason of the symmetry of the flow the liquid mass flux through this boun-
in relation to the axis X. dary equals zero and the correlation

(*) is fulfilled. The correlation (**)
The Navier-Stokes and the continuity is fulfilled by the reason of the non-
equations and the conditions on the cy- -swirling of the flow around the axis
linder boundary and at infinity have the X.
following form:

l -l w + = O, The Navier-Stokes and the continuity
P+Fe All'7' T'o equations and the conditions on the

(2.1 ball boundary and cit infinity have the
=f? for r , - for r -, following form

where V = f/V ( V is the liquid ve- (2.3)
locity; V is th_& X-component of je -)I - -

liquid verocity V at infinity V= Xf4 for r_=1, v T- i for r -+ w,
V go, 0 ;V > 0); p = where r=VXZ+Yz+ Z /a a is

P rs the pressure in the 1 uid:ther ( a
is the liquid density); r = -X4 + a the radius of-the ball); is afunction of Re ; £ is a functconeof

a is the radius of the cylinder); the angle e between the vectors ± and
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Xr + YJ+ zZ(f~ f P (Cos Bcylinders);yp= 2l 2 2  T2 ); '7"2
fa are'constants; 1 f );f 2 #0; 1& (x+/a;j=Ya); . I(y - I/ 2))7;
are the polynomials of Legendre). r = e +2 1(2s)) ';e= e/ () ; = a ./v is the Rey-
The dependences f on e an 4 on nolds number.Re are prescribed so that 8 = 0.

In [23] the problem (2.5) was solved
In C221 the problem (2.3) was solved approximately for small C . It was
approximately for low Re . The follo- ascertained that in the considered ap-
wing asymptotical formula for the li- proximation the pair of rotating cylin-
quid velocity at great distances from ders is a self-propelled body.
the body was obtained:

. 2 a . (-. y2+ Z~ V [I + 0 ( - V - x )

- fIx 2  -vX

exp ( 
(2.4)

for X/a + 00 and constant(y 2 +Z 2 )/
/ (ax ), Re

In accordance with (2.4) for the axi-
symmetrical flow past a self-propelled
body the disturbance of the liquid ve-
locity vanishes by the law X -z (for
the axisymmetrical flow past a body i
which receives from the liquid per unit
time a non-zero momentum the disturban- /
ce of the liquid velocity vanishes by
the law X-1 [5j).

2.2. A propeller work can significant-
ly affect a liquid flow near a body
at distances which do not exceed its
several transverse dimensions. This
may be used to organize required liquid
flow around a body (for example, a flow
with closed streamlines). Fig. I

Let us consider the problem of a sta-
tionary flow of viscous incompressible
liquid past a pair of rotating cylin- In Fig. 1 the pattern of streamlines
ders (a pair of identical parallel cir- of the flow around the cylindersis dis-
cular cylinders rotating around their played(the sections of the cylinders
axes with opposite angular velocities) by the plane ex , eY are represented
[231. The axes of the cylinders are by the points ex = 0, C Y = 1/2 and
parallel to the axis Z and intersect eX = 0, ey = -1/2; the cylinders are
the plane X, Y at points X = 0, Y = h surrounded by the liquid layer which is
and X = 0, Y = -h. The liquid flow is streamed continuously by the liquid mo-
plane and symmetrical in relation to ving from infinity).This flow around
the axis X in the plane X, Y. the cylinders is realized by the motion

of their boundaries, i.e. by the propel-
The Navier-Stokes and the continuity ler work.
equations and the conditions on the
boundaries of the cylinders and at in- The problem of a stationary flow of a
finity have the following form: viscous incompressible liquid past a

V A pair of rotating cylinders was conside-
Re red in [23] in connection with the prob-

.. . .4 .4 lem of decreasing the energy required
v' -kx r for I.r, I=1,v=- k x r (2.5) for a body to propel in a liquid. In

connecLion with the latLer problem the
motion of a pair of rotating cylinders

forlr-l=I, v e i for r s* in a liquid was also investigated ex-
.4 .4 perimentally [24, 25]. The measurements

where V = V/(.Q a) ( Q is the mo- showed that the self-propelling of the
dule of the angular velocities of the cylinders was energetically non-profi-
cylinders; a is the radius of the table and a reduction of the energy

which was necessary for their propelling
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could be achieved when the cylinders
simultaneously rotated and were af-

fected by an external force (the pro-
peller worked but not in a self-propel-
ling regime). 0-

W
The power N which is necessary for a 1,8
pair of cylinders to propell is the sum ii0
of two quantities: 

- -1,6
N = F +.W, l o Zeo

P Q W ,1,4
where F is the external force acting 3 0 4 0
onto the cylinders; Q is the veloci- 1,2
ty of the pair of cylinders; W is the 5 o 0
power which is necessary for the cylin- 1,0 -

ders to rotate. 0

0,8 - -o

06 --
1,6 - -

1,4 C ,

i Z - 0
40 0 (D0 1 0 0 0

to lo 00 9 W 11 1o 0o O s 1,6 2,4 ,2 o 4,8

018 0 0 )0

0, 0 
Fig. 3

0z 40 § 3

0 0,8 1,6 q 3,Z 40 4,8 3.1. Let us come over to the problem

of numerical modelling of momentumless
flow past a body. It is based on the
Navier-Stokes equations with the use
of numerical methods [1,4,11,13]. The

Fig. 2 two cases are considered when relation
(*) is fulfilled. In one of them (down-
stream), there is a surface S behindIn Figs. 2, 3 the data obtained by mea- the ball (a part of sphere with a grea-

surements on the dependences C - ter radius). The liquid flows over S=F/(2LapQ') and w =W/ (2 L a p ) and gets thereby an additional pulse.
on U = a/Q are displayed ( L is In the other case the ball surface isthe length of the cylinders; symbols permeable. On one its part, between two
1-5 correspond to e = 0.45;0.4;0.35; cones with the divergence semi-angles
0.3;0.25) [25]. In accordance with the- Q , Q and a mutual axis e
se data, the most energy profitable the liqui& is sucked in , and on the
propelling is realized at U: 1.3.The other its part, "cut" by a cone q n
power which is necessary for this pro- the same quantity of the liquid is re-
pelling of the cylinders is approxima- turbed to the flow.
tcly, 31M of the power required fop
the propelling of the non-rotating The other way to fulfil the condition
cylinders. (*) are also possible, for example, by

prescribing a self-consistent distribu-
tion of volume forces, localized in a
small region behind the body. A numeri-
cal solution of the problem of momentum-
less flow past an extended ellipsoid of
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revolution was obtained in this state- found in £131.
ment in [12).

The solution of the problem of flow 3.2. To solve numerically the model
past a self-moving body becomes more problem under consideration [113, the
complicated due to nonlocality of con- methods such as MAC, SUMAC and other
dition (*). In the present paper a sta- similar ones were generalized [1,4,111.
tionary solution was found when solving The main differences are due to a spe-
the nonstationary Navier-Stokes equa- cial way of prescribing conditions
tions. In the spherical coordinate sys- (3.4) when =r,. and the presence of
tem they have the form: surface S having the pressure jump. The

(t -cose)au + (y+sin Am v(v+sine) unknown values were calculated in the% ar r ae r nodes of displaced network ( u V
r l . [A.2u-g 2 L X in the middles of the cell sides; P

aR e r r 2sin e W at the centers of them). The radi-
al velocity component U on the sphe-

x (sine * V)], ..b(,, .ose). . re with a large radius was determined
t ar .-r - from a difference analogy of the con-

+a~ur rsine) -2 a--- I p' ) tinuity equation. Surface S passedX88 r r - F " e .(3.1) through the centers of the cells. The
a +(u-cos velocity components v and W pres-

Re r e EraO at a cribed on S were found with the use of
+ v+sint W u-cs1 v+sin8 W otge 1 (3.5), i.e. the equation at these points

r ae I r r Re was not used. When the problem with
x(AW- W r2 1 surface S is considered, two pressuresr P and P- , are to be determined at

E(sinl89 v)=0, -e;aV" r w points of this surface, one of themLbe-
• e=--i v E-=-, ing excluded with the help of Pr- P7=

(A- 2 8-<r2 + (p]. In the Poisson difference equation=2a r a) r' sin a ae for pressure, which is derived in a
sine &')), e usual way, in its righthand part there

appears an additional term const'Cp
HereU , V and W are the projections differing from zero only at the points
of the velocity vector to r , 9 and near surface S. The pressure equation
(p directions, respectively, a is the was solved by the method of upper re-

sphere radius, V is the modulus of laxation. Fulfillment of (3.5) was ac-
inflowing flow velocity, W is the hieved by correction of the pressure
characteristic value of swirling by the jump [p], prescribed on S, or the volu-
propeller model. Equations (3.1) have me of liquid flowing over the body sur-
been written down in dimensionless v%- face. The pressure jump or discharge
riables. The values of a , V , VV., variations were made within the general
a ( have been chosen as the scales iteration process. The flow region was

of length, velocity, pressure and mapped onto the rectangle by transfor-
swirling. The boundary conditions are mation r = exp Z, e = el. The dimensio-
prescribed as follows: nal network was introduced in plane
The sphere surface r = 1; ( Z, Of )

u = U0 (e) + cos e , (3.2)

V = - sine, W = W0 (8) 3.3. We made some calculations in or-
The axis of symmetry e = 0, = U. der to compare the basic hydrodynami-

cal characteristics for towed or self-
au/ ae = 0, v = 0, W = 0; (3.3) -moving sphere. The numerical experi-

ments were made under the following
The conditions on the sphere having a boundary conditions. In the problem
large enough radius r = r with surface S we have

V = 0, W = 0, p = 0; (3.4) U0 ( E , WO(e)B 0, (3.6)

The conditions on the surface
S =((r, e): r = r, Ein e8 )-

s U. - (1-e Rie)/(R • sine),
+= - U sin , U+ -, We e : n,, .... .. ,. f o .(3,5)(3.7)

P - P =,LPJ o = A. 0 0, for o4e
Here an upper index + or - states to o o te

the side of the surface S (e.g. (here R* is the dimensionless radius
v+(r = lim v (r, EM of surface S). If self-motion is model-s r-,+O led by the liquid flow over the sphere

The considerations dealing with the va- surface, conditions (3.5) on S are not
lidity of such a statement can be used. Functions U0 ( e) and W0 (e ) were
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Fig. 4a Fig. 4b Fig. c

:7I

rate the self-moving sphere. The propel-
ler is modelled by the surface having
the pressure jump a = 1.4; e6 =1620..
Fig.4b illustrates the flow rotation
when r = 0; j p J = 3.00. Fig. 4c cor-
responds to r= 15, p 3 = 4.38. Figs.
4d,e represents a self-moving sphere

Fig. 4d with a permeable surface. The case when
1 = 0, el = 1080; Oz= 1320; E3=

prescribed in the following way: = 1560 is shown in Fig.4d. Fig.4e corres-
ponds to the case when r = 20; 8 1 =

8<8~), (3.8) = 112; 02 = 1350; 0, = 157.

e 0 for other 8, The calculations were made with the use
Bl= n (ft1(e) sine d8)-1  of different networks. The most detailed1 81 network consisted of 40 nodes in a ra-I1 dial direction and 60 nodes in an angle.

n ( In all the calculations r = 12.1 ( Z=
E2= (f f2(6) sinO de) = 2.5). The number of iterations requi-

83 red for a stationary distribution of pa-
where 2 (6) =(e-e )(e'-e ),f(e)s(O-e' rameters to be achieved was dependent on

the choice of initial values of I p I
B E)/sin e e < and t . When the rest state was assu-

W 0(o) e(3 9) med to be an initial state, not more
0, fthan 1500 iterations were to be found.

Contuniation in the number Re reduced
(3.7), (3.9) mean that the flow is swir- the required number of iterations by a
ling only after it has passed through factor of 1.5 or 2.
the unit which models a propeller.

3.4. The problem of stationary motion
of an arbitrary body with a constant ve-
locity is tightly conn.!ut,,.2 with the es-
timate of the consumption of energy ne-

Presented in Fig. 4 are the isolines of cessary for providing the motion regime
the stream function, swirling and pres- under consideration. In the case of to-
sures tor Re = 50. Fig. 4a illustrates wed body the required power N is simp-
the towed sphere, and Figs.4b,c illust- ly expressed through the resistance

337



N = " * V In the case of momentum-
less flow " O. One can judge about t.8 0 0
the value of required power by the los- U ,0
ses of mechanical energy, associated al
with dissipation, 1.4 00

e= 2 p v f D: Ddx
t.0 0

where D is the strain velocity tensor;
U is the flow region which is unbound

in the case of external problem of flow 0.1

past a body. Fig. 5 gives the values of
dimensiopl ss dissipation V ( I =
=4/(2pV.'a')) for different cases of 0.2 -

stationary motion of a sphere having
the radius a with a constant velocity , R

V. in the liquid having the density 
p

for different Reynolds numbersRe=Vx/° Fig- 5

C1., CP
- -- f D I

.4 +

_.0 -o C 0 0 e
CP

Fig. 6

consideration.
Fig. 4e
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Abstract 5 source point

The boundary element method coupled with *G horizontal velocity of the body
time-marching finite difference is adopted iG vertical velocity of the body
and improved to calculate the nonlinear hy- H wave height
drodynamics of wave-body interaction. The
radiation condition and initial condition wave velocity
have been studied through specially chosen wave frequency or oscillating fre-
examples such as the cylinder undergoing quency of the body undergoing forced
forced heave motion or forced sway motion and motion
the body floating or standing in periodic
waves with wave front, and steady solution of T wave period
practical interest has been obtaind in a de-
finite calculation domain by less computer A0 oscillating amplitude of the body
time. A few comparisons are made with avail- undergoing forced motion

able solution and model test results. It is a radius of circular cylinder
concluded that the method is capable of pre- DF mean water draft of the body
dicting forces due to nonlinear wave quite
accurately with requirement of mediam com- d still water depth
puter. R radius of the outer open boundary

Nomenclature p mass density of fluid

oxyz frame of reference, with z pointing 1. Introduction
upward and z-O the still water
surface In many design cases, the application of
velocity potential linear diffraction theory is not entirely

appropriate for the prediction of wave forces
Sb  immersed body surface on large offshore structures of general form.S free surface For 3-D nonlinear free surface problem, basi-e scally there are two approaches commonly used

3 outer open boundary surface in literature. One is based on finite dif-
S unit normal vector directed outward ference method, in which the solution of

from the fluid region -=(n, ,ny ,n ) Navier-Stokes equations by MAC and its various
x 2 modifications SMAC,SUMMAC,AE(AC,IKP and re-Vn  normal velocity of the body surface cently TUMMAC (1) (2)(3) are relatively po-n acceleration of gravity pular. This aproach appears to have the capa-city tocope with large amplitude nonlinear

t time variable waves and even breaking, but considerable

At time incremenz further develop-ent will be neccocary to be
realistically used due to its high cost and

q(xy,t) elevation of the free surface for need of supercomputer. The other approach is
3-D case based on boundary element method coupled with

n(x,t) elevation of the free surface for finite difference time-marching method, first
2-D case introduced by Longuet-Higgins and Cokelet (4)

and then followed by Faltinsen (5), Vinje et
field point al. (6), Isaacson (7), Lin et al. (8), and

others. This approach is more suitable to
*The Project Supported Partly by National deal with the wave diffraction of large off-

Natural Science Foundation of China. shore structures for engineering use and is
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adopted in this paper.
The work of this paper is to solve 2-D and 2. Formulation of the Problem

3-D nonlinear problems with free surface. The
wave-body interaction is treated as a tran- 2.1 Basic Equations
sient problem with known initial condition
and is solved by integral-equation method The basic assumptions are that the fluid
based on Green's theorem. It is emphasized to is inviscid, incompressible and the flow is
deal with the following aspects through dif- irrotational. Select the coordinate system
ferent model problems in the paper: (a) the and computation doiain as shown in Fig.i, theradiation condition. (b) the point at the velocity potential 0(x,y,z,t) satisfies
junction of the body and the free surface,
(c) the initial condition for a body floating VO(x,y,z,t)=O in fluid domain (i)
or standing in periodic wave.Only after des-
cribing these three aspects correctly is the P on Sd  (2)
solution stable and practical.

Numerical calculation should be truncated on
at finite distance and the smaller the domain n n o 3 b
the better, while the physical domain is in-
finite. Therefore a numerical radiation con- Dt bx
dition should be posed so as no reflected
waves from the truncated surface, is. outer Dyon (4)open boundary. For an axisymmetrical cylinder r oy f
heaving in still water, several approaches Dz Zfor the formulation of the radiation condi- D' bstion have been tested, and it is found thatt
the usual one-dimensional Sommer-feld condi- L4g+O'5Vo (5)tion is the simplest and can give reasonable on= f(
results both for the wave pattern and wave
force. For the cylinder sway in still water, Here the conditions on the free surface are
the Sommer-feld condition is extended to 2-D expressed in Lagrangian form. These equations
case and the wave direction is determined are solved with suitable initial and radia-
only by wave itself. The numerical results tion conditions.
show good agreement with the tested ones done
in Nihon University, Japan. For the diffrac- 2.2 Time-marching Procedure
tion of a solitary wave upon a fixed vertical
circular cylinder, the Sommer-feld condition The free surface and the velocity poten-
is further extended as a radiation condition tial on it are calculated by finite dif-
by assuming that the scattering of the outer- ference time-marching method and they can be
going wave is small at the outer open boun- expressed in the form
dary. The numerical results is appropriate
compared with Isaacson's (7) analytical solu- Xnij=xn+O.bAt( 3 ( _)n ( n-1)
tion. The same works have been done for the K(3 n b n1)

diffraction of a periodic wave upon a fixed yn+1=yn 0 .56t( 3(Dy)n()n) (6)
cylinder. 

ny n }In the numerical calculation, Lagrangian z =zn+o.5At( 3(1- ) n (_ ) n '

free surface condition is used. The point at bz bz
the junction of the body and the free surface On+1=On+O.bAt(3(_.iO.5VO.,O)n
is determined by extrapolation for axisym-metrical flow and by satisfying both the con- -(-gp+O.v'0.v )n- ) (7)
ditions on the free surface and on the body
for general 3-D flow, that is, according to Where superscript n denotes the value at
the body condition we can obtain the velocity t-nat. Eq.(7) can be rewritten as follows
of the intersection point, by which the new
position of intersection point can be deter-
mined through satisfying the free surface (n n-1condition. an = ' (n nI, n (bn)n)

In order to shorten initial transient pro-
cess, appropriate initial boundary condition on 0 (8)
should be posed. Numerical tank is good for o
this purpose, and it can make the vicinity of
the body be still water.The another advantage Where F is a known function.
of the numerical tank is capable to produce Accolding to the mode in which body moves
waves with any water depth and any water we can obtain
bottom condition. The approach of numerical
tank is described in detail in the doctoral
thesis by C.Yang (9). A 2-D nonlinear Stokes (_)fn+1_F (0 n 0n-1 1( n ,(.)n-1,On+1)
wave with wave front is also suitable for the n 2 ' Dn n
initial condition. The detaild are described n+1
in subsequent section. on--9)
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Where F is a known function for forced moton where (b'0/at)n+l=(fn+1ln)/At, On+1 and On
and it gan be obtained by solving Newton's are the values of the velocity potential on
Law of momentum simultaneously with the solu- the same point of the body at different time
tion o1' the velocity potential 0 for freely steps and V is the velocity of the body at
motion, because implicit scheme is usually that point. eThe hydrodynamic forces on the
used in the Bernoulli's equation (9) for this body are calculated from the formula
case.

With suitable radiation condition the Fk= prids (13)
velocity potential on the outer open boundary
can be described as

(n+)nF )OnOn____0_n___On-1
i=+1F(OnOn-1'(. n) 3. Radiation Condition

on Sn+ 1  (10) 3.1 Forced Motion

Assuming that a cylinder starts to move in
Where F is also a known function and can be still water, initial condition could be sLtis-
obtained in section 3. fied easily, so we specially choose the exam-

Once the free surface Sf, immersed body ples of forced heave motion and forced sway
n open boundary Sn and the motion as the calculation models to find outsurface Sbouter c the propriate radiation condition.

velocity potential On, normal velocity In numerical calculations we use a cylin-
(a/hn)n on them are known (of course before drical coordinate system (orez) on the outer
time t=nAt all of these quantities are also open boundary S and make r=R=const represent

known), I and On+1 on fnl can be obtained Ale'First let a circular cylinder undergo a
fro s.() and (D/n) n+ l on n+l forced heave motion in still water, here thefrom Eqs.(6),(7). C onb flow is axisymmetric. Before the wave reaches

can be determined in terms of the new points the Bc we have
at the junction of the body and the free sur- 0=0 on (14)

fac an Eq(9)sepratl.ni n+1 O"oface and Eq.(9) seperately. c and 0 on With such radiation condition we have tried

Sc can be determined in terms of the radia- different radius R, i.e. expanding the open
boundary gradually to find out how the scaletion condition Eq.(10). From Green's third of the outer open boundary affects the nume-

fomula, we have rical solution. Then we assume that the wave

near the outer boundary satisfies Sommer-feld
radiation condition (10)

-' +t+ ArO on Sc (15)
- (?))ds (1) The phase velocity C0 varies only with time

on SC , and it can be determined by 0n+' and
Where S=Sf+%+Sc . Both points T and f are on (DO/Dn)n on Sf near Sc . Then On+1 on Sc can

the boundary S. 01(1)=2ifor a smooth surface be obtained according to C . Eq.(15) can make
at point 1. Rankine source with suitable
images is used as the Green directi.function the wave on So be propagating outerward along
which is so chosen that the bottom condition Next let a circular cylinder undergo forced
are satisfied automatically.Netltacrurcyidrnegofcdae sthsfite ral au atily (11)sway motion. Now the flow is non-axisymmetric

Now the integral equation (i) can be and Sommer-feld condition is described assolved numerically at time t=(n+1)At, and we

can obtain ('a0/-n)n'i- on 5n+1 and +1 On.Il V+ d=0 on 5c (16)
on I h we and c ' t O
on S +1. In this way we can go further to Here f is an unknown direction of outergoingtime t=(n+2)At and calculations can be ad- Hr sa nnw ieto fotronwave on the outer boundary, phase velocity Cvanced over a sufficient duration. varies with time t and angle e and is equal

Once the values of the velocity potetial at the-same vertical line. From Eq.(6) we
on the body surface are known, the pressure ave
on the body surface can be obtained from have
Bernoulli equation represented in a frame of C( (17)
reference fixed on the body. et °r Rae

where

p=-p(- e" V+0.5VO"v0+gz) (12) kr=coa(yr)
'ke cos(Y,") (18)
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The solution of Eq.(17) can be expressed as as used by Isaacson (7 1 because it decays
0=0(krr+Re-Ct) (19) rapidly away from its crest, the flow near

the body can be taken zero as initial condi-

where tion. If the incident wave is periodic Stokes
or Conoidal waves and the body iu assumed to

k = (( (- _)1+(A---- ) 1) be stationary at certain instant (as initialr ?r/ Dr 2Rb (20) time), there must boa transient period before

= q (D 0) + '10) a steady state is approached. Sometimes as
Rb9 Dr RDO reported by Vinje, Xie and Brevig (1i), even

I ifDonumerical troubles occur. In order to formu-

"'0 late the initial condition properly, a
(21) numerical tank is set up using the same pro-

l if Z40 cedure. A 2-D cylinder with different cross-
section heaving can produce the required wave

such c( can make the wave at outer boundary be profile, see Fig.2 and Fig.3. The details are
outergoing propagating wave. in doctoral thesis by C.Yang 19). With such a

Substituting Eq.(20) into Eq.(17), we have incident wave, the solution can approach

Zt DIC 4 2+tDj- % 2 _ steady rapidly and initial condition can be
"0r" R8 - (22) described as

Up to now by Eq.(22) we can determine C 0 It=Omw I on Sf ItO (28)

in terms of 0 n+1 and (b0/ln)n on Sf near c, = on Sc It=o (29)
and obtain 0 n+1 on Sc according to C B1.

e1 The numerical tank can be applied to any

3.2 Wave Diffraction Problem water depth and any type of water bottom
boundary. Another expresion of the incident

For the diffraction of a solitary wave or wave is a 2-D nonlinear Stokes wave with wave
periodic wave upon a fixed or floating verti- front, it can be described as
cal cylinder, the Sommer-feld condition is H
further extended as a radiation condition by q(xyt)-A(T)('2cos@
assuming that the scattering of the outergo- H2k ch(k2)
ing wave is small on the outer open boundary. 6- sh (2+ch(2kd))cos) (30)
Replacing 0 in Eq.(22) by 0s we can also

obtain on+1 on Se, here 0(x,y,t)fA(), shksine
0=0-0w (23) 3HV ch(2ks) s (

32 - ( n28) (31)
and 0 is total velocity potential and Ow is Where
velocity potential of incoming wave.

4. Description of the Initial Condition =Co sd ! 9=z.(kd ). (32)
C 2kd -(2

4.1 Radiation Problem Cg72 k+sh(d - ( k,

For forced heave motion mentioned above we ,1-exp(! Ka) if i+Ka_O
have A(=jO (33a)

O(x,y,z,0)=O on SfIt= 0  (24) or,

€(x,y,z,0)=(~n t=TA) 4 .(1.-o ,.a if i+I~a~w

01if -mi+Iacm 3bFn-xy'z )='Gnz) ItOT A(F)= O,5(1,-coo(E+ia)) if -7r<M+acO (33b)

on Sb I t=O (25) 1O if 5F+Ra O

This Stokes wave by Bqs(30),(31) can

0(x,y,z,O)=O on SI% 0  (26) ensure no wave in tthe vicinity of the body,
and is also suitable for the inittal condi.

For forced sway motion, the formulas of tion in some cases.
initial conditions on Sf and Sc are similar

with Eqs.(24),(26) and that on Sbbecomes 5. Numerical Procedure

zx,y,z,O)--(iGux) It=O+  In order to make tne conpurer program beon (27) extended easily to arbitrary 3-D body, we use

" It-o the whole cylinder and fluid region as compu-tation domain. The boundary S= +f, c are
4.2 Body Standing o'" Floating in Waves tto oan h onayS-+fS r

discretized into element and on each element

If the incoming wave is a solitary wave, (?O/n)j ,nd 0j are assumed to be constant
4



for 3-D case or linearly distributed for 2-D (i) Rad. Cond. Eq.(14)
case, as in typical boundary method, the
above Green's fomula Eq.(11) becomes (2) R4.7

NB N NC 2) Rd. Cond. 2q.(4)

AjO 2 b 2i n1(3) ft d. Cond. q(5
J=j J- Jl=1

i=1,2,'",NN (34) Fig.4, Fig.5 and Fig.6 show respectively the

where time history of free surface profiles con-
sisting with above three cases. From Fig.6 we

(G=- -can observe the uave reflecting from the
'i:" (bni '1Ys-11J outer boundary, Fig.7 shows the comparison of

j heave force of case(3) with Lin's (8), and
Fig.8 shows the effect of water depth on

Bi =jG(Ii, ds heave forces in which the calculation method
j is similar to case(3).

C ij=Bij > (35) 6.2 Forced Sway Motion

N Let a floating trancted cylinder undergoNB n N NC forced sway motion. The radius of the cylin-
Di =-nBiJ ( J ij A ij der is a, the mean draft of it is a/2 and the

I water depth is a. The gravity center of the

I i=J body can be described as

bi 3J 0 iaJ xG=hosina)t (33)

and NN=NB+NP+NC is total number of elements here h -0.05a end 4(a/g)9=0.8028. Comparison
(for 3-D) or nodes (for 2-D) on boundary has ben made between the calculations and
S=3+Sf+Sl and NB on SNF on Sf, NC on S experiments by Dr. N.Takaki in Nihon Univer-

sityJapan. Fig.9 shows good agreement of the
respectively. These algebric equations can be results of the free aurface elevations as the
solved either by direct or iterative method, fixed point. Fig.10 gives the frs surface

The junction point of the body and free profiles at some fixed time.
surface is determined in the paper by extra-
polation for axisymmetric flow and by satis-
fying both the conditions on the body and on 6.3 Diffraction Problem
the free surface for general 3-D flow, that
is, according to the body condition we canobtain the velocity of the intersection poinii The diffraction problems of a vertical
by which the new position of intersection circular cylinder standing oi the ceabed and
bypitch te dne sitrough f satisfying piercing the free surface by a solitary wave
point can be detemined through has been calculated. Fig. 11 showz the com-
thefree surface condition, parison of hydrodynamic coefficients among

present results, Li's (12) difference solu-
6. Numerical Examples and Conclusion tion and Isaacson's (71 closed-foam solution.

Fig.12 gives numerical calculation model
6.1I Forced Heave Motion of diffraction problem, in which the 2-D ±n-

coming wave is obtained by the forced hesve

As an example, we consider the forced motion of a 2-D cylinder, i.e. oumerical tank.

heave motion of a floating truncated vertical Fig.13 is the time history ef incoming wave

cye of radius a and mean draft a/2. The elevation and velocity potbatial of incomiig
lder fa awave at point x=-R, y=O (see Fig.i2 point A),

vertical velocity of the body is prescribed FPg.14 is the time history of horJzontal
to be wave force.

iG=h0esint (36) The interation of the 2-D f.oating rectan-
gular cylinder and the wave haz been ca! u-

with body draft lated, where the cylinder is anly with one
degree of freedom in z direction and the wave

ii(t)=-Lh coscot (37) is also produced by the numerical tank which
2 0 ensure no wave in the vicinity of the cyliid,

In order to make our computation com- er. Fig.15 is the free surface elevations at
.............' (- rasult, we also ohuuue point =-R. Fig.6 is the varia~zuns of na-rl-

that a=1, p=I and g=1, the other initial zontal wave force and vertical wave force.
input data for calculation isa)=1r/2, h -=0.05, Fig. 17 shows the variations of the body cen-
d=8, at=O.I.Besides the radius of the Ruter ter and the body velocity in z direction.
boundary and the radiation condition for Fig. 18 and Fig. 19 show the results of a
calculation are divided into following three 2-D periodic Stokes wave (described by flq.(3D)
groups and Eq.(31)) upon a fixed circular cylinder

and a truncated fixed circular cyliuder at
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the free surface. 8. Lin, V.M., Newman, J.N. and Yue, D.K.,
"Nonlinear forced motion of floating body",

6.4 Conclusions Proc. of 15th Symp. on Naval Hydrodynamics
(1984).

From above examples the following conclu-
sions are obtained: 9. Yang, C., "Time domain calculation of

(a) The boundary element method coupled three dimensional nonlinear wave forces",
with time-marching finite difference shows Doctoral thesis, Shanghai Jiao Tong Univer-
good prospect for practical use with rea- sity, China (1987).
sonable cost and requirement of mediam com-
puter. 10. Olanski, L., "A simple boundary condition

(b) Sommer-feld condition with varying for unbounded hyperbolic flows", J. Comp.
wave speed used approximately as radiation Phys. Vol.21 (1976).
condition for radiation and diffraction po-
tential in nonlinear case seems to be accep- 11. Vinje, T., Xie, M.G. and Brevig, T.,"A
table, at least for the case we have delt numerical approach to nonlinear ship motion"
with. ,Proc. of 14th Syrup. on Raval Hydrodynamics

(c) Numerical tank is good for establish- (1982).
ment of initial boundary condition with
shorter transient process, and it can be 12. Lin, B.Y. and Lu, Y.L., "A numerical
applied to any water depth and any water model for nonlinear wave diffraction around
bottom condition. A 2-D nonlinear Stokes wave large offshore structure", Proc. Second
with wave front is also suitable for initial Asian Congress on Fluid Mech. (1986).
condition.

(d) The determination of the location of
the intersection points at the free surface
and the body is serious problem, the approach Sb

we used is succeded in our cases.
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DISCUSSION Author's Reply
by K.J. Bai

(1) Although Olanski condition is just
First of all, the authors should be only an approximation as radiation condition

congratulated on the impressive numerical work for radiation and diffraction problems in
reported in the present paper. This paper is nonlinear case, the numerical results have
a most welcome addition to the literature on shown that this radiation condition can absorb
numerical computations for the nonlinear free the reflected wave on the open boundary.
surface flow problem. In the following, I Besides because of the Sommerfeld radiation
would like to make three comments: condition with varying phase velocity every

time step, this condition is acceptable in
(l)the radiation condition given in nonlinear case so long as the distance between

Eq.(15) is true only for linear (or nonlinear) open boundary and body is large enough. Of
hyperbolic-type wave. However, in the water course that nonlinear solution matching with
wave problem there exists local disturbance linear Green's function on the open boundary
term besid.s the propagating waves. Therefore is also usable as an approximation, but
this radiation condition should be imposed at Sommerfeld condition is easier.
a sufficient distance away from the heaving
vertical cylinder. Specifically, for this (2) If the vertical circular cylinder
heave motion, the local term in the potential undergoes forced sway motion, the flow would
behaves like a pulsating free-space (Rankine) be non-axisymmetric in the vicinity of the
source. In some cases, at the sufficient body, and we should solve this problem in 3-D
distance away from the heaving cylinder where flow, and it is different from the heave
the local disturbance term is negligible, the motion of a circular cylinder. Because the
propagating waves may be treated as linear, distance between the open boundary and body is
This is because the nonlinear three- just only large enough, the direction of the
dimensional wave will be linear as it spreads reflected wave on open boundary and body is
out. Recently we have made some numerical 3ust only large enough, the direction of the
tests on the matching of the Kelvin source reflected wave on open boundary is an unknown
distribution and the local nonlinear numerical quantity which can be determined by Eq.(20).
scheme along the numerical radiation boundary, If the open boundary is very far away from the
which replaces the radiation condition in body, the direction of the reflected wave will

Eq.(15). This matching procedure worked very be along r direction, and it can be obtained
well in our numerical test. I wonder if you from Eq.(20).

have ever tested this scheme. I would like to
know how far one should take the radiation (3) in the wave diffraction problem we use
boundary in order to use the radiation Os=0'-OW just only on the open boundary. On
condition Eq.(15). the free surface we let 0 satisfy nonlinear

free surface condition, and Eq.(23) only used

(2) Similarly to the above question, I do as satisfying radiation condition on open
not understand the radiation condition given boundary.
in Eq.(22) for the sway motion of a vertical
cylinder. I think that for this asymmetric

motion for the swaying cylinder, the wave DISCUSSION
number vector should be radial vector. It may by R.C. Ertekin
be seen from the fact that the potential for
the swaying vertical cylinder can be expressed The authors should be commended for their
in a Fourier-Bessel series in a sufficient paper which initiates one of the first steps
distance away from the cylinder, in solving the exact nonlinear

diffraction/radiation problems governed by the
(3)1 do not understand the validity of potential theory. I have a few questions on

the equation in (23)' which is entirely based the formulation and results.
on the linearity. Even though the diffracted
waves become small at the radiation boundary, 1) What is the form of the Green function
i du nuL see the logic behind tne linear which satisfy D/Dn=O on the sea floor? I
superposition of the local nonlinear know of a way of placing image singularities
part(i.e., the incoming wave, I guess) and the if the sea floor is horizontal so that
linear part. 30/DZ=O there. But not the form of Green

function if it is arbitrary so that DO/an=O
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2) How did you doal with the 3-D problem the sea floor. At this time Q/an$0 , and
of n igIbo:ing panel vompatibility, i.e. that the sea floor will become one part of the
the slirface e)cvatitin is continuous in passing integration surface.
from one panel to another and having a common 2) In the numerical calculation we can
boundazy (withcut holes) between adjacent follow the fluid particles at every time step
elemientsT If The prnble is axisymmetric, one by use of Lagrangian free surface condition
ca. use cubic splLne interpolation, for and time stepping scheme, then we can
instance, to deal with this problem, as it was determine the free surface elevations and the
done by Brown University researchers to solve shape of panel. If the shape of panel is very
!.he problem of rain drop collision with a free different from the initial shape, we can
surface us.ng the BEM (Symp. on Fluid redivide the free surface element in terms of
Pynmics, California Institute of Technology, some regulations.
Pasadena, 1989). X can see the resolution of
this ditriculty in tbe cafo of a heaving 3) The diffraction problem of a vertical
cylinder, but not so easzly, in swaying circular cylinder standing on the seabed and
cylinder case in 3-D. piercing the free surface by a soliton wave

has been calculated. There are only small
3) Wartg, Wu and Yates solved the solitary differences between our results and

wave 1irrction by a vertical cylinder using Isaacson's. I think that the different
Boussinesq equations (17th ONR symp., The methods by which the radiation condition and
Hague, 1988) and compared their results with the intersection points of the body and the
Isaacson's that you cited. They found free surface can be described will affect the
considerable discrepancy especially behind the numerical results.
cylinder. Whereas your results agree well
with Isaacson's. Can you explain what you 4) The accuracy of time stepping method
think might be the reason for this? will depend on the discretion of the elements,

the quantities of the time step and element
4) Could you comment on the accuracy and size, the scheme of finite difference and the

efficiency of your time stepping method? method of integration. If the radiation
condition and the determination of

Author's Reply intersection point are not appropriate, the
calculation will diverge after a few time

1) Here Green Function is so chosen that steps. If the free surface has very serious
it can satisfy 3G/Bn=o on the sea floor when nonlinear, for examples, the body enter into
sea floor is flat, that is G=l/r+l/r'. If it the water suddenly the usual method to deal
is not flat, Green function can be described with the free surface elevation could not be
as G=/r. We must place singularities along very efficient.

350
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the problem of motions of floating bodies
Abstract (7,8]. Subsequently, the simulation of a

capsizing of Salter's duck, an ocean energy
A numerical method is described, which extracting device, was reported in [9]. For

simulates in the time domain the propagation this latter study, experimental results
of steep two dimensional periodic waves and the supplemented the numerical simulation.
large motions induced by the waves on free
floating bodies. The method allows for mild Following largely the techniques of Vinje
transient phenomena. The algorithm is based and co-workers, with an important modification
on Green's formula for harmonic functions in the consideration of the body-free surface
applied in a finite control fluid domain, intersection point, Lin [10] simulated two-
together with the fundamental solutions of dimensional waves generated by a wave-maker in
Laplace's equation. A lowest order boundary a finite rectangular tank. This study was
element discretization is used. In addition followed by an extension to forced oscillations
to several numerical results, computations of of axi-symmetric three-dimensional cylinders,
the sway forces and the roll and heave motions (11]. Subsequently, Dommermuthand Yue [12,13]
induced by steep periodic waves on a floating investigated the three-dimensional axi-
body restrained in the sway mode are presented symmetric problem and were able to simulate
and compared with the results of specially forced heave oscillations of large amplitude
conducted model tests, of cylinders and inverted cones in an otherwise

undisturbed free surface. Grsenhow and co-
1. Introduction workers also employed the approach of Vinje and

applied the method in a study of the two-
The increasing accessability of computers dimensional impact problem [14,15,16]. In the

of high capacity and the parallel development adaptation, specific improvements and
of computing techniques lead to the feasability developments of the algorithm were made to make
of algorithmic solutions of complicated it suitable for the particular application.
hydrodynamic problems through a discretization Isaacson [17,18] reported on a similar method
of the corresponding governing equations in for studying two and three-dimensional fixed
their fundamental form. In this paper, a and floating body problems. In spite of those
solution of this type is discussed for the efforts, to the knowledge of the authors, a
problem of motions induced by steep water waves fully satisfactory solution of the problem has
on a floating body. The problem is formulated not been achieved.
in two dimensions, in the time domain and
potential fluid flow is assumed. The study presented here was undertaken to

investigate the possibility of developing a
A number of numerical models of the same relatively simple but robust numerical model

problem have been developed since the of the problem, which would be as suitable as
appearance of the integral equation formulation possible for future generalizations to three
combined with the time stepping scheme for the dimensions. This in particular lead to the
non-linear free surface conditions originally requirement that the wave excitation in the
employed by Longuet-Higgins and Cokelet (1] in control fluid domain and the radiation
a study of the propagation of steep waves, condition for the outgoing waves be implemented
Faltinsen [2] considered forced heave motions in forms which would not preclude an efficient
of a two-dimensional circular cylinder, as well modelling of open water conditions. Similarly,
as a related problem of sloshing (3]. Vinje the modelling of wave breaking was excluded in
and co-workers extended their earlier work on order to ensure long periods of simulation for
breaking wave simulation (Vinje and Brevig [4]) steep wave conditions. In this way the
to include submerged and surface-piercing presented model acquired its characteristic
bodies in the fluid [5,6], and next attempted features which distinguish it from the models
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described above. where 8/an - i.a/3i, and i designates the unit
normal vector on aD directed outwards of D.

The computer codes used in the study were The same condition imposed on the wetted body
written in FORTRAN and the computations were surface aD3 gives:
performed on DEC-VAX 8800 and -VAX 8530 cluster
at Memorial University of Newfoundland. The 34 (
study as presented here was completed in April n (5)

1988.
where V, is the velocity component of aDg along

2. The Governing Eouations and its (outward to D) normal. For bodies fixed
Their Boundary Element Formulation in space, Vn - 0.

7.1 The Governing Eguations In addition, boundary conditions on control
boundaries aDc, and aDc2 are assumed to be

A finite two-dimensional control domain, D, applied in such a form that either 0 or a4/3n
containing fluid is considered. The domain is are known at all time instants t ! 0. The
bounded by a piecewise smooth contour 8D, as imposed conditions are described later in
shown in Fig. 1. The boundary BD is composed connection with specific applications.
of the free surface aD, an impermeable bottom
3DD, and the wetted contour aD0 of a partially 2.2 The Boundary Element Formulation and Its
or fully submerged impermeable rigid body B. Discretization
The remaining part of aD consists of two
vertical geometrical control boundaries aDci 2.2.1 The Boundary Integral Formulation
and aDc2, separated by such a distance that D
contains the submerged part of B. A Cartesian The application of Green's second identity
coordinate system Oxz is chosen, with the z to 4 and the fundamental solution in r(P,Q),
axis directed vertically upwards and origin 0 with point P located in D or on 3D, results in
coinciding with the intersection of aDcl with the well known Green's formula for harmonic
the undisturbed free surface, functions (19]:

The fluid in D is considered to be inviscid, f(P)4(P) " 130 [4(Q) - in r(P,Q) -
incompressible and homogeneous, and the flow -nQ)
is assumed to be irrotational. If B is (
completely submerged, thereby rendering D a -n O(Q) ln r(P,Q)] dS(Q) (6)
multiply connected domain, the flow is assumed
to be acyclic. Therefore the flow in D is with point Q located on 3D. Here r(P,Q) -
described by a single valued velocity potential ji(P) - (Q)I is the distance betwen points
4(i,t), where i denotes the radius vector and P and Q; the subscript of 3/an indicates the
t denotes time. The continuity of flow point at which the differentiation is taken;
requires that the potential should satisfy 0(P) - 21r for P located inside D but not on
Laplace's equation in D: aD. For P located on aD, n(P) is the angle

2 subtended inside D by the tangents to 8D at P,
-0 (1) which is equal to if when the normal to 3D is

8x2  az2  continuous at P and the Cauchy principal value
of the integral over 3D is taken.

On the free surface 8DF the kinematic
condition: Formula (6) expresses the potential 4 at any

point P inside D in terms of its boundary
8 _ a a a7 (2 values and those of its normal derivative.
at az ax ax (2) When P is placed on 3D and values of 4 are

prescribed on a part of 3D and those of a/an
and the dynamic condition: are imposed on the remaining part, (6)

represents two coupled Fredholm's integral
34 _ . 1+ equations of the second kind with respect toa- -( (V4)2 O (3) 4(P) as the unknown, and of the first kind with

respect to 34(P)/an as the unknown. Formula
are imposed, where q denotes the free surface (6) is valid at any instant of time, and
elevation, g denotes the acceleration of therefore for solutions advancing in time, this
gravity, and V represents the gradient relation can be applied at every consecutive
operator: V - 3/ax; P. is the applied pressure time step.
on the freenourfacc, not equal to 0in the
sequel, and p signifies fluid density. On 3DD  2.2.2 Discretization
the impermeability condition is applied

It is assumed that aD consists of N. piece-

a_ .0 (4) wise smooth open contours:
an

352



N$
aD - U 8Dk  (7)

k-i avoids an explicit occurrence of the problems

and as a result is the most straightforward for
The open contours 8Dk are further subdivided numerical implementation. In addition, higher
into a finite number of segments, each order applications of b.e.m., which lead to a
approximated by a straight line between its end better resolution with lesser number of
points: segments (see e.g. [22]), are known to be more

susceptible to numerical instability [24] which
Mk is a major concern in the considered

aDk - U 6SI (8) application.
i-I

The present choice of discretization scheme
A collocation point Qi is chosen on each of is founded in the belief that a 'workable'
the segments 6S1 . The functions 0 and 3#/3n on model can be developed based on this simplest
3D are approximated by constant values on each scheme, for the final task of the simulation
segment and the values are determined at the of large motions of floating bodies in steep
corresponding collocation points QI. Following waves, since it is supposed that several of the
the usual practice, the collocation points are anticipated problems may not necessarily be
placed at the centre of each segment. However, remedied by applying more refined
in principle Q1 need not be located centrally discretizations but initially may even be
in 6S . The discretization scheme maintains obscured by the inherent difficulties of such
a consistent order of approximation (see e.g. applications. More refined discretizations
[20)) and represents an application of the can, in principle, be adopted latter.
lo iest order boundary element method or b.e.m.,
(21]. A system of linear algebraic equations 2.3 The Basic Algorithm of Solution
is thus obtained from (6), (7) and (8), with
respect to the unknown o or aot/3n, values at The general discretization scheme described
collocation points Q. The influence above is applied to the boundary value problem
coefficients in this system depend only on the (1) to (5) by identifying the open contours
geometry of the boundary contour and can be 8Dk with the free surface 8DF, the bottom 3D,
determined explicitly (see e.g. [3]) for the the body contour aDs and the control boundaries
present type of straight line segments. 8DC1 and 8Dc2. The simulation sought for is

accomplished through a time marching procedure.
The bottom condition (4) permits exclusion Initial conditions provide the boundary data

of aD0 from the contour of integration in the on 3D at t - 0: 0 on 8DF, Bo/n on 8DD and 3DS ,
integrand in (6) if aD0 is horizontal, by and either 0 or Bo/n on aDc1 and 8Do2 . From
augmenting the fundamental singularity with its the solution of the appropriately rearranged
symmetric image with respect to ODD. Thus, system of linear equations, Bo/an on ODF and 0
when the bottom is horizontal at a depth d, In on 8D8 for that time instant are determined.
r(P,Q) in (6) is replaced by In r(P,Q) + In The boundary conditions are then invoked to
r(P,Q'), and 3D0 is discarded from aD. Here obtain the required boundary data for the next
Q' is the symmetric image of Q with respect to time level. In particular, appropriate
3D0 . This results in a reduction of the system evolution equations for the free surface,
of linear equations by the number of segments deduced from (2) and (3), and for the control
used in discretizing 3D0 . The influence boundaries, if applicable, are integrated in
coefficients then contain additional time to determine the updated free surface
integrations over the image segments. contour (i.e. the configuration of ODF for the

advanced time level) and the values of 0 or
It is possible to apply a higher order aO/anon the updated boundaries. On the body,

formulation of the b.e.m., for example an Bo/n on 3Dg is related to the body velocity by
ispaamtrcrepresentation of Ok an k#~isoparametrc and n virtue of (5), which in turn is related to #

over the segments, 6S1 (see e.g. (21]). Such through the body equations of motion and
refinements are achievable at the expense of Bernoulli's equation. The boundary contour 3D
additional algorithmic complexities. In as well as the boundary data for the advanced
particular, complications arise in the time level are now established and the solution
treatment of the point at which the normal to process can be repeated.
3D is discontinuous or at the intersection of
two parts of the boundary on each of which The potential 0 at any desired location in
different conditions (i.e. or Bo/n) are D can be calculated fiom the discretized form
imposed, which in the present application are of relation (6). Other information, e.g. fluid
the features of the body-frAe stirfse velociLy and pressure are calculable from 0 by
intersection point. In addition to a utilizing Bernoulli's equation and employing
discontinuity of the normal at this point, numerical difference techniques in space and
conditions posed on the body and the free time. The evolution of the free surface and
surface are different (Neumann condition on the the motion of the body, which constitute
body boundary and Dirichlet condition on the necessary information for advancing the
free surface). In this respect, the central solution in time, are extracted as the
collocation discretization scheme adopted here simulation proceeds.
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The system of linear equations to be solved,
in general corresponds to a full coefficient ._ t
matrix and thus benefits admissible in at (li)

solutions of matrices with special features and are applied on the undisturbed free surface
are not available. In the present algorithm, Z - 0. In addition, for the applications
a standard IMSL (International Mathematical and considered in this section, the fluid domain
Statistical Library) routine is utilized which is represented by the recangular area depicted
employs a Gaussian elimination technique for in Figresenth the bdctur reoved. Tematrix inversion [25]. in Fig. 1, with the body contour removed. The

bottom surface is taken to be at a constant

The evolution equations for the free surface depth d. The free surface part of the boundary

can be put in the following general form: on which the integrand in (6) is to be
evaluated remains undisturbed at all time
instants, and a/an - a/az on al)F. The entire

dt f(y,t) (9) boundary 8D is therefore independent of timeand consequently the influence coefficients in

In the present algorithm, a 4th order implicit the resulting system of linear equations

Adams-Bashforth-Moulton (A-B-M) scheme is remains unchanged in time.

adopted and is found to be convergent for all
required integrations. To achieve convergence
to the third significant figure, usually not As a test case, the method was applied to
more than one corrector step is necessary. simulate the propagation of steady Airy waves
This scheme requires information at the i the roaoain In te si t te
preceding four steps. In the initiation of the in the control domain. In the simulation, the

solution, the first three steps are therefore initial values of the potential on the

treated by means of successively lower order undisturbed free surface z - 0 were specified

schemes with a greater number of iterations. according to the Airy wave potential:

A variety of other schemes exists for the HA cosh(2,(z+d)/A sin La (x - ct)
integration of equations of the form (9), e.g. 2T sinh 21d/A s (2)
Runge-Kutta schemes, Hamming's method, etc. (12)
Fourth order Runge-Kutta starters are popular with t - 0. This corresponds to a wave of
for analogous initial-value problems (e.g. (1,2 height H, length X and period T, progressing
and 13]. However, the starter scheme employed iho oste x deio Th celerityicg
here is found adequate for the applications

considered. Limited numerical experiments with For the linearized simulations, either or

other schemes were also performed and the 8a/8n, computed from (12), were applied on the

algorithm appeared insensitive to the choice control boundaries.

of any particular scheme. The following notation is used in the
3. Anvlications to Linear Free discussion of computed results: Ax denotes the

Surface Flow Problems length of the segments (or the spatial grid
size), suffixed appropriately to indicate the

3.1 General Considerations part of 8D on which they are chosen, viz. AXF,
Axci, Axe2 are the segment sizes on aDF, 8DcI

A simple means of partly testing the and BDC2 respectively. The time step size isr aty denoted by At. Nt respresents the time step
effectiveness and reliability of the algorithm level of computation: Nt - t/At. The distance

is to apply it to problems which involve small betee th contrond at an e

amplitude free surface elevations. The between the control boundaries tDCo and Dc2,

simulation of the pr-.oagation of small i.e. the horizontal extent of the free surface,

amplitude waves allows one to linearize the is denoted by L. In the lnearized

free surface conditions and therefore reduces simulations, the spatial gr d sizes are kept

the possible sources of numerical errors. It constant on each part of the boundary, and At

also allows us to examine and solve the is constant over the entire time of simulation.

remaining numerical problems as discussed
below. In addition, solutions of linearized As an example, in Figs. 2(a) and (b), the
flows are usually available in closed forms free surface elevations are shown for a
thereby providing an exact basis for simulation where Neumann conditions were
comparison v imposed on both the control boundaries. The

control domain was relatively long, L - 7A,

Upon applying the usual approximations, the with water depth d - 0.4A. Other parameters
free surface conditions (2) and (3) take the were: AxF, Axcl, AxC2 - A/25 and At - T/40.
following lnearized forms: The comparison with theoretical free surface

contours clearly demonstrates that the
algorithm is capable of following the wave

all . 8.0 (10) motion with acceptable degree of precision overat az long periods of simulation time.

Computations were also performed for a wide

variety of combinations of the spatial and
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temporal grid sizes, for different values of where A > 0. This function has the property
L/A and d/A, and for different initial that M(t)It.0 - 0 at I aM(t)/att.0 - 0.
distributions of the free surface potential Therefore, regardless of the form of 0 on 8DCl,
(i.e. initial values of 0 on aDF given by (12) the initial values of 8a*/at are equal to zero
with values of t different than 0). In all by virtue of (13) and:
computations, the quality of agreement between
the numerical and theoretical results was W4'(t) M( (t) + (t) (15)
similar to the presented examples. The at t
numerical solutions did not exhibit any
discernible evidence of degeneration even The time span over which the excitation
after, for example, 400 time steps or up to 10 potential is modulated can be controlled b)
wave periods. selecting an appropriate value of the parameter

P. When (13) is applied with a sufficiently
3.3 The Unsteady Wave Pronagation large value of 8 in H(t), the instability

disappears. With 8/T - 1.0, the existence of
The simulation of the propagation of some undesired behaviour was still detected.

unsteady waves is achieved by specifying an With further increase of P/T to 2, waves
exciting wave potential on one of the control evolved smoothly although no numerical
boundaries. The fluid in D is initially at smoothing was applied. By inserting (13) in
rest with z - 0 as the initial contour of aDF. Bernoulli's equation it is found that the
The potential given by (12), which corresponds modulation excludes an impulsive application
to an Airy wave propagating in the positive x of pressure on aDcl at t-0. These
direction, Is applied in a modulated form on considerations appear to parallel a recent
8Dca at all time instants t>0. Therefore, a study of the impulsive wave-maker problem,
disturbance is introduced at one end of the (27].
control domain to excite a fluid motion in the
initially unperturbed fluid in D. For this 3.4 Comouoted Examoles
simulation, the boundaries aDcl and 8Dc2 can be
referred to as upstream and downstream Examples of computed results in terms of the
boundaries respectively, free surface elevations are shown in Fig. 3.

For these computations, the downstream boundary
For the initially unperturbed state of fluid was placed at the distance of 2A from the

(i,t) Ito - 0 in the entire of D, including 8D upstream boundary. The discretization
(the value of could strictly be any constant, parameters were: AxF - A/24 and At/T - 1/36,

but it is convenient to make this constant 0where A and T refer to the length and period
of the excitation wave. The downstreamby redefining , see e.g. [26]). What is not boundary was considered to be a rigid wall,so apparent is the requirement that thus the condition posed on 8Dc2 was a#(t)/an

aO(x,t)/atjt.0  - 0 be maintained - 0 at all time instants. The water had a
simultaneously. Examining eqn. (3), it can be depth of d - 0.5A, and the excitation potential
noticed that rIto - 0 and 01t.0 - 0 imply was modulated over 2T, i.e. P/T - 2. Fig. 3.
80/8tit.o - 0 on aDF. It follows that 8a/at on shows plots of the evolutions of free surface
8Dcl must have a zero value at t - 0 for the elevations at four stations situated at x -
compatibility of the initial boundary data, at 0.26A, 0.50A, 0.74A and 0.98A, together with
the intersection of aDci and aDF. The the theoretical Airy wave evolucions computed
potential given by (12) maintains 01t.O - 0 on from (12) at the corresponding stations. For
aDcl but 80/atItz0  has a finite value, comparative purposes, the Airy wave evolutions
Simulations which did not impose ao/atir=0 on are also modulated by the same modulation
8Dc1 were not successful due to a numerical function. It is clear that for t/T 5, the
instability which started at the origin (at reflected waves do not reach the locations x/A
aDCjnaDF) and slowly spread over the entire - 0.98. At locations x/A - 0.24 and 0.50, more
domain. Although this instability is of a weak than two periods of steady state results are
type, in the sense that the solution can still achieved.
be continued, the free surface contour shows
undesired 'zigzag' pattern: and eventually The algorithm was also applied to simulate
diverges from the required Airy wave profile. wave generation by piston and flapper types of

wave-makers. The corresponding Neumann
In the present formulation, a modified boundary conditions were imposed on a aDci

excitation potential 0* is used, defined by fixed at the mean position of the wave-maker
introducing a modulation function H(t): board. In both cases, the normal velocity

values were modified by the modulating function
1P -ki- (13) (14). SLable propagaLilg Wa veS Were simulated.

The gain functions (wave amplitude to half
with: stroke ratios) were found to be within 0.2% and

1% relative error when compared to the linear
0.5(1 - cos(xt/0)) t < P (14) theory values [28].

The presented results exemplify the

robustness of the numerical time domain
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simulation algorithm for fluid flow problems 4, The Unsteady Proo2aation of Steep Wave.
that include a free surface. Computations were
performed for a number of other combinations 4.1 The Evolution Equations for The Free
of parameters, and showed a similar quality of Surfsi
agreement with theoretical solutions. No
rigorous rule could be established for the For the simulation of the propagation of
minimum size of Ax. As a rough guide, a size steep waves, it is necessary to consider the
of Ax - A/12 was found to describe adequately non-linear free surface conditions (2) and (3)
the evolution of the free surface for most of without the linearizing approximations. These
the simulations. Further relaxation resulted equations are to be satisfied on the exact
in a lack of resolution, although the fluid location of the free surface and therefore the
motion could still be followed (which means the evolution of the free surface within the
solution did not break down). For temporal control domain must be followed. As a result
grid size, the Courant-Friedrichs-Lewy (C-F-L) the fluid domain must be redefined at every
type of condition, (291: consecutive time instant. In addition the

evolution of the boundary data on the free

NCFL 1(16) surface must also be determined.Ax

In the present work, an Eulerian formulation

with c representing the wave celerity, was used of the free surface conditions is used.
for guidance, although no formal stability Assuming the free surface elevation q to be a
analysis of the algorithim was carried out. single valued function of coordinate x, the
In the present computations, for most of the evolutions of q and o on the instantaneous free
cases, a value of NCFL between 0.5 and 0.7 was surface are followed at image points of the
used. undisturbed free surface, obtained by the

projection along the vertical axis. The
However, the solutions were found to exhibit variation of the potential at the image points

a tendency towards numerical instability upon on the free surface, which undergo vertical
successive refinements of the spatial mesh displacements, is determined by (see e.g. [3]):
sizes. When a collocation point was located
very close to a corner where the boundary do - odt + A (17)
undergoes a sharp change in curvature, such as at +(
the intersections of aDF with aDci and aDc2,
relatively large errors occurred in the since - #(z,t) at these points. Here dq is
computed velocities at these locations, in the differential of the vertical displacement
comparison with points far from such corners, of the image point:
These non-uniform differences appeared to
introduce numerical instability when the grid d- dt (18)
size was very fine, typically when Ax/A < at
1/100. A similar behaviour of solutions near
corners in applications of boundary element From (2), (3), (17) and (18), the evolution
methods is documented in literature (24]. This equation for o is obtained as:
instability is thought not to be a seriouslimitation in the applications of the algorithm 1 0raS _2 8 ~
but serves to indicate a lower bound on the dt -g ax a" ) " axz ax

grid sizes.
(19)

In addition to the 4th order A-B-M scheme,
other schemes for the integration of eqns. (10) which defines the rate of change of the
and (11) were also tried. First order implicit potential at the image points. In the present
schemes were found to be inadequate in that the method, therefore, eqns. (2) and (19)
solution showed poor convergence respectively are the evolution equations to be
characteristics and contained large errors, integrated in time in order to determine the
In contrast, 2nd order schemes lead to instantaneous free surface contour and
substantial improvements. Further improvements potential.
were achieved by using 3rd and 4th order
schemes, although the relative improvements The above method of following the evolution
between those two latter orders were of free surface is different from the
practically insignificant (the numericalvalues Lagrangian method utilized in most of the
differed only in the sixth significant figure). previous investigations of non-linear water
In no case was more than one corrector level waves, which were also based upon boundary
required for a convergence to the third InLegral formulations (e.g. [1,5,11,13,30 and
significant figure. It is observed here that, 31]). The attractiveness of the Lagrangian
from a computational point of view, higher method follows from its ability to describe
order schemes do not necessarily require multivalued free surface contours. In
additional computational effort. To start the contrast, the applicability of the pxasent
4-th order A-B-M schemes, lower order A-B-M method is restricted to single-valued free
schemes were found te be adequate. surface contours. The possibility of

simulating extreme wave conditions, pertinent
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to wave breaking, is therefore excluded, surface grid or a successive introduction and
However, the present method provides several deletion of collocation points, since the wave-
computational advantages. The image points on maker enters and withdraws from the free
the free surface, which through the surface grid. It could cause collocation
discretizaton are identified with collocation points to come very close to the wave-maker and
points, are not allowed to cluster. So, the thus generate numerical difficulties, as it was
scheme avoids the adverse numerical effects explained above.
often inherent in the Lagrangian methods in
which the particles tend to concentrate in some 4.3 The Non-reflective Downstream Boundar'
regions. From the previous experience of other
workers, it is known that some form of control The application of the impermeability
of the Lagrangian points is necessary to condition at the downstream boundary 8Dc2, as
prevent them from clustering, e.g. the it was done in the appli4ations presented
introduction of a 'tangential' velocity above, is not satisfactory for simulations of
component as discussed by Baker in [30] or a long duration. An appropriate open boundary,
regridding of the free surface points at every or radiation condition must be specified, which
time step, as employed in [13]. The present makes the boundary sufficiently transmissive
method of following the free surface is free to allow wave patterns generated in D to pass
from such complications. In addition, the through the boundary without causing
collocation points cannot leave the appreciable reflection effects. In the present
computational domain at any time, therefore the algorithm, a simple open boundary condition is
additional task of tracing such points is adopted on 8Dc2, which assumes that the
avoided. Computational experience gained from potential at this boundary can be written as
performed simulations suggests that in the a wave form of the same celerity as that of the
presented method numerical difficulties arise applied excitation potential on aDci:
when a collocation point is situated very close
to one of the vertical control boundaries. By O(x,t) - O(x - ct) (20)
preventing horizontal displacements of the
collocation points, such problems are also where c represents the celerity of the
minimized, excitation wave (cf. eqn. (12)). This results

in the following relation:
Yet another point with regard to the

applicability of the present method needs to .-c a (21)
be mentioned. The ultimate objective is to be bt an
able to simulate the motion of a floating body
in steep waves, for a sufficiently long time, in which 8/On - 8/Ox on BDc2 was used. Eqn.
preferably over a number of periods of (21) has a form similar to Orlanski's radiation
oscillation. It must be noted that in the condition but its application here is not
Lagrangian method the simulation cannot be strictly equivalent. In (33] and in many
extended much beyond the time when the wave finite-difference algorithms (see e.g. [34]),
breaks. Similar restrictions in applications the value of c is taken as the celerity of the
are typical of most finite-difference local waves approaching the downstream
algorithms (see e.g. [32]). boundary, and c is determined by a numerical

differentiation at the neighbouring grid
4.2 The Simulation Procedure and Wave points. In [35], a similar simple form is

Excitation adopted with c determined from:

The simulation of the unsteady propagation c - J(gd) (22)
of steep waves is accomplished by a procedure
similar to the one described in §3.3. A wave where d denotes the local water depth at the
potential, representing an oncoming wave downstream boundary. Eqn. (22) represents the
travelling in the positive x dire'ction, is shallow water approximation of the phase
imposed on aDCI at t>0. This applied potential velocity and is therefore different from the
is hereinafter called the excitation potential, condition applied in the present method (both
since it provides the necessary excitation of methods become equivalent in the limiting
fluid motion in D. It was found through situation of d/A << 1).
numerical results that the form of the
excitation potential has negligible influence The evolution of 0 is now easily determined
on the generated numerical wave at points in by the time-integration of eqn.' (21), using the
the interior of D, provided they are same scheme as the one used for integrating (2)
sufficiently far from the upstream boundary. and (19). Simple as it appears, in the

considered applications this procedure results
An alternative way of simulating waves is in minimal reflection effects on ODc2, as the

to provide a moving wave-maker at one end of results presented below illustrate.
the control domain. Such a procedure was
applied in earlier works, e.g. (10,11,14]. In 4.4 Specific Considerations
the present method of following the evolution
of the free surface, such an approach would 4.4.1 Soatial Derivatives on The Free Surface
necessitate either a redistribution of the free
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The evolution equations (2) and (19) require evaluated without the matching procedure are

the evaluation of spatial derivatives of il and represented by f2 (x). A transfer function g(x)

at the collocation points. To determine is introduced to redefine f2(x) as f (x) in the

8q/ax,q as a function of x is approximated by 'matching zone' between 8Dc1 and aD cI:
a cubic spline. From this approximation, the
components of the outward normal vector can be f2(x) - g(x) f1(x) (24)
calculated. For the spatial derivatives of w:where f (x) is defined in x1  x x1 + 1, ft(x)

Lo - n oindicates the theoretical wave elevation or
as nz . (23) potential corresponding to the excitation

potential applied on 8D¢1, and x, represents
since l/(ds/dx) - nz, where a/as denotes the the x coordinate of aDcl. A quadratic
tangential derivative. To determine 80/ax, in polynomial is chosen for g(x) whose
turn 4 as a function of x is approximated by coefficients are determined from the
a cubic spline. From a3/as and a8/an and the conditions:
outward normal vector, other components of the
spatial derivatives can be determined. In the fi(xl) - f1(x1)
software, an IMSL routine for cubic splines
with natural end conditions is used in which f2(x1 + 1) - f2(xl + 1) (25)
no conditions are prescribed at the end points
and continuity of second derivatives is 8 + 1)* + i) +
enforced at the penultimate points [36]. afx - f2(x1 + 1)

4.4.2 The Instability at The Intersection of The above procedure requires the evaluation of
2-C1 and aDF 8(f2(x1 + 1)1/ax and this is determined from a

second order central difference scheme. A
When a time-modulated excitation Airy linear form of g(x) was found not as

potential is applied on aDci in the described satisfactory. The quadratic function for g(x)
algorithm, an instability is found to originate is however very effective in suppressing the
at the intersection of BDcl and 8DF. The form instability and enables the fluid motion to be
of the instability is qualitatively similar to followed without further problems originating
that observed in the analogous linear at the intersection point.
application when the modulation function was
not used. The solution breaks down, typically On the downstream boundary 8DC2 it is
within 10 time steps irrespective of the step necessary to determine the intersection of aDF
size. with aDC2. This is determined via a second

order LagrangLan scheme using the data at the
The occurrence of these oscillations can be three preceding collocation points on 8DF.

attributed to the incompatibility of the
excication wave potential and elevation applied 4.4.3 The Instabillty on The Free Surface
externally on 8DcI with the wave potential and
free surface elevation induced in D in the In addition to the instability originating
vicinity of aDcl. In other words, the ftee at the upstream end of the free surface,
surface conditions implicitly satisfied on the another instability was found to develop on the
left of aDcl (i.e. by the exciting wave entire free surface as the solution progressed.
potential) are inconsistent with the conditions Saw-tooth instabilities of this type have been
on 8DF immediately to the right of aDcl. On reported by earlier investigators. Numerical
the basis of conducted numerical experiments, experiments with various combinations of the
this discontinuity is believed to cause large spatial and temporal grid sizes were performed
velocity gradients across the vertical boundary with the hope of identifying a stability
and these initiate the instability. The criterion related to these dLscretLzation
application of other, 'non-lLnear' excitation parameters. However no such criterion could
potentials, e.g. Stokes second order potential, be established. In the present formulation,
were tried without success. Difficulties in which collocation points on the free surface
originating from analogous discontinuities were are restricted to move vertically, the arc
known earlier, e.g. similar problems were lengths between the adjacent collocation points
discussed in [37] and in [11], the never reduce below the horizontal grid spacing.
discontinuity was identified with the Consequently, the relation between the time
difficulty of the matching of non-llnear step size and the horizontal projection of the
interior with linear exterior solutions, free surface segments is easily controlled.
reported in [8]. In all computations, the C-F-L type condition,

see eqn. (16). was satisfied in the entire
In order to achieve a smooth variation of fluid domain and throughout the whole

the free surface elevation and potential across simulation period. A form of stability
aDcl, the matching procedure, described below, criterion based upon a linear von Neumann
was developed. Another vertical boundary aD'cl stability analysis for a 4th order Runge-Kutta
in the interior of the contiol domain D is scheme was provided in (13]:
introduced at a short distance 1 from aDCl.
The free surface elevation and potential
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_____ boundary are generally kept fixed in space,
18LAxF' I 1 (26) except for the uppermost segment. Dependingon the length of 8Dc2, a segment is deleted or

This condition was also maintained in the an additional segment is introduced so thst the

discussed computations. length of the segment in comparison with the
length of the adjacent segmenc on aDF maintains

The present computational experience a ratio between 0.5 and 2.0.

itdicates that the instability is closely
associated with the shape of the free surface Numerical experiments carried out to
elevation. It becomes more pronounced as the investigate the effectiveness of the matching
wave steepens. It should be observed that in procedure showed that the number n of
the analogous linear application, no such collocation points in the matching zone is the
problem was encountered. Computations with dominant factor in comparison with the length
successively higher levels of iteration in the 1 of the zone. The choice of n - 4 was very
ti.e-integration of the free surface conditions effective in removing the oscillations,
and a nlose examination of the computed free regardless of the grid sizes and wave heights.
surface profiles and boundary data suggest an The subsequent results are all computed with
insensitivity of the instability to the time- this value of n - 4.

integration schemes. Therefore, the violation
of a stability condition of the above type The convergence characteristics of the
might not be the root mechanism in the solution in the entire fluid domain was
initiation of the instability, studied. The chosen fluid domain extended

horizontally over L - 2A and vertically over
To suppress this instability, the smoothing d - 0.5A, and the applied excitation

scheme originally employed by Longuet-Higgins corresponded to a large nominal wave steepness
and Cokelet [1] was adopted. In view of their of H/A - 0.10. For these computations, the
computational experience, the five-point scheme segment sizes were: AXF, AXCI, Axc2 - A/16,
was used instead of a seven-point scheme. The A/20, A/24, A/28, A/32 and A/40. The time step
formula provided in [1] is inapplicable for the size was At/T - 1/40 for the first five values
special cases of the first and last two of N, while for N - 120, it was halved to At/T
collocation points on the free surface and a - 1/80. This was necessary because of the
modified scheme had to be applied there. The reduced segment sizes. Otherwise for At/T -
smoothing scheme is applied at regular time 1/40, which corresponds to NCFL - 1 (cf. eqn.
intervals. Usually, the application at every (16)), the solution exhibited an instability.
4th time step was found effective in Free surface smoothing was applied at every
eliminating the unwanted oscillations. It is fourth step, 8/T - 1 was taken in the
possible to employ a variety of other available modulation function, and n - 4 was used for the
smoothing schemes. A third degree five point matching region. Except for the value of N -
least squares smoothing scheme was also tested 48, the results demonstrated good convergence
and was found to be equally effective, characteristics. For this value of N, the

results were affected by comparatively poorer
Although the application of artificial resolution. These computations (and many

smoothing is known to cause a loss of the local others) indicated that the value of AXF - A/24
accuracy of the solution, the global solution and comparable values for Axc1, AxC2 were
fortunately remained within acceptable limits adequate for describing the fluid motion
of accuracy, which was demonstrated by the without appreciable effects of the lack of
computed results. This feature of the resolution.
artificial smoothing was also noted by earlier
workers (e.g. [11, 14 and 38]). The effectiveness of the open boundary

condition (21) was examined by selecting a
4.5 Computed Results range of values of the celerity of the outgoing

waves. Taking c in eqn. (21) as c', with c'
In the present context, the notation - ac, where c represents the celerity of the

described above applies with the exception that exciting wave at 8Dci (as in eqn. (12)),
AXF denotes the spacing of the free surface computations covered a variation of a from 0
collocation points along the x axis, instead to 1, with specific values of a - 0, 0.25,
of the actual lengths of the segments. Unless 0.50, 0.75, 0.90 and 1.00. The other
otherwise specified, the applied excitation parameters were chosen as: L - 2A; d/A - 0.5;
potential on 8Do1 is the Airy potential. The H/A - 0.10; AxF, Axcl and Axc2 - A/24, and At/T
normalizing parameters for horizontal and - 1/40. The free surface elevations at the
vertical length scales and time scale are simulation time of t/T - 8.75 are shown in Fig.
respectively the length A, height H and period 4. It is apparent that the reflection effects
T of the Airy wave corresponding to the at the downstream boundary increase with the
excitation potential (cf. eqn. (12)). In all difference between a and 1. Results for a -
presented computations, AXF, AXcI, AXC2 and At 1 indicate that the wave passes through 8Dc2
are constants. However, due to wave run up, with imperceptible reflection. From these and
aDC2 continuously changes in length. Since the other computations the effectiveness of
left hand side of eqn. (21) is an Eulerian time choosing a - 1.0 for making the downstream
derivative, the collocation points on this boundary transmissive was evident, although
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values slightly less than 1 also appeared to effectiveness of (21) in the modelling of the
work well. Computations were also attempted propagation of nonlinear periodic waves.
for values of a greater than 1, but even for
a value moderately greater than one, e.g. a - 5. The Floating Bodyf1 P .em
1.05, the solution broke down after about t -
ST, which was approximately the time for the 5.1 The Governing Eouations
wave to grow fully at the downstream boundary.
This breakdown resulted from an instability In order to simulate motions of a floating
originating at the downstream intersection of body in steep waves, a floating body B is
8DF and 8Dc2. In view of the success of a - introduced in the fluid, such that its wetted
1.0 in making the boundary sufficiently non- contour aDS is completely contained in D (see
reflective, this aspect was not pursued any Fig. 1). The objective is to expose B to an
further. incident steep wave train and subsequently to

follow the induced motion of B. A propagating
A comparison of evolutions of wave steep wave is generated in D in the manner

elevation, for H/A - 0.10 at x/A - 0.98, with described above. For such simulations, it is
theoretical profiles for the Airy wave given necessary to know the exact location of aDe at
by (12), Stokes second order wave and Miche's every time instant. In addition, a relation
second order theoretical profile [39] are shown between 0 and al/an on aDs must be established
in Fig. 5. The numerically simulated wave such that the evolution of boundary data on 8DB
compares well with the second order profiles, can be followed. The required information is
but displays stronger non-linear obtained by invoking the equations of rigid
characteristics. The comparatively more peaky body motion and the impermeability condition.
crest and shallower trough of the computed wave
are visible. For the following considerations an

additional coordinate system fixed with the
To investigate the influence of the body is introduced. A rectangular Cartesian

excitation potential on the interior solution, coordinate system Gx'z' is used with its origin
computations were performed with a Stokes G located at the body centre of gravity CG, and
second order potential as the excitation Gz' axis directed vertically upwards in the
instead of the Airy wave potential. The undisturbed position of the body. The axis
applied excitations had a value of H/A - 0.10, through G perpendicular to the x' and z' axes
for which the second order correction in wave is assumed to coincide with a principal axis
amplitude is almost 10 of the first order of inertia of the body. The body geometry is
amplitude, but both excitations have the same invariant in the coordinate system and
average energy density. The fluid domain therefore the instantaneous wetted contour aDs
chosen and the discretization parameters were: is completely defined by the location and
L - 2A, d - 0.5A, AxF - A/24, At - T/40. The orientation of Gx'z' system with respect to the
evolutions of wave elevation in time at x/A - Oxz system and wave elevation. The components
0.48 and 1.48 are shown in Figs. 6 (a) and (b). in the Gx'z' system denoted by (x)', of the
The differences between the two simulations are radius vector of a point fixed with the body,
undetectable are related to the components in the fixed in

The results presented above show that the space system, of the radius vectors of the same

simulation of unsteady steep wave propagation point and of CC, denoted by (i) and (;G)
can be achieved by imposing an excitation respectively, by the following relation:
potential on one of the vertical control
boundaries encompassing a rectangular fluid (i - X) - [RIT Cx1' (27)
domain. The interior solution apppears to be
not sensitive to the exact form of the where matrix (R] represents the tensor of
potential. The simulated wave profile displays rotation and the superscript T indicates a
typical non-linear characteristics of transpose. CR] is given by:
relatively more peaky crest and shallower
trough in comparison with linear waves. As cos 8 sin 0
expected, the non-linearities are more (R) - c o (28)
pronounced for steeper waves. Very steep waves
were simulated for time durations of over 20 where 6 denotes the angular displacement of
wave periods, for which a steady state Gx'z' system with respect to Oxz system,
behaviour occurred in the entire domain, measured as positive counterclockwise. The

The simple outgoing wave condition (21) equations of motion for the body are written

produced good results over the entire period in the Newtonian form:

of each computation as well as for all
combinations of H, T, L and d for which (Fx, F,, Ml) - (H XG, MB z0 , 10 8} (29)
computations were performed. The interior wave
was not observed to be contaminated by where Fx and F. are the components of the force
numerical reflection effects even after long F acting upon the body, whereas xG and zG are
times of simulation and at locations close to
the downstream boundary. This demonstrated the
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those of x5 , in x and z directions The use of Bernoulli's equation (33)

correspondingly; H8 represents the moment of requires the evaluation of 80/t on the body.To this end the following relation:

force k about the axis passing 
through G and

orthogonal to Gx' and Gz'; M9 denotes the body do _ -+
mass and 19 denotes the body moment of inertia - +- . - (35)

about the axis with respect to which H is dt at ax

defined, and dots Indicate differentiation with is applied, where d/dt signifies the rate ofrespect to time. I pleweedd infe h aeo
change of any quantity following a material

The external forces and moment exerted on point of the rigid body and v denotes the
B can be obtained by a direct integration of velocity of the point. The quadratic term in
fluid pressure p on 3Da: Bernoulli's equation is readily obtainable

from:
F - faD pnxdS (30) (B) + (36)

F1 - fa0e pnzdS - g H8  (31)
B At a collocation point i the tangential

derivative a/as of 0, is determined in the
Me - faD 8 p(-(z-zG)nx+(X-xG)nz)dS (32) form:

"3k (3i)/{s) 1 (343)where n5 and n1 denote the components of the (Os ) i i ( - oi' (37)

normal vector on aD8 in the fixed in space
system of reference. The pressure p is since for the straight line segments, (as/8i)i
computed from unsteady Bernoulli's equation: - AS which denotes the length of the segment.

To determine (ao/ai)1 , appropriate second-order
p _p(gz + 8+I 1 (33) difference formulae are employed. This is

-P a+ + }  permissible despite large variations in aD8 ,
since 4 on the surface is in general a smoothly

On the body surface, the fluid normal varying continuous function, which was
velocity a8/an is equal to the normal component confirmed by plotting #j against i for several
of the body velocity by virtue of conditions. In the present algorithm,
impermeability condition (5). Therefore, from Simpson's rule was applied for the evaluation
(5) and (27), the following form of the of force and moment expressions (30) to (32).
impermeability condition is obtained:

To carry out the computations on the wetted
n5 . body surface aD6, it is convenient to describen. G+ n,. ZG + i [-(Z-ZG)nx+(X-XG)nz] the body geometry with respect to the Gx'z'

(34) system, in which it is invariant. Denoted by
aD'8 , it can be subdivided into segments once

to be satisfied on aDs. The above expression and for all. To determine the wetted contour
provides a8/an at any point on aDs in terms of aD8 (aDs C 3D'8 ), the intersection points 3DF n
the body configuration, velocity and geometry. BD0 need to be found. This is achieved using

an extrapoltion scheme in which a second order
5.2 The Algorithm for The Computation of polynomial is fitted to the three points on aDF

Hydrodynamic Forces adjacent to aD'9 . However, the application of
a fixed discretization of D'e through the

The solution algorithm described in §2.3 can determination of 3D'B 0 aD and the subsequent
now be adapted for the simulation of motions consideration of only those segments of 3D'B
of B. At any instant, presuming a3/an to be which belong to aD, produced an instability in
known on aDs, the other boundary data are the force computation and a resulting
determined from the solution of the integral divergence of the solution. This was caused
relation (6). From this, the fluid pressure by the introduction or deletion of segments on
p exerted on the body is determined by the body near the intersection point with the
utilizing Bernoulli's equation (33). free surface, which in turn produced a large
Subsequently, the fluid excitation loads on B variation of pressure in the computation of the
are determined by a direct integration of dynamic part of the pressure distribution.
pressure over the wetted body surface, (30) to This problem is overcome by redistributing the
(32). To establish the boundary data for the collocation points on the body at every time
next time level, the equations of motion are step such that the segment sizes vary smoothly

invoked. By integrating (29), 'i, vG, 6 and & in time. Because of the redistribution of the

at the advanced time are determined. The collocation points, a spatial interpolation of

necessary boundary data (a/oan) on the body 0 becomes necessary in the computation of

surface are then established from (34) and the d4/dt. In general, this spatial interpolation

computation for the next time step can begin, introduces very small approximation errors,
since the changes of collocation points between
two consecutive time steps are very small.
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Computations using linear and second order integrates the equations of motion using the
interpolation rules produced practically explicit scheme. In this way, it is possible
indistinguishable results. In the present to use a stable difference formula for the
algorithm, the second order rule is applied, dynamic pressure term in the force calculation,

in exchange for an explicit scheme of the
On the free surface, a similar integration of the equations of motion.

redistribution of the collocation points
becomes necessary. Except for a wall-sided Although the adopted procedure was more
body in heave motion, any other combination of stable and not divergent at the initial time
the body geometry and modes of motion causes steps, after sufficient time, in particular
a change in the size of the segments adjacent when surge and/or roll motions were involved,
to the body, eventually leading to a deletion another 'saw-tooth' type instability was found
or introduction of a collocation point. For in the time variation of the forces, velocities
the same reason as on the body, this and displacements. These appeared first in the
destabilizes the force computations. Therefore force computations and gradually contaminated
the original locations of the collocation the velocities and displacements. The
points cannot be retained, and collocation mechanism which initiates this instability was
points must be redistributed at every time not identified, but the singularity at the body
step. This necessitates an interpolation of and free surface intersection point, associated
q and 0 in space for the integration of the with larger horizontal velocity components in
free surface evolution equations. Instead of these modes, is probably a factor. This
storing and interpolating between q and problem is circumvented by smoothing the forces
values, the values of the right hand sides of in time. The smoothing formulae applied are
(2) and (19) are stored for the required number the same as those used on the free surface
of past time steps (four steps for the (notice that the smoothing here is in time).
integration scheme employed) and interpolated. For the chosen integration rules, forces over
This results in a slight reduction of the only the past four steps need to be smoothed.
computation. A cubic spline interpolation is
employed. With regard to the associated- 6. The Evaluation Against Exverimental Data
numerical inaccuracies, the above comments on
the discretization of aD8 apply. 6.1 The Experimental Program

5.3 The Integration of The Equations of Motion An experimental program was undertaken to
validate the numerical model. This was

In order to integrate them in time, the considered necessary due to the inadequacy of
equations of motion (29) are transformed into published analytical, numerical or experimental
six ordinary differential equations of the data on two-dimensional motions of floating
first order: bodies in steep waves. To the authors

knowledge, no systematic two-dimensional
.) experimental data are readily available in open

('k, xG, VG, G, Li), 8- literature, in which a floating body is
F, (38) subjected to an incident wave train such that

MB' 'Ms '6' the motions and/or waves contain significant
non-linear characteristics. The only exception

A number of standard techniques are available appears to be the experiment by Kyozuka [40]
for integrating the above system of equations. who conducted an experiment on a body of Lewis
For convenience, as well as to be consistent form by subjecting it to oncoming waves and
with the integration of the free surface presented the results in the frequency domain.
conditions, a 4th order A-B-M scheme was
originally used. However, the solution was The experiments were performed in the
divergent, and this could not be remedied by Memorial University wave tank which has
increasing the number of iterations per time interior dimensions of 54.74 m x 4.8 m x 3.04
step. The problem was found to be caused by m and is equipped with a piston type wave-maker
the computation of the d/dt term. When an and a parabolic beach (for more details on the
implicit scheme is used for the equations of tank, see [41]). The arrangement where the
motion, this term can only be computed from a body is completely free to float was considered
backward difference scheme in time in the not to be favourable for experimental purposes,
corrector part of the algorithm and this leads since it would be difficult to prevent the body
to the instability, from undergoing motions in the transverse plane

(yaw and pitch). This lead to the choice of
In the present algorithm, the instability experiments in which the body was restricted

is avulded by OinpuLJzlkg Lu pLediuLed values from Swaying. Thi iuudjy ,L066Lt- for L esLig was
by using a backward difference scheme for d#/dt of rectangular 40 cm x 40 cm cross section, and
in the force evaluation, and an explicit scheme its length was 120 cm. To avoid sharp corners
for integrating the equations of motion. For and minimize resulting flow separation, a bilge
the second and higher iterations, the scheme radius of 2.5 cm was provided. The body was
returns to the preceding time step and corrects ballasted to a draft of 20 cm. To achieve two-
the forces, this time utilizing a central dimensionality of the flow, a channel within
difference scheme for do/dt, and once more the wave tank was constructed by erecting
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vertical walls. The channel length was 6.1 m. conditions in the numerical simulation as close
For the period for which test results were as possbile. Previous computed results (cf.
collected, reflected waves from either end of §4) showed that the height of the generated
the tank did not reach tho test site. waves inside the control domain is closely
Experiments were performed in a water depth of comparable to the height (H) of the Airy wave
0.9 m. The wave field was monitored using describing the excitation potential. Also, the
standard twin wire wave probes of resistor fundamental period of the generated wave was
type. The collected data were therefore the shown to be very close to the excitation
wave heights, the horizontal force exerted on period. Ideally, the excitation potential
the body and roll and heave displacements of should be selected such that the waves
the body. simulated at the location of the body match the

test wave conditions but this would lead to a
Prior to the testing of body motions, a trial-and-error search for the correct

series of preliminary tests were performed in excitation potential. Considering the
which waves were generated and wave heights simulation time and the number of experimental
were measured at four locations along the conditions that were to be simulated, this
centre line of the channel. One of them process would have been prohibitively expensive
coincided with the designed location of the and time consuming. Instead, the application
body. The purpose of these tests was to of the Airy excitation potential with H and T
determine the range of frequencies and heights taken from the test conditions was found to
for which waves of acceptable quality could be give close enough simulations of the
generated in the channel. Also, the data experimental waves.
generated were needed for the comparison with
the simulation. All of the numerical results, used in the

comparisons with the experimental data, unless
The tests with the model were conducted in specifically mentioned, were computed for a

two series. In one the model was free to heave standardized control domain extending over L
but restrained from rolling. The roll moment - 4.OA. The CG of the body at rest was located
was not measured in these tests. In the other, at L, - 2.5A from the boundary aDC1 . The two
the model was free to heave and roll but values of time variable T1 and T2 indicate
restrained from swaying. The steepest waves approximately the time at which the fully
generated in the preliminary wave test series developed wave pattern reached the location of
could not be applied In the main series of the the body (TI), and the time at which the
tests because they caused significant flooding, reflected from the body wave pattern reached
Altogether 39 tests were performed covering the excitation boundary (T2). The values
the range of wave periods 0.054 : L J(b/2g) : provide a guidance for the time interval within
1.08, with w - 2ff/T and b denoting the breadth which the comparisons are meaningful. For the
of the body cross-section, and of wave size of the domain chosen, about 3 to 5 wave
steepness 0.068 < H/A < 0.013. The tests with periods could be obtained within the interval
the body free to roll were carried out for two between T1 to T2 for most of the tests.
radii of gyration 0.29b and 0.36b, and for GM/b
- 0.054. Considering the wide range of wavelengths

A for which numerical results were to be
For all body motion tests, data were generated, the grid sizes were not

recorded which included the transient standardized. The spatial grid sizes were
information. Except for the horizontal force chosen such that a reasonably good description
measurement, all other measurements (wave of the entire boundary can be obtained, At for
heights, heave and roll motions) had each computation was chosen such that it
insignificant amount of noise content. The satisfied the condition given by eqn. (16).
noise was removed by a five point averaging The other relevant parameters were: P/T - 1
technique. For the force measurement, however, and n - 4 for all computations (this
the time records contained a relatively large corresponded to the matching length between
proportion of high frequency noise. The noise O.lA to 0.13A). The shape of the body in the
was subsequently removed by applying a digital numerical model was rectangular.
filtering technique. A majority of the tests
was conducted twice to verify repeatability of The comparison between the numerical and
the tests. The results showed very good experimental time records were presented in the
repeatability, with the exception of the sway following manner. The numerical wave elevation
forces. was monitored at a station inside the control

domain, located at a distance of 0.5A from the
6.2 The Comparison of Experimental and excitation boundary. The station was about

MJunerical Renultn 0. c uts-idc of thc matching region or. the
average, therefore the time history for the

6.2.1 General Comments free surface elevation remained uninfluenced
by reflections from the body for a relatively

In order to establish a proper basis for the long time. For the experimental input
comparison of the experimental data with the conditions, the wave elevation records from the
corresponding results of computation, it is preliminary test series without the presence
necessary to replicate the experimental wave of the body were taken as the experimental
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input conditions. The comparison of these two 6.3 The Comparison of Roll Motions
records provided the comparison of the oncoming
wave conditions. For presentation, these two With the exception of the lowest
records were synchronized. The synchronization experimental frequency in the vicinity of roll
was standardized by matching the peak of the natural frequency, the body displayed very
simulated wave in the time interval 3 t/T 4 small roll displacements in all other tests.
with the peak of the experimental wave record. The roll amplitudes were mostly less than 4

deg. The numerical method predicted a similar
The primary outputs of the experimental and behaviour.

numerical model were the two displacements,
heave and roll, and the horizontal (sway) Large roll amplitudes were obtained
force. These results were plotted after their experimentally for the frequency ;U(b/2g) -
records were synchronized with respect to the 0.54 with the radius of gyration 0.033b. At
undisturbed wave pattern at the horizontal this frequency, experimental data was gathered
location of the body CC at rest. The for three different wave steepnesses, H/A -
synchronization was achieved by first 0.013, 0.023 and 0.028. A larger steepness
presenting the experimental records relative could not be achieved due to the limitation of
to the undisturbed wave pattern at the CG the dynamoneter (maximum allowable roll of ±
location. The undisturbed wave pattern was 30 deg.) as well as due to water spilling
obtained from a reference probe record and the inside the body. For these tests, although the
phase difference between the reference probe agreement of measured and computed phases was
and the probe at the location of the body CC, very good, with phase differences within ±15
measured in the absence of the model. deg, the roll amplitudes were considerably
Subsequently the records of the responses over-predicted, with peak-to-peak values
determined by the numerical model were adjusted differing by between 17% to 32%. The peak-to-
for the phase difference between the peak sway forces were under-predicted on the
experimental and simulated wave patterns at the average by 19%. The heave motions correlated
location of the reference probe. The error well, with peak-to-peak values over-predicted
inherent in this procedure was estimated within on the average by 5% and approximately zero
± 15 deg. phase difference.

6.2.2 The Comparison of Sway Forces and Heave The over-predictions of roll amplitudes is
Motions believed to result from effects of fluid

viscosity which were not accounted for in the
A detailed review of the comparison of the numerical model. The significant influence of

experimental and computed records is beyond the fluid viscosity on the damping of roll is well
scope of the present discussion, only a brief documented in literature (see e.g. [42J).
summary and some examples can be presented Therefore, the incorporation in the numerical
here. model of the viscous effects upon roll damping

is expected to improve the predictions.
With the exception of three instances over

the whole experimental range, the sway force In order to include the viscous damping of
differences of peak-to-peak values were roll in the numerical model, the equation of
contained within ±10% with respect to the roll motion was modified to the form:
experimental data, for the steady responses.
However, relatively large, on the average ±20*, 10 - Me - be(6) (39)
phase differences were observed, larger for the
model restrained from rolling, on the average where the second term on the right-hand side
±260. It should be noticed that the of (39) represents the contribution of viscous
experimental peak-to-peak values were assessed damping to the roll moment and is considered
to be repeatable within not less than ±4%
error. as a function of angular speed 0. It should

be observed that moment M0 includes the effects
The differences of steady peak-to-peak heave of roll damping resulting from wave scattering.

responses, between the experiment and The expression for the viscous damping moment
computation were well below ±5% for the model was identified from free rolling numerical and
free to roll and occassionally above that value physical experiments in the form:
for the model restrained from rolling. The
phase differences were within ±15 deg, with
the exception of three tests. In the range of be(e) - B1O"+ B2 1918 (40)
heave resonance the numerical values
consistently -crpredicted thG experIumnLal where BI and B2 denote constant coefficients
data. The repeatability of the experimental derived from the identification. In the
data was estimated within +2%. identification the assumption was made that the

damping contribution of wave scattering to the

roll moment is linear with respect to 0.
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The numerical results obtained by the are not compatible with open water conditions.
described above procedure showed a significant Similar comments apply to the wave excitation
improvement of the predicted roll motion. The in the control fluid domain, achieved in the

changes of computed sway force and heave motion algorithm by a matching of an imposed exciting
were marginal. Figs. 7 and 8 show the wave potential with the flow in the control
comparisons of the computed and measured domain, in the vicinity of the upstream control
records, obtained without and with the boundary. The procedure is different from the
inclusion of viscous roll damping respectively, more usual simulation of a physical wave-maker,
The results are for the largest wave steepness and corresponds better to open water
H/A - 0.028 at which the worst agreement conditions. However, in the procedure the
between the experiment and computation was exciting wave potential must be modulated in
observed. For all three wave steepnesses the time to enforce the compatibility of the
differences between computed and measured peak- initial conditions at the boundary and in the
to-peak roll values reamined below 6% for the control domain. The problem parallels similar
simulations in which eqn. (39) was applied, difficulties encountered in the modelling of

the wave-maker.
6. 4 5 Another characteristic feature of the

Taking into account the experimental errors algorithm constitutes the use of an Eulerian
and inaccuracies of the comparison resulting form of the nonlinear free surface conditions,
from the unsteady characteristics of the based on the assumption of a single-valued wave
experimental and computed data, the predictions elevation. At present this form of the
by the numerical model show good agreement with conditions appears to be more suitable for the
experimental records. The observed differences extended in time modelling of motions of
between computed and measured sway forces and floating bodies in steep waves, than its
heave motions result, at least partly, from Lagrangian counterpart, although the latter is
the absence of viscous effects in the numerical capable of modelling wave breaking. The

model. A similar remark applies to the roll application of the Eulerian free surface
motions were the inclusion of the viscous roll conditions makes possible a strict observance
damping is semi-empirical, of local stability condition of Courant type,

without the use of procedures (such as e.g. a
It should be observed that the experimental regridding of collocation points) which may

data used in the comparison included three introduce a numerical smoothing. The results
kinds of non-negligible non-linear phenomena. presented above suggest that the violation of
For the shorter waves with higher steepness, a Courant type stability condition may not be
the waves near the body approached the breaking the reason of the occurrence of the typical
limit. In a number of tests, a foam formation instability in the free surface data.
was observed. Large heave and relative motions
of the body with respect to waves were observed The extention of the basic steep wave
in several tests. For these tests, the video propagation algorithm, which includes the
records showed that the run-up profiles presence of a free floating body in the control
resembled closely those generated by the fluid domain, provided time domain simulations
simulation. In addition, the tests included of body motions. In the simulations steady
the occurrence of roll amplitudes up to 20 deg. state motions of the body excited by steep
combined with large motions relative to waves, periodic waves, preceded by short transients,

were achieved. The computed records compare
The comparison confirmed the validity of the well with experimental data, thus illustrating

numerical method in the presence of the the applicability of the extended algorithm.
described phenomena. It also demonstrated that The experimental data were obtained from
the method can provide realistic estimates of specially performed model tests, with a body
roll motions within the specified range if a model restrained in the sway mode. In several
semi-empirical model of viscous roll damping of those tests significant nonlinear phenomena
is included in the algorithm, related to the wave propagation and interaction

with the body were observed. In the numerical
7. Conclusion simulations no significant wave reflection at

the downstream boundary was detected. However,
The numerical results presented above show for the form of the algorithm presented here,

that the propagation of steep long-crested simulation times are limited by the reflection
periodic waves, which may include mild of waves scattered by the body from the
transients, can be modelled numerically in the upstream control boundary. To ensure the
time domain by means of a relatively simple, stability of the computation of hydradynamic
low order boundary element method algorithm, forces and of the integration of the quetions
The efficiency of a radiation condition of of body motion, special procedures were
Orlanski's type is also demonstrated. The use developed which include a smoothing of the
of the condition makes possible the avoidance hydrodynamic forces in time.
of other means of eliminating the reflection
of waves at the downstream boundary, such as
e.g. the introduction of an artificial wave
damping in the free surface conditions, which
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Fig. 3 The evolution in time of a free surface elevatio started from rest.:C =

!at OT p8.75 + 0.0

0c0.25
X 0.50

aO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t//A

Fig. 4 Free surface elevations for different values of a:
(L-2, d/A-0.5, H/A-Ol, AXF/A -1/24 and At/T-/40).

368



X PRESENT METHOD
+ NICHE
A STOKES 2nd ORDER

0
W 0 AIRY
0.

0

0

0

tI I I

4.50 4.75 5.00 5.25 5.50
t/T

Fig. 5 Comparison of theoretical and numerical time histories of wave
elevation.

A Airy wave pot. on 8Dr,
Zo (a) at i =12 (x/A= 0.48) 0 Stokes 2nd order pot. on ODc 1

0.00 1.00 2:00 3:00 4'00 5'00 600 7:00 6.00 9.00
t/T

(b) at t = 36 (x/A = 1.48)

0.00 1.00 2.00 3.00 4.00 5.O0 6.00 7.00 8. 00 9:00
t/T

Fig. 6 The evolution in time of free surface elevations induced by different
excitation potentials.
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DISCUSSION DISCUSSION

by R. Cointe by R.C. Ertekin

I would like to congratulate the authors The authors shoul.d be commended for a very

for a very interesting and extensive work. We careful and detailed analysis carried out in

are now working on a similar problem and we their paper. It was a pleasure to read it.

find it very difficult to accurately compute

the fiee motions of the body using finite By using the plane speed obtained from the

differences intimeto evaluate the 30/3t potential for Airy Waves, you appear to be

term in Bernoullie's equation. An alternative assuming, at least implicitly, that downstream

method consists in evaluating this term by waves are linear. And by setting c'
= ac and

solving the corresponding boundary integral varying a, aren't you basically determining

equation. Would the authors discuss their ex- the value of the phase speed which you would

perience on this problem? have if you numerically calculated it?

Author's Reply We have recently solved the problem of

diffraction of nonlinear waves by 2-

The work presented by Dr. Cointe at this dimetisional submerged objects by using the

conference[All, addresses several problems BEM. The results will be presented in the

which are either identical or analogous to the next OMAE conference in Houston (1990, 9th

ones we have addressed in 6ur paper. The main meeting). We have used Crank-Nicholson scheme

differences between the two works result from in time stepping and found no saw-tooth waves

the assumed directions of approach, with the that you have seen in your results by using
"numerical flume" approach taken by Dr. the A-B-M method. We have not filtered our

Cointe, and "open water" approach chosen by results. This makes we believe that your time

us. As a result certain comparisons between stepping algorithm is causing the problem. It

the achieved results may be instructive, is not very unheard of that a multistep method

is associated with such difficulties (Burden &

In particular I believe, it is worthwhile Faires, "Numerical Analysis", 1985, Prindle &

to notice that the wave damping condition Weber). One way of handling this difficulty

employed in (All at the down stream boundary, is by using adaptive time stepping in the

is tuned to the dominant wave frequency, and algorithm.

our application of the radiation condition

depends on the use of an appropriate wave I would like to also point out that

celerity. Shapiro, R. ("Linear filtering", Mats.
Comput., Vol. 29, 1975) presented filtering

It could also be interesting to see how formulas for any number of points earlier.

an introduct-0n of the compatibility of the

initial condition on the exciting boundary and Finally, could you explain why sway forces

free surface, which we impose through a could not have been repeated in the

modulation function, would affect the experiments?

performance of Dr. Cointe's algorithms.
Author's Reply

Referring directly to Dr. Cointe's

question, we could not avoid the necessity to The comments by Professor Ertekin are

solve the boundary value problem twice in appreciated. considering the formulation

order to advance the simulation of motion of a presented in the paper, the upstream boundary

floating body in time. The technique used is can be used as a permeable boundary for

described in section 5.3, and it relies on oncoming waves which satisfy fully the non-

using a cential difference scheme to obtain linear free surface conditions. However,

time derivatives of the potential on the body applications on that boundary, of wave

surface, potentials which do not conform to the

conditions, are equivalent to wave excitations

We very much appreciate Dr. Cointe's hy a wave maker. As much as the kinematics of

question and wish him success in finalizing a wave maker board does not imply the

the development of his model, linearity of the generated waves, since they
satisfy the non-linear free surface

(All R. Cointe, "Nonlinear Simulation of conditions, the application of an Airy wave

Transient Free Surface Flows", 5th potential on the upstream boundary does not

International Conference on Numerical imply the linearity of the wave generated in

ShipHydrodynamis,Hiroshima, 1989. the control fluid domain. A wave excitation

372



of this type, by a wave potential which in- surface conditions and to wave steepness, and

cludes a wave celerity c in its definition, therefore the accuracy of the computation of

makes it convenient to use the same celerity the spatial derivatives in the free surface

in the radiation condition. This procedure conditions seems to be the probable source of

appeared to be effective in the performed the instability.

simulations. Otherwise the celerity would Finally, the measurements of sway forces

have to be determined numerically from the were repeated in all the tests carried out

solution in the control fluid domain, twice. However the peak-to-peak values from
those measurements showed a variation of at

The source of the saw-tooth instability in least ±4% between the original and repeated

the wave propagation simulation is not test records. The cause of these variations

entirely clear. In our simulations it was was not fully determined.

related to the use of the non-linear free
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for the Green's functions involved. The solution of the At the free surface we have the dynamic and kinematic
boundary integral equations comes from a very effec- boundary condition
tive iterative solver. The calculation of the wave drift
forces is done in two alternative ways, one is the inte- + z + V. VS = constant (3)
gration of the pressures over the mean wetted surface - - - 0 z
of the body and secondly using the Maruo expression
for the wave drift forces corrected for the small forward We assume that the waves are high compared to the
speed parameter. The nature of the non-uniformity in Kelvin wave pattern, but that they are both small in
the asymptotic expansions will be studied in this pa- nature, hence the free surface boundary condition can
per and extended to uniform expansions. We keep in be expanded at z = 0. Elimination of C leads to the
mind that one of our goals is to arrive at a formulation following non-linear condition:
that makes use of the zero speed source potential. 82 a0 a

In this paper we present a uniform approximation t24 + gzT +  .
valid for small values of the small parameter but also vO.v
for fixed finite values of rR. -V .V[ =0atz=-0 (4)

To compute the wave resistance at low speed the free
2. Mathematical Formulation surface elevation must be treated more carefully, be-

We first derive the equations for the potential func- cause the wave height is of asymptotically smaller or-

tion ( such that the fluid velocity u(_!,t) is de- der. This problem has been studied extensively by

fined as u(,t) = grad q(Z,t). The total potential Eggers [13], Baba [14], Hermans [15] and Brandsma

function will be split up in a steady and a non-steady [16]. The velocity field is well described by the double

part in a well-known way: body potential with a small wave pattern.Theref:re
we take the double body potential into account and

q(1, ) = UX + (_; U) + q(Z, t; U) (1) we neglect the stationary wave pattern. For the wave
potential ( t; U) the free surface condition now be-

In this formulation U is the incoming unperturbed ye- comes:
locity field, obtained by considering a coordinate sys-
tem fixed to the ship moving under a drift angle a. In
our approach this angle need not be small. The time , + gA + 2U,,,+
dependent part of the potential consists of a incoming - -

wave at frequency w an a diffracted and/or radiated +2V. VO, + (U2 + 2Ud + qS,)qSx +
wave contribution. To compute the wave drift forces
all these components will be taken into account. +2(U + 0x)i%,? + -,'yl+

+(3U-O. +~~ : +#qf~)S +

Z(U~ + + #,)U+ C(2){}=0

atz= 0 (5)

The boundary conditions on the hull can be written in
x a similar way for all radiating and diffracted modes.

We therefore treat the following general form, keeping
in mind that the actual form has to be used in the
computations. Generally we have the condition:

Fig. 1. Axis of coordinate system (VqS.n) = V(_)e-"_ E S (6)

where S is the mean wetted area of the ship hull.
The equations for the total potential € can be writ- -i operatwrll be neglected

ten as:,
as well. The first term in equation (5 ) contains linear

AO = 0 in the fluid domain D, (2) terms in U.
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The Effect of the Steady Perturbation Potential on the
Motions of a Ship Sailing in Random Seas

R. H. M. Huijsmans
Maritime Research Institute Netherlands

Wageningen, The Netherlands
A. J. Hermans

Technical University of Delft
Delft, The Netherlands

Abstract to be related with the forward speed dependency of
the wave drift forces. rhe effect of the varying wave

In this paper results will be presented of model drift forces with speed has been described by a num-
tests and calculations of the wave drift force on a 200 ber of authors nowadays, beginning from Hermans and
kDWT tanker and half immersed sphere. The the- Huijsmans [6] to the more recent publication by Nossen
ory of small forward speed motion computations is ex- et al. [7], Sclavonous [8] and Hu and Eatock Taylor
tended in order to allow larger horizontal distances in [9]. In the paper of Hermans and Huijsmans the speed
the Green's functions by deriving a proper asymptotic was restricted to be low, due to non-uniform character
expansion of the low speed Green's function. Also an of the asymptotic expansion scheme. In the paper of
alternative formulation for the wave drift forces has Sclavonous tile problem was solved by deriving explicit
been derived, based on the momentum balance as e.g. Green's functions for the wave drift damping, with a
derived by Newman or Maruo. This alternative for- proper account of the disturbance of the steady poten-
mulation is derived for the small forward speed case. tial q,. In order to solve tile forward speed problem

Zhao and Faltinsen [101 showed that the treatment of
the speed dependent boundary conditions (depending

1. Introduction on the steady potential q,) have to be handled care-
fully. As soon as one tries to use the expansion scheme

Recently we derived a formulation for the descrip- in [11] for the unsteady potential with respecL to for-
tion of the motions of a floating body with a small ward speed at a small but fixed forward speed one
velocity. The reason for such a formulation is related is confronted with the non-uniformities in the asymp-
to the wave drift damping phenomena. Large moored totic expansion. In short one finds for a point source
tankers offshore exhibit low frequency resonance be- that the second order results behave like (riR)! where
haviour. These resonant forces are associated with -= is the small parameter and R is the distance
the slowly varying wave drift forces. These forces can to the point source.
be computed with the help of linear diffraction the-

ory and taking into account the second order effects In former studies only the speed effect due to a
of the pressure and the wave height. An extensive uniform flow has been attempted. However the in-
study among many other studies was published by fluence of the steady perturbation potential resulting
Pinkster [1]. Also second order wave excitation may from the stationary fluid flow around the ship, on
be taken into account in an approximative way, see the ship motion problem is not well understood. For
Benshop et al. [2]. In an early paper Remery and the case the current is head on or the ship's course
Hermans 131 indicated that for an accurate descriD-

is at zero drift angle, then the influence can be ne-tion of the low frequency motions not only the drift

forces are important but also the accurate prediction glected. In case of a ship moving at a certain drift an-

of the damping coefficient near resonance. In a later gle it then appears to be of considerable influence, see
study by Wichers 141 he showed that this damping co- Huijsmans et al. [121. In our study we have incorpo-stud byWichrs 41 h shwedthatthi damingco- rated the steady forwvard speed perturbation potential
efficient was quadratic with respect to the wave height, into the s tip l T forward speed ship
thus lead;ng to the concept of wave drift damping co-
efficient, which have been shown by Wichers et al. [51 motion problem is solved using an efficienf algorithm
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Our Ansatz is that in order to obtain the first or- with at = cos(OX,t),Ctr = cos(Oa,_.) and a,,

der approximation with respect to U the higher order cos(Oz,n), where a is the normal and t is the tan-

terms in U may be neglected in the free surface con- gent to the waterline and T = t x n the binormal. It

dition. In the next section we show that in general is clear that the choice of 7(_) = 0 for the integral

this is true, but first we discuss the construction of along the waterline will give no contribution up to or-

the regular part of the perturbation problem, with the der U. The source distribution we obtain in this way

complete linear free surface condition. is not a proper distribution, because it expresses the
function #5 in a source distribution along the free sur-

We assume , t: U) to be oscillatory, face with a strength proportional to derivatives of the

t; U) = 0(; U)e-i f  (7) same function #. However this formulation is linear
in U and moreover the integrand tends rapidly to zero

The free surface condition is then written as: for increasing distances R. So finally we arrive at the
formulation:_ -# 2iwU#5x + U2qSx + af: °- ')so

- 2ro- (g) - ff[a G~ (g, dS
go. = D(U; )qS} at z= 0 (8) On,

where D(U;') is a linear differential operator acting + - f ( ) -2 -G (1!,§) dn +
on 0 as defined in equation (5). 9 JI.1, ,n

We apply Green's theorem to a problem in D, in- iW a
+ IF G n(,§) D j'' =4irVr)

side S and to the problem in D, outside S, where S is + _ -

the ship's hull. The potential function inside S obeys
condition (8) with D = 0, while the Green's function x E S (12)

fulfills the homogeneous adjoint free surface condition: and

-w 2G + 2iNUG + 47r() =

+U 2G4 +gc = 0 at =0 (9) ff

This Green's function has the form
1s( 1 +,GD! 1 dS E D,, -. (13)

_,; U) r- - (, ; U) (10)
-where D {q}=2V . V#.

where :-=k and r' = , where ' is the
image of7~ with re spect to the free surface.

We now consider small values of U, keeping in mind
that there are two dimensioniess parameters that playCombining the formulation inside and outside the arl ntelmt ecnie - << n
a role in the limit. We consider r = -u < 1 andship we obtain a description of the potential function Y

defined outside S by means of a source and a vortex V = > 1.

distribution of the following form: It turns out that the source strength and potential
function can be expanded as follows:

4r&S(z) Uo"() = Ou(_) + 2 (A) +3(z;U) (14)
~2MiU
-if ]'s( )-G(I,_ )dS - -T  / ,, f ()G(_, )7 + #(_) = #o(_) + , (_) + q5;U) (15)

U2  [ where o and 0 are 0(r 2 ) as r -+ 0, while the expansion

- ]]u()G( ,)dS, + f7 . () G(,!)+ of the Green's function is less trivial.

_- {al,() + aT7T(j)} G(;;,)] d, + 3. The Green's Function

In this section we present an asymptotic expan-
U

2  , ..,. f , * ,.
+on of the Green's function. The Green's Luncion fol-

I J 1 L + lows from the source function presented in Wehausen

-! and Laitone [171. In case of r < 1/4 the function

9 fSs G(_,§)D {0} d (11) ! !,§; U) is written as follows:
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-,,U) L d dkF(0,k)+ 

dO dF (, k) (16) -4v exp [v(z + () sec ] sin [v(x - )sec 9.

where: *cos [SHy - i)sin 0sec2 0] sec2 9 dO (23)
k 0 )= exp (kIz + + i(x - ) cos 01)

F (0, k) + Uk COS 0) The expression in equation (23) gives the interaction
of the translating part of the Green's function with

cos [k (y - q) sin 0] (17) the oscillatory part. In Hermans and Huijsmans [6] it
is shown that due to the highly oscillatory nature the

The contours L, and £2 are given as follows: influence of equation (23) may be neglected in our first

order correction for small values of r.

The non-uniformity character of equation (20) for
k k 2 large values of R becomes clear, if we analyse 41 (1!, )

a little bit further. The contour of integration £2 is

'£1 chosen well underneath the singularity k,) = w2 /g and
k3  k4  performs a partial integration of equation (22).£I2

£2 The end points give zero contribution. Hence we

find:

Fig. 2. Contours of integration 01

4ioCo 1 d [k2,k(.+C J, (kR)]d A 24)
The contours are chosen such that the radiation 4i , ( [ku k

conditions are satisfied. The radiated waves are out- We are mainly concerned with small values of
going and the Kelvin pattern is behind the ship. For r(z+() because the pressure is calculated at the ship's
small values of r the poles of equation (17 ) behave as: hull and we assume the horizontal length scales large

compared to the vertical length scale.
Vgk., VgkI, w +i +0(r) as r -. 0 (18) To get more insight in the structure of the source

V/ 2, ' _ . rcos + 0 (1) as r - 0 (19) function we deform the contour£ in the complex plane.

A careful analysis of the asymptotic behaviour of
4'(,; U) for small values of U leads to a regular part
and an irregular part:

U4(_; U) = po (11, ) + TV, + - -.

... ',, (i;4) + + . . )(2 )

where k

2kf kexp k(z + ()Jo(kR)dk (21)
k -k,

4', ( , =

4ikucos9'f, k2 expk(z + ()J,(kR)dk (22)
(k - k,,) 2

where R2 -= (Z __ )2 + (y - 7)2 and 0' = arctan{y"}
and Fig. 3. Contours in complex plane
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We use the relation J(z) = {H.0)(z) + H,()(z)}. z 27rikoek0(z+C)H6I)(koR)

For large values of z the Hankel functions behave like {1 + 2irkoRcos8'} + O(T2),Vn[o,oo) (29)

H 1 Ii --27e'('- i-r/4) and and for large values of R we have:V¢z

,(,2) -4 21nw- /4)2 r d ,/ 2 koe ko(2+ ei(koR-7r/ )

H,, (25) V R

We find as an approximation of equation (20) {1 + 27ikoR cos 0'} + C7(R - 3/
2
z) + 0(r

2 )  (30)

7P ;z 7o +rik = 2ri koeko~+C) 0(1(ko) +The origin of the non-uniformity is now clear. It is
the well-known phase shift of the wave numbers of the

[k2 kPLK method. The residue of the exact source func-
+2rcos' [~ek +  I H)(Rjko+ tions leads to the exact phase shift, in our case we

+2ricos6' A e (+0 ~l)(R~l~kohave approximated:
2 f oo (e'k(-+C) e -tk(2+ )

+_/ 0 k-t + - - Io Ko(kR)dk + exp(2i/k,7"(x - )) by 1 + 2iko(x - ) (31)

4rcos 0'f k2{ elk(z+C e_,ik(z+() This term originates from the x, tderivatives in the free

_ r k+ok2 ( - k)) surface boundary condition. Before treating methods
1.(0+0k)

2  to obtain uniform expansions we must keep in mind

K (kR)dk (26) the way we like to use the Green's function. This leads
to the insight that we need two different approaches.

This expression is then studied for large values of R. One for the computation of the far field wave and one
The wo ntegalscanbe epaned ith he elp for the computation of the integral equation. In the

ofthe folwin integral renpresentatine oft the tio far field the exact value of the wave number has to be
oftefllwn(ntgz)epeettino:he[nto taken into account, while in the latter case a first order

K,,(z):correction of the wave number is sufficient to arrive at

& (z) f= 0 e2 ..... I cosh ntdt (27) solutions valid up to second order.

We first apply the method of steepest descend with 4. Expansion of Source Strengsth
respect to the t integral and perform a partial inte-
gration with respect to k. It then turns out that both In this section an approximate solution of equation
integrals behave like O(R -3/) hence they lead to uni- (12) will be derived. Inserting (14) and (15) into (20)
form expansions with respect to r. The integrals are one obtains for like powers of r" the following set of

0()asr e"- ,n[~o.€quations:

The terms that follow from the residues give rise to 2r- o

the expected non-uniform behaviour.Tbe second term ;G dS

in equation (26 ) may be written in the form: --47r%(_), 2x E S. (32)

and

(2s2(2c I (§ _ Gkg,)R~

TI(z + 2ff fkek(+CH')(k,)+R,,,(k + )eko) Teoii ftennuiomt snwcer ti

The second term gives rise to non-uniform behaviour fs th

of large values of z + Thowever we restrict ourselves

to f :n . ... !aucs of Z . ..,, , G -ks,i . 1p , t , . ) ib ,,u zeo ,p

Our main concern is the last term. We comparepustin e soue aa
this term with the first one in equation (26) This t Vo(rn ) + rV(z) + d(ri )  (34)
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The potential functions in (14) now become: F(e, k) =

00A= -1Jjof () Go x~jdSt (35) k exp(k(z +C)r S 2 gk - (w + kU COS 0)2

4, Pj 04 -ik( cos +,q sin 0)] . exp [ikR cos(O - i)] +

4 o- Go (_g, dSf + exp [-ik( cos0- 1sin 8)]exp [ikRcos(9 +

+$ IIF Go (j,() V 0() - o (1) dSf (36) (7
We have to distinguish between the four quadrants at

In principle the solution of the problem is now infinity. We choose 0 _5 0 _< 7r/2. All other quadrants
solving Oo (p) and 01 (_) using the steady perturba- can be treated in a similar way, the results are the
tion potential. The steady perturbation potential 4 same. We obtain:
is determined using a boundary integral technique for
the steady double body flow, which originally comes TO!,§; U)
from a Hess and Smith type of algorithm. The steady
double body flow is calculated separately and is then 9 21re--
incorporated into the free surface integral. 7rVR

In reference [6] it is shown that the non-uniform [Vk exp {k(z + ) - ik(Vcos0 + i sin 0) + ikR}dk
term with respect to v in the Green's function leads to {I gk - (w + Uk cos g)"
contributions that are asymptotically small compared
to the terms we have taken into account. + V exp f{k(z + ) + ik( cos 0 + sin0) -ikR} dk+1J gk -(w,-k cosO) 2  dk;

5. Uniform Asymptotic Expansions

(38)
In principle we have to solve (32) and (33) where

the source function suffers non-uniform behaviour. If The first integral may be closed in the upper quarter
the size of the ship is order one with respect to r it is plane whilst the second one may be closed in the lower
sufficient to use (10) with (20). The question remains quarter plane.The integrals along the imaginary axis
how to compute the far field. This will be dealt with are of O(R-3/ 2).

in part 1 of this section.

If the size of the vessel becomes large with respect We now finally obtain:
to T, 7-R = 0(1), we have to modify (20) in order to TU)
obtain proper approximations of the source strength
from (32) and (33). This problem is stated in part 2 F2 ei(k(°)R-ir/4) '"
of this section. 27ri (1 - -cos (w+k(O)Ucos 0) 1

5.1 The Far Field V/k exp {ki(O)(z + C) - ik(8)(4 cos 0 + i1sin0)}

In the case where o-, + ro- is known, the far field (39)
may be computed with the aid of equation (13). Be-
cause for R large we cannot use (10) with (16). As with
explained before the contribution of the "Kelvin" resi- -
dues from k2 and k4 are neglected. Contributions of ki(O) - 2U cos (40)
the wave residues are dominant but first we apply the 2U2 cos 2

method of stationary phase to the integral with respect
t.n , The inteur.nd F(6, ) for large ,,"es of R ,itv'
the notation z = R cos 0, y = R sin i:
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Hence, to obtain the potential in the far field we 'P=
use (13) with 1 - - 2ke °

__ !+ -1 p(, ;U) and (41)
= (42) . [e(koIf-=") {1 - exp(2ikor(z-))}] (46)--7 )+7- (42) adk e

and

5.2 Large Vessels 'P =

In the case of large vessels (41) is not a good ap. - 2rkoeko(z+C)

proximation for the source strength. We now have to 2
take care of the non-uniformity as described in (30). 2 [ i (kol -

r/4) {2iko(x - 4)}] (47)
A practical requirement is that we want to make use le

of the zero speed oscillatory Green's function and its The correction of ?Po can easily be performed in the
derivatives. The function 0, (1!,1) can be computed zero speed Green's function algorithm, while the cor-
for the major part using algorithms as e.g. developed rection of 1P, can be performed either analytically or
by Newman 118] or Noblesse [19]. One minor con- numerically. It can be shown by inspection also that:
tribution has to be evaluted separately. Keeping in
mind that the PLK method requires the omission of 0 ; ¢o + r 1 + O(T 2R) (48)

the most severe secular term to obtain uniform expan- Hence the region of validity is extended in a proper
sions we may conclude that the procedure only needs way.
to avoid approximations as (31). The following proce-
dure makes it possible to use the zero speed algorithms If one wants to higher order approximations the
with a slight modification. A proof of the validity can procedure has to be reconsidered. Corrections can be

be given rigorously with the same analytic manipu- obtained along the same line. However the advantage

lations as described in Section 3. For instance the of reduction to the zero speed algorithms is not avail-
following correction may be performed: able anymore. One has to devise a fast algorithm for

OReS - (0o, + ro") exp(2irk(x - (43)

+ 2irko(x - 6. Wave Drift Forces

It can be shown by inspection that this multiplicative
correction yields the correct uniform asymptotic ex- In Hermans and Huijsmans [6] we described a way
pansion up to O(r 2R) as r --* 0 [20]. The interval to compute the first order forces and the second order
of validity is properly extended. It is also possible to wave drift forces. The method we used there was based
apply the correction to 00,,, alone and to show that: on a direct pressure integration of the first and second

order pressures respectively. It has been shown before
(e.g. see Pinkster [1]) that this method works well

0... = (1ko,,(1 - 2ikor(x - 0)) + T1k,_,) and is even necessary in order to compute the slowly

exp(2irko( - )) + 0(r 2R) (44 varying wave drift forces.

At this moment we are mainly interested in the
The correction is only needed for large values of KoR, constant component of the wave drift force. In this
therefore the correction may be performed at asymp- section we recapitulate a method that leads to results
totic level. This leads to the following simplified re- that possibly are more accurate numerically, because
sults for the total 1. This result is rewritten in asymp- when using the pressure integration technique one has
totic form where we made use of the explicit form of to use derivatives of the potential function over the
the residues mean wetted surface. This is even more the case if one

uses pressure integration in the case of ship motions
1 00 + ri, (45) with forward speed (see Huiijsmans [21]). Newman (22]

where and Maruo [23] have derived an expression for the wave
drift forces and moments.
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The mean forces and moments may be expressed (t) =
as 122]:

"p.=Ux + g¢"e{k (13)z+m(k ' (I)(xc. sa+usii"t) 'w) I

-ff; . [p cos 0 + pVu(Vj cos 0 - Vo sin 0)] RdOdz (49) +F()es'0) -!e(kj(0)z+a(kl (0)-wt)) (54)

S= here (. is the amplitude of the incoming wave and
F(G)eis(O) results from the asymptotic expansion of the

ff [p sinO+pVl(VtsinO+VocosO)]RdOdz (50) far field potentials in (53) with

47ro(') (;; U) =

2JL .V o. (,z (51) -ff () C, G dS ,
where p is the first order hydrodynamic pressure, V + i f . (55)
is the fluid velocity with radial and tangential corn- 9 FS
ponents V1, Vo and S. is a large cylindrical control where G (Z,) is approximated by (30). Due to the
surface with radius R in the ship-fixed coordinate sys- V (t) decays rapidly as 0.
tem. Faltinsen and Michelsen [24] derive from these fact that the function d
formulas expressions in terms of the source densities we assume that R = jxj is large enough to take the
of the first order potentials. From: asymptotic expansion of G (;;,§) in the last term as

G well. The function VS() may be replaced by Vo(j).

a (_) = o,(7) () + E 0) () 7, (52) This leads to
j=1

where a. = e-'st j=1(1)6 are the six modes of mo- F()'s(0) -

tion and superscript 7 refers to the diffraction com-
ponent of the source strength. In our case we follow kO(+()3sio4

the same reasoning to obtain similar results for the g2r - cos
slow forward speed case. Our velocity potential has
the form: • [fo (W exp {k (O)C - ik, (0)( cos 0 + n sin 9)} dS,

(z) 2i f ,T)exp

UX + (3; U) + q(_ , U)e'  g liS V. e{-ik(9)

=UXc + €C;;; U) + (V cos 0 + 7 sin 0)} dSC] (56)

6, where:
€(o (-z; U) + qS 7 (z; U) + 4(') ( ; U) a3 e-

3= 0T) ( 7) ( ) + (57)
(53) J='

This result is of 0(r2) as T - 0
where the potentials 00) (1c; U), j=1,7 have the form
(13) and are the potentials due to the motions and
diffraction effects. We assume that they are all deter- The upper integration boundary in (49), (50) and
mined by means of a source distribution where a-,) (j;) = (51) is the free surfuce
o*/) (-Z) + rq4J) (-a).

0"= -,e [(iWO(Z:,,0) - U x, Y, - (58)
9

Ai Ulu 1 .1In L f~ itld 1? >' I we neglect Ulie injlUente It follows from the pressure term that we may write:
of the statiunary potential ¢(Z; U) in (53) hence we
approximate (53) by: / pdz -f(iV( -U2)dz (b9)
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We find the following expression for "F: A closer look at (63) and (60) shows that the con-
tribution to T, consists of two parts. The first one,

T = F('), originates from those parts of the cross products

2 {( Rthat behave like R- 112 while the second one, F,2), orig-
-PJ k,00- + 2Tlm(004)I R cos OdO inates from those square terms of the second part of(63) they behave like R-1. We formally write:

+ f,,o J - 0 - +RO;, + (66)

+1(ORO,+Oh~o)Rsin dd (60) We now can write:
F(I)=

and for FPu:pwa ,'
fP =  

'--- R' 2 J F(O)(cos0 + cost)).

2o {ko€€" + 2rIm(4,4,)} R sin OdO • cos {(k (13) cos( - 3) - k, (0))R - S(0)} dO +
4~ L2 f 0 j, -C 

R1/2'j~ 
+w RF(o) [(cos 0 + cos)) cos0(T2 Oo;-01" + 0, 0.) R sin 0+

1oRcos ]dd (61) +(cos2 - sin 2 0)) - sin0 sin]
- (ORO; + 0;,Oo) Rcs0d~dz (1

W cos {(k,(0) cos(0 -10) - k,(0))R - S(O)} dO
and for I:.-

+0(T2) (67)

2w 0 We now apply the method of stationary phase for large
f J R (OROq; + 0;,Oo) dOdz (62) values of R. To do so we have to determine the sta-

4 JOtionary points of the integrands. We determine the

The integration with respect to z needs some ex- point where:
tra attention due to the fact that the exponential be- d
haviour of the incident wave and the radiated or dif- - {kI (13) cos(6 -3) -- k, (0)} = 0 (68)
fracted wave is different, due to the dependence of the

wave number on 6 and 6, respectively see (54). We find two points,

The asteriks in equation (60) denote the complex 6, =,8 + 2r sin3 and 02 =8 1+ 7r + 2r sin)3 (69)

conjugate and The second point gives a zero contribution, where we

=, remark that the last term in (67) is cancelled by the r.
dependent contribution of the last term. It is obvious

gC exp(k, (6)z + iki (9)(x cos/ + y sin/6)) that the other terms give zero contribution due to the
S "p +factor 7r in 02. We use the aaymptotic result:

+F(0)e(0 ) exp {k, (O)z + iki(6)R} (63) 2 1(9) cos {(k, (13) cos(O - 0) -- k, (0))R - S(0)} dO

We formally write (63) as sum of two components: r2[_ 1,/2 1

4=, . +,by (64) Rku (1- 2r cos/6)'/ 2

For the wave number k, (0) we can write neglecting U2  • cos(S(3 + 2r cost)) + 7r/4} (70)
terms in the wave number depending on 6: As mentioned before the second contribution is zero.

k1(0) = k0 (1 + 2r cos0) (65) A critical reader will notice that formally we have to
deal with a non-uniformity due to the fact that we have

T'ie first term is related to the incoming wave field a first order 'uniform' solution. The phase correction
wie the second one escribes the diffraction and ra- is of first order. Hence in our asymptotic result of (70)

we neglect the second order phase correction. The only
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way to do the analysis properly is to use the exact value W
of the wave number in (40) instead of our asymptotic c 6 a W
approximation.

Summarizing we now have: J ' x

FM X

A [] cos(S(,3) + 7r/4)

•F(O3) {cos/0 + cos p+
Fig. 4. Definition of waves and current

-2rcos(2 ) (71)
where A = -- and13" =/3 + 2r sin/3. The calculated steady double body flow using the

A similar analysis can be followed for the sway force Hess and Smith algorithm apply to the situation of a
and leads to the following resuic: tanker under a drift angle of 135 degrees (in principle

the solution can be made applicable to any drift angle
Sa,).

2r] 1/2 The boundary conditions on the mean wetted hull
A cos(S(O') + 7r/4) for the radiation problem have been applied with the

steady perturbation potential set to zero, which thei
.F(O3) {sin#* + sin/3+ results in the well-known expression for the m-terms

of the radiation boundary condition. A more proper
-2Trsin(2/3)} (72) way of handling the radiation boundary condition ac

published by Zhao et al. [10] was not attempted here
The second part of the wave drift force may now due to the difficulty of the splitting the boundary con-

be written as: ditions into linear forward speed dependent boundary

F(2) = conditions.
For the results of computafion for the wave drift

-, /21 F2 (8) {cos 0 - 2r cos(2 0)} dO (73) force on the sphere a comparison was made with results

of computations as was obtained by Noscen et al. 171.
For the sway force this leads to: The panel discretization of the tanker amounted

F(2) = to 238, 720 and 1610 panels in order to check the nu-
merical accuracy of the pressure integration technique.

p 2 2 ( The result of the computation are depicted in Fig. 15.
- u f( ) {sin 0 - 2r sin(2 0)) dO .4) The number of panels for the sphere amounted to 744.

7. Numerical Results To solve the integral equations for the source
strength r (x) and ) (_) large algebraic equations

For the validation of the mathematical model pre- have to be solved.
sented in the previous sections computations have been
performed on a fully loaded 200 kDWT tanker and ahafmersomed sphe e 2In the present solver use is made of a newly devel-half immersed sphere. oped iteration scheme. Details of this new solver for

The description of the tanker can be found in Boundary Integral Equations will be published in the
Huijsmans et al. [12]. The numerical results of the near future. To solve a large system of 1610 unknowns
wave drift forces on the tanker have been validated for the radiated and diffracted modes only required 4
against results of model test experiments. The cal- to 6 iteration steps to gain an accuracy of 10-4 in the
culations for the 200 kDWT tanker are applicable to Euclidian norm. The timing was approximately 28
the situation of a tanker in both head-on current and CPU b ptI wave frrc4 iy ft.r 1610 PUiielb u..

waves as well as the case of the waves and current co- an ETA 10P mini supercomputer from ETA systems.
paradel under 135 degrees, as displayed in the next The analysis of the results of the wave drift forces us-
figure. ing the pressure distribution integration, as shown in

384



Drift force on sphere
Figs. 9 to 12 leads to the observation that the numer- so Pressure integrtion

ical accuracy of the pressure distribution integration Sv Vo.o tn-1
greatly depends on the panel discretization. Detailed
results are presented in Table 1 for the frequencies of C4

0.5 and 0.7 rad/s. h

Table 1 ._0
,,2C

F, for 180 deg. waves and current _ _

W 238 1720 11610
0.5 15.5 17.3 14.9

go 0.25 0.5 0.75 too
0 11.2 13 51 Frequency in rod s-1

7.1 Half Immersed Sphere Fig. 6. Forward speed wave drift forces

The results of computation for the sphere are pre-
sented for the mean wave drift force. The mean drift
force on the sphere has been calculated in two ways, Drift force on sphere
i.e. one describing the correct influence of the steady so Influence stationary potential

perturbation potential and the other is using the slen-
derness approximation in which the influence of the
steady perturbation potential has been neglected. N4h

The region of integration over the free surface was E

from = R to r = 3R, where R is the radius of the
sphere. The number of free surface panels amounted
to 810 panels. x 20 -f 0.0

p~.ttot o 0 0

These results are presented in the following Figs. 5 t no 00

to 7. b8o o.5 oso 0.75 too
Frequency in rod s-1

Drift force on sphere
V -= 0.0 r S-1 Fig. 7. Influence of steady potential

I Drift force on sphere
E V 1.0 m s-1

, 60

LtL

Fi,8 owr pedrslsEse

3__5

Fig. 5. Zero speed wave drift forces

Frequency in rod s-i

Fig. 8. Forward speed results Nossen
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In Fig. 8 the results of computation are presented For the forward speed case this was also done, how-
for Fn = 0.032 against other results as obtained by ever now the equations (71) and (73) have to be used
Nossen et al. [7). for the momentum flux analysis.

The observed difference between the results of One can see from Figs. 5 to 7 that the calculations
Nossun and ours is due to the fact that the results using the momentum balance are not so much influ-
of Nossen apply to a fixed cylinler in waves whereas enced by the panel discretization. This can be made
oair rt ults apply to the free floating cese. In the range plausable by observing that the expression for the wave
where diffraction dominates, the results tend to be the drift forces from the momentum balance only simple
same. source distribution integration over the mean wetted

hull is required. It is our opinion that due to the in-Tihe zero speed wave drift forces on the sphere are tegration of higher order derivatives in the pressure

calculated in two ways; i.e. one using a pressure dis- distribution for the forward speed case the results are

tribution integration 'echnique and the other one uses dributin for the fway the rgults re

the momentum flux analysis (Maruo [231). more sensitive for the way the integration is performed.
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Fig. 9. Mean surge drift force Fig. 11. Mean surge drift force
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7.2 Tanker The resulting drift forces are calculated in two ways;
i.e. one using the pressure integration technique and

At MARIN a number of tests have been conducted, one using the momentum flux analysis. The results
The test comprise in short regular wave test on a sta- have been presented in Figs. 11 and 12 for the surge
tionary moored 200 kDWT tanker in 82.5 metres of and sway wave drift force respectively. The influence
water depth with waves and current parallel to each of the stationary potential on the wave drift forces has
other. The results of model tests and computations been studied.The results are displayed in Figs. 13 and
for head waves and 2 knots current have been exten- 14. From these results one is tempted to conclude
sively described by Wichers (25] and Huijsmans [21]. that the influence of the stationary potential on the
The results of model tests for the tanker with the waves drift forces in this case is restricted to the sway drift
and current coming from 135 degrees are presented in force results, however, previous observations also in-
Figs. 9 and 12 for the mean surge and sway drift force dicate that the use of a pressure integration for the
respectively. calculation of the wave drift forces with forward speed

are somewhat doubtful, due to the large dependency
on the panel discretization of the body.
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DISCUSSION than the zero speed results due to the fact
by R. Zhao that in the evaluation of the pressure

distribution, gradients of the water %velocity
(1) Discuss about direct pressure integration distribution are required. In pursuing the

method direct pressure integration one has to resort
(2) Discuss about wave drift damping to e.g. higher order 'panel methods to obtain

the required accuracy.
Author's Reply

The question regarding the wave drift
The direct pressure integration method is damping has not been addressed in this paper,

based on the integration of local hydrodynamic however information can easily be obtained
quantities like water velocities and gradients using the results of our paper. At the moment
of pressures over the mean wetted hull. This we only calculated the drift force at two
procedure is demonstrated in our papers speeds, which is in principle enough to obtain
presented at the ONR Conference in 1986, (Al] wave drift damping data. However, if one
and at the UTAM symposium, [A21. wants to obtain reliable results for the wave

drift damping coefficient several more speeds
One of the main problems in using the (also negative speeds) have to be calculated.

direct pressure integration method is based on This will be done in the near future.
the accuracy of the underlying hydrodynamic
data. In the zero speed case there is [Al] R. H. M. Huijsmans, "Wave Drift Forces in
sufficient evidence that this procedure, using Current", 15th ONR Symposium, Berkeley,
3-D diffraction theory results, will lead to 1986.
meaningful results. In the non-zero speed [A2] R. H. M. Huijsmans, "Slowly Varying Wave
case however this evidence is lacking and to Drift Forces in Current", IUTAM
the author's opinion the accuracy of the first Symposium on non-linear water waves,
order results based on 3-D diffraction results Tokyo, 1987.
with forward speed must be even more accurate
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Numerical Prediction of Semi-Submersible-Non-Linear Motions
in Irregular Waves

X. B. Chen and B. Molin
Institut Franqais du Pitrole

Rueil-Mslmaison, France

Abstract studied and some interesting remarks are deduced.

A numerical model to predict non-linear vertical motions Exact second-order loads are obtainedby applying Mo-
of a semi-submersible in regular and irregular waves is presented. lin'sOll (1979) method and using two identities to-transform
Non-linear second-order forces are evaluated by using Molin's Haskind integrals (Chen("o] 1989) for second-order potential con-
method which permits to obtain them without explicitely solving tributions, besides first-order quantities contributions which are
for the second-order potential. Non-linear low frequency motions evaluated straightforwardly after solving the first-order problem.
being large in magnitude, variations of second-order forces with The system damping being a important- factor is composed of

the motion of the body mean position are considered in the time radiation part and viscous part. At low frequencies as the radi-
simulation. As application cases, two floating bodies with small ation damping is negligible, the viscous pFt,presented by linear
waterplane areas are taken into account. Comparisons of calcu- and quadratic model is used in time simulation.
lations with experimental results show that this theory correctly
predicts the low frequency motions. The validation of numerical model is made by comparison

with experiment results. Two floating bodies having low vertical
resonant frequency idealizing characteristic offshore structures
which have large submerged volumes with comparatively small

1. Introduction waterplane areas, are used in experiments undertaken at the Ship
Research Institute of Japan by Molin(11) (1982). Comparisons

The nonlinear behavior of floating offshore structures in of numerical calculations with experimental results -show that
regular and irregular waves is an interesting and important topic this theory predicts correctly- the large low frequency vertical
in ocean engineering. The problem of dynamic interaction of motions.
ocean waves and a floating structure is intrinsically nonlinear.
Even though potential flow is assumed, direct solution to the
three-dimensional problem has not been achieved yet. For small
amplitude waves, the perturbation method is often used to sep- 2. Low Frequency Motions Theory
arate it into first- (linear) and second-order problems. The first-
order problem car, be solved by using a singularity method. The A floating body is assumed to be submitted to-bichro-
second-order problem is quite more complicated. The second- matic waves of amplitudes al, a2 and frequencies wl, W2. It re-
order-problem is important as it yields the second-order loads sponds oscillatorilly with small amplitudes at the frequencies w1
whose frequencies, disjointed from those of the first-order, may and W2 around its mean postion which moves with large am-
be close to the resonant frequencies of the fluid-structure sys- plitude at the low frequency (W1 - W2). As illustrated,by figure
tem. These exciting loads are not very large in magnitt'de but 1, three reference systems are defined: (1):A three-dimensional-
significant amplification may be induced due to the small system Cartesian coordinate system o.z.yo.z fixed in espace with the Z-
damping. axis vertically upwards. (2) System oxyz following the. large 1ow

frequency motion which has its origin at the body gravity center
The large low-frequency motions of floating bodies x- G. and (3) Another coordinate system OXYZ tied to the body

cited by second-order low frequency loads are dealt with in this which coincides With ozyz in, the absence of small high frequency
paper. In recent years, numerous contributions (Newman[0211 motions. The three systems coincide at the initial time.
1974i Pinkster and Huij n (°s-i982, Molin ( ), -183-ctc;) havc
been-published. Although horizontal low-frequency motions for Assuming a-vector i.(t) with six components-of surge,
a moored floating structure are often evaluated and in reason- sway, heave, roll, pitch and yaw which designate the Fix degrees-
able agreement with experiments,,vertical resonant motions have of freedom of the body:
been little studied and poorly -predicted (Pinkster et -Dijk( 5J
1985). A time simulation model based on separation-of mean F.) = (zo), V0(),zoQ), M o(t), Oot, 0(t)]T  (1)
large slow motions of bodies and their -first-order motions by Two small parameters-c and c-are introduced to express this
two time scales is presented. 'Iiantayllou's(016 (1982) theory on vector into two parts:
the horizontal surge, sway and yaw motions is extended, in this
model,- to full six degrees low frequency motions. Specifically the ro.t) = i0 (t) + e .VtO, t/e) (2)

variation of the second-order loads with body mean position-is Where-, a perturbation parameter, is proportional to the ratio
of:wave amplitude- to Wrve le'igth while e represents -theratio

Reference numbe r at end ofpaper between the two time scales of motions: a high frequency io-
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tion with small amplitude around its mean position and a low Assuming the mas-inertia matrix of system and ,added
frequency motion of the body mean position of large amplitude mass-inertia matrix M + m, damping matrix B, restoring ma-
because of low resonant frequencies of the system. (More strictly trix K and exciting low frequency forces F(Fa, t), the motion

equation can be written:
Figure 1 - Reference Systems d

(M + m)Tira(t) +B AF(t) + Ka(t) -(Fo, -t)- (6)

In this equation, the exciting low frequency forces can be
ZO caused by wind, current and waves. For the sake of simplicity,

P~(j?, t) only includes the wave effects. Using Taylor's 'series,
these low frequency forces can be expressed by:

F(EG, t) = F(FoG, t) + [(Fa - Foa)" V f('OG, t) +... (7)

0 - -sOu.By denoting: PoQ) = P(Fo, t) (8)

and
X 0 F0(t) = VF(i %G, t) (9)

noting that FI(t) is a 6 * 6 matrix, the equation (7) can be then
written as:

Si(i'o, t) = 9 0 (t) + F(t) . (i!G - 0 ) +... (10)

Substituting the equation (10) in which the first two terms are
used and the vector Fot, representing the origin position of the

we should take six ratios of tine scales since the six low resonant body, is taken as zero vector into the equation (6) , the latter
frequencies are not the same). can be rewritten as:

It was shown by Triantafyllou 0", in the inviscid, irro- (M+m)-.a()+B.(t)+[K-F±(t)]r(t)= o) (1)

tational and incompressible fluid, that the two potential prob- dt
lems relating these two-scales motions can be separated and that This equation ressembles Mathieu's equation if FI(t) is periodic.
the first-order problem is the same as if no low frequency mo- The solutions to this equation will be discussed in detail for the
tions exist and high frequency first-order forces and motions are cases of regular, bichromatic and irregular waves.
only parametrically dependent on the low frequency motions. We
shall emphasize this 'parametrical' dependence by representing
the low frequency forces as a function of the body mean position. Motion In Regular Waves

The high frequency motions excited by first-order forces A regular wave with an amplitude a and a phasc 8) of
can easily be derived by classical means of using motion transfer frequency w, in the direction of angle 0 with the axis x is repre-
function and those from second-order high frequency excitation sented by the following form:
are of order e2 and negligible. As these high frequency motions
are supposed to be small as compared to the low frequency mo- q/(t) = aco(kzcos0 + kysinO -wt - P)
tions, our efforts are concentrated on the evaluation of the large
mean position motions: R {a - r"") (u)

Fa(t) = [za(t), YaG(t), zaG(t), d(t), O(), ,pG(t)]T (3) with: a = a. e~k(tco e+yhin I)-. (13)

We shall first establish the low frequency motion equation, in
the following, assuming the dependence on the mean position The low frequency forces contain only the steady forces
of the second-order low frequency forces and proceed the time which are function of wave frequency and mean position:
simulation and frequential analyses. The complete second-order
forces are evaluated in the last paragraph of this section. I(, t) = 3,Io + Fdt" FG (14)

in which PdO is the steady forces at the origin position and F1
2.1 Low Frequency Motion Equation their first derivatives with regard to mean position displacement.

They are expressed in complex form:
The complex notations are afterward admitted in follow-

ii.g analytical expressions. For exemple, a real harmonic function Fdo = R -aaP (w,-w) (15)
H(t) of frequency w having an amplitude h and a phaseft is rep- 2

resented by: and:
aa*F2  (16)

= hcos cos(wt)- hsin . sin(wt) where a* is complex conjugate of a, the complex amplitude of
wave at the original point (Xa, Ya) and F (w, -wL) is the trans-

= R {h. C
- fw (4) fer function of the second-order low frequency forces in bichro-

and so: matic wave of frequencies wj and w, (here we impose wJ = w, "

h =hcos,- i. hsinP = h. e-' (5) cw). F21(cj,-wi) is the gradient matrix of f 2o(wj,-wt). Intro-

wberei =, /Tand R{F} designates the real part of the complex ducing, these equations (14-1516)-into (11), we obtained a-new

function P. formula to calculate the mean displacement of the body:
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i Kao= F () = R - {aaF2 j(wj, -W2) 5e (Wj W)9 (28)
1 12 2 The evaluation of the transfer function of second-order low fre-

instead of the classical formula: (17) quency forces will be considered in the next paragraph (2.2). It
is assumed to be known now.

GocfK- . (2aa'i~o(w,-w)I (18) The exact solution to the equation (24) can be obtained by
time simulation method. We integrate this equation, supposing a
starting point of FG(0) = f E(0) = 0, by astantard fourth-order

The formula (17) indicates that mean displacement of a Runge-Kutta method. The motion simulated becomes stable at-
floating body in regular wave is not strictely proportional to the ter some transient periods.
square of the wave amplitude and that it depends also on the
derivative of the steady forces. For example in the case of heave The frequency domain analysis, in hichror.atic wave case,
motion, the vertical steady force and its derivative being usually is possible if the following assumption is admitted:
of the same sign, the mean displacement predicted by (17) may
be much larger than (18) which is classically used. Another in. Ga(t) = Fo + R {Fle- + R {T:-2- - (29)
teresting remark can be obtained by considering the free motion
of the system represented by the equation (11). The natural res- Introducing above equation into the equation (24), each mode of
onant frequency of heave motion, assumed to be decoupled from motion can be approximatively obtained by below identities:
the other degrees of freedom, is given by:

= - (19) EGO = [K - F dI - Fdo (30)
Wit, V (, 3  + M(1)

This shows that the natural frequency in still water is differ-
ent from that in a regular wave. The natural frequency may be = [-M + m)(wI - W2)

2 
- iB(wi - wz) + K - Fdr]-1

smaller when wave amplitude increases and it depends in addi- [ l
tion on wave frequency. In fact, the derivatives of steady forces .a*a2 [20(wt,-W2)+ F21(Wt,-W2)FG 0 (31)
play a role like a supplement (or decrease) of the restoring forces
in the system. i e2 = [-4(M + m)(w -_W2) 2 - i2B(wi - W2) + K - Fdi]-1

Motion In Bichromatic Waves 1 ,

Free surface elevation of bichromatic wave is represented, .2 (F2s(w,-w 2)aG] (32)
at first-order form, as: The formula (30) for mean displacment is the same as (17).

The oscillatory amplitude of frequency (W1 - W2) is determined
17(t) = ft(0, A, t) + rb(O,w2,02,1) by (31). It depends not only on the low frequency forces but

= f{a e- 'wlt} + R (a2. e- iw2} (20) also on the mean displacement (0o) and derivatives of steady
forces (Fdz). Since the second-order forces are proportional tohere a, and a 2 are complex amplitudes of waves including the the square of the wave amplitudes, the amplitude of the low

directional angle 0 and their phases 91 and P2, and corresponding frequency is thought to be the same too. It may not be true be-
frequencies wI and W2. cause the 'supplement' stiffness (FdI) increases with the square

In this bichromatic wave system, the low frequency forces of wave amplitudes. For instance, in case of heave motion, Fdl,
are composed of a steady part and an oscillatory part which has being positive, the motion amplitude does not increase paraboli-
a difference frequency (WI - W2): cally as wave amplitude increases. The motion amplitude should

be less than proportional to wave amplitude square when the
F(Vc, t) = Pd(G) + 9 2(j' 0 , t) (21) difference frequency is larger than that of resonance and more

when the difference frequency is smaller. We keep the double dif-
and they are written by: ference frequency 2(wi -W2) term because this frequency may be

Pd(VG) = Vd° + Fd1 • VC (22) closer to the resonant frequency of the system when the different
frequency (wI - w2) is much lower.

P2(rE,t) = 920(t) + P21(") . (23)
Motion In Irregular Waves

Introducing above identities into the equation (11), we

have the motion equation as: The unidirectional irregular wave is often represented by

2 d a finite series of elementary Airy components whose amplitudes
(M + m)-LrG(t) + BIrG(t) + [K - Fd1 - F2 1(L)]FG(t) are deduced from the wave power spectrum Sqq(w):

= d0 + 920(t) (24) N
in hic th lo frquecy ~i~+ ~e~i (2)q(t) = Eaj cos(kjz cos 0+ kjysinO -wi - I3j) (33)

in which the low frequency forces can be rewritten in complex ( =3
form including their transfer functions:-d = 1 .eF~ W (25) and:

Pdo=O{ iaaP2o(w ,-w)+o2a2o(2,-2) 22(25) a:j /2S()6j (34)

where 0 is the wave direction angle. Phase angles 13j (j = 1, 2, -,
FdI 

= 
R1.alalF 2l(wl,-wl)+ a2a2F21(w2,-w2) (26) N) are determined at random between (0, 2x) and bwj is the jth

discretization step of power spectrum frequency width. If we use
the complex presentation, the wave system is rewitten.by:

{3} (27)
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tegration over the average surface instead of instantaneous sur-
11(t) f N aj. 1WjJ (35) face (supposing a given mean position). These forces.consistingE =of four terms are presentedby:

with: 2~~jw) 1, )(~.-f~l
a1= (36) +pf'j.v~ .V#j( ) r.MNS

If all discretization steps &j(j = 1,..., N) are equal (=

bw) and the largest low frequency considered w" is: J j-
w, < n. ow n < N (37) 2 o

we can then express the second-order steady part and the oscil- + -(R, • Pint + It; t91) (43)
latory part of the low frequency forces by following simple and +
double summation forms: where p is water density and 9 is the acceleration due to gravity.

The indices j and I represent the first-order quantities corre-
I sponding the wave frequencies wj and wl and the sign * des-

'fo =R (38) ignates the conjugate complex. N is the general normal vector
=1 of body surface towards the fluid. The first contribution is an
IV integral of relative water elevation (diffeence of water elva-

R a( tion q and vertical displacement 4) on the average waterline ro.
= jaJF2(uj,-wJ)(39) The second contribution is the integral of pressure due to the

= fluid quadratic velocity (4(*) being first-order velocity potential).
The third one comes from the corrective term of the first-order

Sn ' , pressure on the average surface instead of inbtantanous surface
f2e(t) --81 a oP w, ) e- " )- (MoM being translation of one point Mo on body surfaem) andt j J..t+O J ~ the tburth one is a correction of first-order inertia forces ON due

(40) to the first-order rotations IL

F ) , ).- .All these contributions can be evaluated directely once
Q L1  j a 5 the first-order problem is olved. In fact, the first-order-veloc-

ity potential obtained by % singularity method is used to have
the first-order excitation forces and motions by mechanicafequa-

As we sue the above expreioas of oscillatory part of low tions. A source distribution which is kinematically equivaleit to
frequency forces, two remarks have to he pointed out: one is the body responding in waves can be obtained by considering
that the number N of element wave frequericies should be large first-order motions and used to evaluate first-order .quantities
enough to :epresent correctly irregular waves and to evaluate the (potential and its spatial derivatives on body's surface and-the
low frequency forems at the difference frequencies (wJ. wj.t) for water elevation.on the waterline) that are-needed for. the first
t = 1,.... n and j = I,...,. (N is typically between 100 and part of the second-order forces.
200). Ajother is that the double summations of low frequency
forces at esch tl, ie step need more computing time as the num- The second-order velocity potential 4(2)(z, y, z, 1)' is as-
ber N is large. Prior to doing the simulation by same equation sumed to have incident, diffraction and radiation iart iAn the
(24) as in bichromatic wave case, two special files have to be built same manner as the first-order potential:
up. First file containing the second-order force transfer function
at origin mean position can be obtained by running repeately $(2)(xpz,t)= 81{aja(,4)+ A)+ on)). e" (wr - m ) } (44)
a first-order diffraction-radiation code for a number (in) of fre-
quencies (m may be equal to N/10 or N/5) which cover the in which the incident potential 2) is known:
whole frequency range and successively a second-order code for 2
repeating m(m+l)/2 times. The first- and second-order solutions - -
for other frequencies can then be obtained by an interpolation glki - ktl tanh(Ikj - kdH) - (iq. wt)'
method. Second file containing the derivatives of second-order cosh. i - ktlz + Y)
force transfer function can be achieved by etablihing two files (c4l5k) ktyI)
at-two or three different mean positions and using the fifite dif- cosh(Ik, - kll)
ference method. where:

A- = WJ -1 kjkt [1+-tanh(k1 ll) tanh(kttl)]
2.2 Low Frequenc. Forces Wiwi

The low frequency forces, obtaincd -by Integrating the 1 - 1 (16)
second-order hydrodynamic presue on the body wetted surface, 2 Lwj coW (kH) wi chV(keI)J
coisist of one part wfhich depends only on first-order quantities in which H is the waterdepth.
(potential, velocity and motions etc.) and another part w hich
depends on the second-order velocity potential. They can then The second-order radiation potential is-supposedo sat-
be written as: isfy the same equations as the first-order radiation potential. the

only difference coiresponds to low frequency (WJ - wi) insteadi
P2(WJI -tat) = P21(W1 , -W4) + P22(Wi, -o) (42) of the frequencies w'. or jt. The solution by using tLbe same sin-

The first part forces Fzt(j, -wt) are- ormulated by integrai- gularity method-givys u the potential damping and added mas-
ing the hydrodynamic pressure which corresponds to quadratic for one low freqtuCncy.
terms in Bernoulli's equation and corrective terms due to the in All nonhomogeneous properties of tihe seond-order prob-
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lem are tied with the second-order diffraction potential which integral in fluid domain including the Laplace operator on :0 )
satisfies not only Laplace's equation, the sea bed condition equa- and 01 into boundary surface integrals. By nalysing nsymptC ie
tion and a proper radiation condition but tr. the nonhomoge- expressions of the velocity potentials and using the stationary
neous free surface condition and the nonhomogeneous body sur- phase theorem for the surface integral at infinity, Molinri" (1979)
face condition. These two latter conditions are written as: has shown that the following identity is true:

t)0)2) + gjo(2) ,(2 (47) J-)*N dS +I [(2 PdS

on the free surface and: () t",dS (54)

0 (2) 0 0(2) + (2) =oF, D O-n. I- c (48) where:

on the body surface. 1 1,2,...,6

(2) a (2) Introducing this identity in the expression (51), we have the corn-The nonhomogeneous ter,as nLD and a( being functions plete formula for the Ith component of the low frequency forces:
of the first-order potentials are expressed by:

a(2) = i(j -Ow ,(V1  )  . + Volt)- VO(l)) F221(Wj,-WI) = Fr2u(,,-W,) +F2d(Wj,-Wt) + F2, 1(Wj,-w)
' " t t" 'Jj (55)

_i__ O) 0.). 02-0,
2J 1,,10) + O('. .) in which we name the incident integral:29 1O( O 1 .2P

(-9 (+) 02 
2 ").J I) =,- -itej -WI)p (56)

+i-t ). 2 0 .(l) 02 Odl) the Itaskind integral on the body surface:
F9 tJ --(i-0:2 )P Ff2I I [a ] (2 ,dS (57)

+2 Cl F , -W i - W(t) (57)

0 j + gD Ijn 0 (49) and the Ha.skind integral on the free surface:

and: ad: (2) 
F2 1 , -W=i(wsW) J (L2,)DIdS (58)a "V~ + dV JOJ* j l =o

W$ iiWith these three integrals including only terms function of the
-(AiMj -V)V¢'z)i o - (MM • V)VOOi 0  (50) first-order velocity potential, the complete low frequency forces

in which 0( ) is the first-order incident potential and 0(l) is the may be evaluated without explicitely knowing the second-order
P " velocity potential which is more difficult to have, on condition

sum of the first-order diffraction and radiation potentials. is is t hat the difficulty of the double derivatives of the first-order ve-
the velocity of the point Mo on the body surface. locity potential can be overcome.

It is important to note in the above expressions the dou- An identity deduced from Stokes' theorem can be derived
ble spatial derivatives of the first-order velocity potential. For by making the vectorial analysis:
a three dimensional body of arbitrary form, because of the sin-
gularity of Green function as shown by (09], the double spatial F- Ft= A
derivatives near the body surface are not possible to be evaluated I)V#. ffo dS
accurately by using a numerical method. The nonhomogeneous
terms can not be then obtained directely. But we are going to - [(V, -V)d-+ VO -di.(d)]. *o dS (59)
try to calculate the integrals containing these terms. Rs

written By using this identity into (57) and supposing -,.MM, the
The second part of the low frequency forces are wrHaskind integral on the body surface is transformed into integrals

by: which don't contain any more the double spatial derivatives and

F2 (j, -WL) --i(w - L)p f f~,(0(2) + 0))NdS (51) can so be evaluated accurately.
J =ISCO IIn order to evaluate the Haskind integral on the free sur-

The contribution of the incident potential is easily obtained as face, we divide the unlimited free surface into two regions: an in-
the second.order incident potential is known (see equation 45). ner region S,,, which is limited by the waterline and a boundary
In order to evaluate the contribution of the diffraction potential, circle line some distance far away from the body and an outer
additional potentials 01i (1 = 1,-.. ,6) are introduced. These ad- region S..g which is the surface extending from the boundary
ditional potentials satisfy Laplace's equation, the wea bed and the circle line to infinity.
radiation conditions and the two following boundary conditions: In the inner region, since the Haskind integral contains

1 ,. 1
2,.. 1 a = 0 (5,) the donhle snatial derivative of the first-order potential, another

O" identity derived from Riemann's theorem is developped as:
0n =1 on S" (53) j G- -LOdS=- G [ nv +O - n] dr

these equations being the same as in the first-order radiation + f [-G.0 .+- . S(., FG-10+0G 0 d$ (60)
problem, these additional potentials are obtained in the same J J L DX x OY
way. Using this identity, the Haskind integral on the inner region can

be transfomed into integrals in which double derivative does not
Green's second identity ir applied to transform the volume appear any more and may- be so calculated numerically by using
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classical quadratic method. Table 1 - Characteristics of the Models

In the outer region, the asymptotical form of the non- Designation Model No.1 Model No.2
homogeneous term ar , in the cylindrical reference (r,O,z), is R1 Neck diameter 11.5 cm 21.6 cm
derived by using the dcveloppment of Kochin's function in the HI Neck height 20.0 cm 20.0 cm
presentation of the first-order velocity potential. This asymptotic R2 Bottle diameter 63.0 cm 63.0 cm
expression of a( as form of a product of Fourier series in 0 and H2 Bottle height 70.0 cm 70.0 cm
oscillatory radial functions in r and the similar expression for 0 M Displacement 220.3 Kg 225.5 Kg
are introduced into the Haskind integral. This integral is then Cg Center of gravity 33.8 cm 34.7 cm
separated into a product of two line integrals: first integral in 0 Cb Center of body 35A cm 36.4 cm,
which is not difficult to be calculated by applying the orthogo- Kz Vertical Stiffness 113.3 N/m 370.6 N/m
nality proporties of Fourier series product and another integral
in the radial distance r which is easily obtained by analytical
resultsThe test set-up is dscrbed on figure 2. The mooring sys-

tem was constituted by two linear springs. The ballasts of the
The value of the Haskind integral on the free surface is models were adjusted to ensure large natural periods in roll and

the sum of integral results on the inner region and on the outer pitch. In all tests it appeared that the pitch response was neg-
region. This value varies oscillatorily with the radial distance ligibly small. The heave motion of the models was measured by
of the boundary circle line which separates the inner and outer a potentiometer. It vs checked during the tests that the surge
regions. As shown in [10], the oscillatory value converges much motion was always small enough to ensure an accutate measure-
more rapidly than that without the outer region integral and ment.
the final result is very close to the average value of oscillation.
In a test case of a vertical cylinder (height/radius=5.) for which Figure 2 -- Test set-up
we have analytical results, the inner region is discretized by 36
points in circumference direction and 10 points in radial direction

A goMd agreement between numerical and analytical results is
obtainc w}hen the radial distance is more than three A€. The
average valuu of i||tegral results for the radial distances between
4,A€ and 5,A. is taken as the final result of the hlaskind integral.
The ecror between the numerical result and tihe analytical result
ic less than five per cent. Ri

The computing time for the low frequency forces is dom- -

Aod byreth beton futerialkind ngalyonthea fresur- isav

face, since other contributions are just in form of simple addi-
tions of the first-order quantities which are obtained once he bwH

first-order problem is solved completely. In the same case of a
vertical cylinder whose one quarter surface is divided into 108
panels, the first-order solution costs about 3 mi utes on Vax8700 is2 dH
computer while the free surface Haskind integral is obtained after
10 minutes calculus for one frequency. When tihe system responds 112

to only sonic frequencies, it is necessary to evaluate completely
the low frequency forces for these frequencies. Hut it is also rea- /- 7. , / , , .' / ' / , / / ' T'
sonable, when the frequencies considered are numerous, to take
the approximation which consists of neglecting purely and sim- Tests in regular waves were first undertaken for the pur-
ply the free surface integral. This economical approximation is pose to evaluate the vertical steady force. The mean vertical dis-
adequate when the diffraction effects are weak. For instance, the placements were measured for wave periods ranging from 0.6 to
submersible or semi-submersible with small waterplane areas are 2.0 seconds and double wave amplitudes of 4. and 6. centimeters.
the cases where the approximation can be used. This is shown by
Matsuilas) who considered the ITTC semi-submersible platform. Extinction tests were made in still water and in regular
The work in (09] has the same conclusion, waves, in order to estimate the heave damping, which is an im-

portant quantity in the evaluation of low frequency motion. In
this series of tests, the model was given a vertical downward dis-
placement (10 to 20 cm) and released. The heave damping was

3. Model Test Presentation classically estimated from the record of the decaying motion. The

The model tests were carried out at Lte Ocean Basin of tests showed that the damping increases under the effect of wave

the Ship Research Institute of Japan, while the second author superimposition. Another feature observed in regular waves, is

was on sabbatical leave in 1981-1982. Two bottle-shaped models that the zero down-crossing intervals decreased as the heave mo-

were considered, with different neck diameters. Table 1 presents tion decayed to zero. This variation of natural periods is taken

some characteristics of both models. into accountby the equation (19).

A large proportioii of the tests undertaken were in bichro-
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matic waves. In these experiments, two regular waves of equal 9 minutes for the first-order problem and 30 minutes for the
amplitudes were superimposed. One pulsation was kept constant evaluation of the low frequency forces.
and different beat frequencies were achieved by varying the other.
Another kind of tests was aslo made at constant beat frequency Figure 4 - Convergence with discretisation
and varying wave amplitude. Tests in irregular waves plus cur-
rent were aslo undertaken. 0.5Do

In next section, the tests results and analysis are pre-
sented in the comparison with the numerical predictions. 0.40 -

S0.30
4. Numerical Predictions and Comparisons

For the purpose of the numerical solution to the diffrac- 0.20 -
tion-radiation problems that is needed to evaluate the low fre-
quency forces, the body wetted surface is meshed by quadri-
lateral panels. The principle of discretization is that the panels 0.10 *. . . , .. .. ... . -

close to the free surface and near the corners of body surface are 0 400 S00 1200 1600
finer than the others. Figure 3 presents the mesh used in the full Panel Number
numerical calculus. The total number of panels is 880.

Figure 3 - Mesh of the body surface In the regular waves, the second-order steady forces of
model No.1 are evaluated for 16 frequencies from 2 rad./aee. to
14 rad./sec. at three vertical position of the body: the origin po-
sition (neck height H1=20 cm), the higher position (neck height
H1=18 cm) and the lower position (neck height 111=22 cm). The
results are presented by the figure 5 in which the curve (-)
describes the steady forces as a function of the wave frequencies
at the origin position, the curve ( .... -)at the higher position
and the curve (-- - -) at the lower position.

Figure 5 Vertical drift forces at three reference positions

0.40

0.30-

1. 0.20 -

0.10
The numerical accuracy depends directly on the repre-

sentation of the body form, that is, the size of the discretiza-
tion. A mesh giving an accurate solution to the first-order prob- 0.00 -
lem may not be refined enough for the second-order problem. 0.0 3.0 6.0 9.0 12.0 15.0
The convergence with discretisation was so investigated first. Frequency (Hz)
Model No.1 is chosen to evaluate the first-order vertical force
and the second-order steady force in a regular wave of frequency
(w = 6.283 rad./sec.) and the low frequency vertical for-e in
bichromatic waves of frequencies (w, = 7.222 rad./sec. and As the first-order vertical body motions are small, the
W2 = 6.283 rad./aec.). Figure 4 presents the numerical results drift forces dominated by the contribution of the quadratic term
with respect to the panel number in which the first-order verti- of the fluid velocity (see the equation 43) are always positive
cal force F 5(w) with the markers ('f---) is adimensionalized upward because the fluid motion is larger above the model than
by pgLLa (here the reference length L = 1 in), the second- underneath. For the same reason the drift forces are higher at
order steady force F21 (w,-w) with the markers (-W- ) by the higher position and lower it the lower position, as compared
(pgLaa/2) and the low frequency force F2,(wa, -W2) with the to the origin position, and they have a peak for a frequency equal
markers (- ) by (pgLaja2). to about 6.5 rad./sec.

From the figure 4 we see that the first-order forces have Figure 6 presents the derivatives of vertical drift forces
converged with 100 panels, while the second-order forces need with respect to the mean vertical position. These derivatives are
over 800 panels. If the criterion of panel size for the first-order obtained by finite differences. The adimenionalized vertical drift
is one sixth of wave length, that of the second-order should be forces 'Fdo. at the origin mean position are drawn by the curve
one fifteenth of the average wave length (about 800 panels on (- ) and their first derivatives Fdj, by the curve ( - . -)
the whole surface). In order to achieve a good accuracy for the which are adimer.sionaized by (pgLaa/2 * L/3cm). The second
low frequency forces, we have then chosen the discretisation of derivatives adimenusionalized by (pgLaa/2 * 2L2/Ocm 2) are also
880 panels presented by the figure 3. The computer times on prisented by the curve
the series of Vax8000 computer, for one frequency, are about
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part (see equation 42) shown in the middle, the second-order in-
Figure 6 - Derivatives of the vertical drift forces cident contribution and the Haskind integral on the body surface

0.40 -shown underneath, and the contribution of the Ilaskind integral
over the free surface (bottom curve).

0.30 Figure 8 - Low frequency forces
U)

O 0.60-
020 -F2

U
0.10- po . 0.40

"0 F21
0.00 - - .2" -2

00 3.0 6.0 9.0 12.0 15.0 022c

Frequency (Hz)
F2s

0.00 * I '

The derivatives shown by the figure have similar shapes (a 0.50 0.75 1.00 1.25 1.50

peak for a frequency equal to 6.5 rad./aec.) as the drift forces at Low Frequency (Hz)

the origin position. The values of the first derivatives are smaller
than those of the drift forces and the second derivatives are much
smaller than the first derivatives (with the adimensionalizations The second-order low frequency forces are dominated by
given above). So it is legitimate to use only the first term in the the first part. But it is not correct to take only this part as an ap-
Taylor series of the steady forces (see the equation 7). proximation of the low frequency forces because the contribution

of second-order potential (set-down effect) is important and in-
Using the vertical drift forces and their first derivatives creases with the difference frequency. Nevertheless the contribu-

evaluated numerically, the vertical mean displacements of the tion of the Haskind free surface integral is very small as compared
model in regular waves are obtained by the equation (24). Figure to the other contributions. The approximation which consists in
7 presents this result as the curve (- ) and the comparison neglecting this small but expensive contribution is justified.
with the model tests urOrtaken at the Ship Research Institute
of Japan (markers w w w ) and with tihe results calculated by The steady forces are evaluated as the sum of the steady
the classical metnod of the equation (18) (the curve - --- ). forces in two regular waves of two different frequencies. The first

derivatives of the low frequency forces and the steady forces are

Figure 7 - Vertical mean displacements obtained by the same procedure as those of the steady forces in
regular waves, applying the finite difference method to I lie results
at three different mean positions. The obtained low frequency

0.20 - forces and the steady forces and their first derivatives are used
in equation (24) for the motion simulation. Figure 9,presents
one of the bichromatic wave which was used in the model tests

0.15 m9 (wi = 6.756 rad./aec. and W2 = 5.712 rad./ec.) with a beat
C1 U amplitude equal to 4 cm (al = a2 = 2cm). Time low frequency

% motion cimulation is shown on figure 10.
0.10 1

o In the equation (17), the added mass is taken as time nu-

0.05 merical result at the frequency equal to 1.044 rad./see.-and the
linear heave damping is derived from the extinction tests. The
simulation is started at an initial point such that the displace-

0.00 . ment and the velocity are zero. The simulated motion is stable

00 3.0 6.0 9.0 12.0 15.0 after less than ten periods. The low frequency motion ampli-

Frequency (Hz) tude and the mean displacement are measured from the stable
simulation.

In the same bichromatic wave, the simulations are worked

The vertical mean displacements are adimensionalized by out for double beat amplitudes from 2 cm to 8 cm. The results

the square of the wave amplitude. The comparison from the fig- are shown by the curve (- ) in figure 11. The markers (a a N)

ure 7 shows a good agreement between the experiments and the are the experimental points and the curve ( ---- ) designates the

numerical predictions. But the classical method underestimates classical calculus without the first derivatives of the second-order

the vertical mean displacement. low frequency forccG.

In the bichromatic waves tests for model No.2, the second According to the frequency domain analysis in the above
wave frequency W2 = 5.712 rad./sec. is kept constant while the section 2, the amplitude curve of classical method is parabolic
first frequency wj varies from 6.283 rad./sec. to 7.140 rad./sec., because the second-order motions are simply proportional to the
which covers the whole frequency range used in the model tests. square of the wave amplitude. But the motion simulation which
The second-order low frequency forces at the origin mean po- takes account of the-variation of the second-order forces with
sition are presented on figure 8. The top curve describes the respect to the mean position is not the same. When-the beat
amplitude of total low frequency forces which consist of the first frequency is larger than the natural frequency, thIe simulation
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Figure 9 - Bichroinatic wave

0.10

'7 0.05

S0.00

0 0

3 -0.10
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Time (second)

Figure 10 - Low frequency motion

7 0.105 -

-0.05
0.t0

* 0.00 -
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Time (second)

amplitude is less than a square function of the wave amplitude, to the beat frequency. The markers (u a w w) are the points
The difference between the two increases with the wave ampli- of the model tests results. The continuous line (- ) is derived
tude. The comparison shows that the simulation amplitude curve from the motion simulation while the dotted line is obtained by
is much closer to the experimental results than that from using using the classical method.
the classical method.

Figure 12 - Heave amplitude of model No.2
Figure 11 H- eave amplitude as a function of wave amplitude

15.0
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The whole low frequency motions are obtained for the The heave amplitu'Jl of the motion simulation is in good

frequency range of (lie resonance by the same way. The figure 12 agreement with the experimental results. The classical methodfreqencythe rneul of the esoance byhee samp e wih greunderestimates the heave motion for frequencies lower than that
presents the results of the double heave amplitude with respect of resonance while it over-estimates the heave mtion at larger
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frequencies. Moreover the motion simulation predicts correctly surface can be negligible.
the resonant frequency of the system. A simulation model for-the prediction-of zow-frequency

For model No.1 in bichromatic waves, the numerical com- motions taking account. of the variation of the second-order low

putations are cahied out for frequencies wj varying from 6.347 frequency forces with regard to the mean position has been pre-

rad./sec. to '.22J rad./sec. and fixed W2 = 6.283 rsd./sec. The sented. Even though satisfactory comparisons -with the-model

double beat s,'nplitude is 5.7 cm (al = a2 = 2.85 cm). Same pro- tests results are obtained for the heave motions in bichromatic

cedures are used so for the model No.2. The results are presented waves, the system damping 'for low frequency motion is needed

on figure 13. for further investigations.

Figure 13 - Heave amplitude of model No.1
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5. Conclusions

Using the Haskind integral relations, the second-order
low frequency forces can be completely evaluated by the aid of
two transformation identitiets, without explicitely solving for the
second-order potential. The numerical results show that for float-
ing semi-submersible bodies, the Haskind integral on the free
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DISCUSSION figures in the paper are incorrectly labeled.
by R. H. Huijsmans The low frequencies on the horizontal axes are

not expressed in Hertz but in radian per
I like to congratulate the authors with second (as it is written in the text). We

their fine paper and their treatment of the apologize for that error.
mean position dependency of the second order
forces, which resembles the way the wavedrift
damping concept has been introduced. DISCUSSION

by R. Eatock Taylor
I have a question regarding the low-

frequency drift forces depending on the second It appears that the second order
order potential F22. In usin; Lighthill's correction due to the body motions involves
transformation to the Haskind integral we the large low frequency motions (eq.7) and the
showed (All that the simplified analysis of small wave frequency motions (eq.43). This
this integral as was proposed by Pinkster [A2] presumably results from the two time scale
was valid for a wide frequency range. This approach, although the details are not given.
simplified analysis has the benefit of small Is this consistent with including terms from
computational efforts. Would the authors the second order potential for the low
comment on this? frequency forces? My memory of

Triantafyllou's argument is that the
A next question concerns the Fig.8 of your corresponding forces axe of third order,

paper. It seems to me that for practical because of the small parameter which results
irregular waves notably JONSWAP type wave from taking the derivative of the potential
spectra, these only exists a small frequency with respect to the slow time (i.e., the
band where the envelope spectrum has some factor ( Wj-(L)].
significance. Therefore larger difference
frequencies need not to be regarded This leads to a second question. The
extensively. Can the authors comment on this. expression for the second order incident

potential given in eq.45 does not appear to be
(Al) A. Benschop, A.J. Hermans, R.H.M. valid at very small difference frequencies. I

Huijsmans, "Second order diffraction suggested this at the Water Waves Workshop in
forces on a ship in irregular waves", Norway earlier this year, and I would like to
Applied Ocean Research, 9, 1987. ask the authors whether their formulation

(A21 J.A. Pinkster, "The low frequency leads to a discontinuity in the vertical force
excitation forces on ships", PhD Thesis, as WjW*L ; i.e. do they reach the regular
University Delft, 1980. wave result in the limit?

Author's Reply Author's Reply

1. The contribution of the second-order We agree that our method can be rigorously
diffraction potential to the second-order justified only in the case when the time scale
loads consists of two Haskind integrals: one of the low frequency motion is very long
on the free surface that involves the second- compared to the wave motion time scale.
order correction to the free surface equation, Obviously this is not the case for the
the other over the hull that involves the vertical motion of more traditional semi-
second-order correction of the body surface submersible platform, but still we contend
equation. For difference frequency problems that variation of the low frequency exciting
it is generally accepted that the free-surface forces with the low frequency vertical motion
integral is small, which has been confirmed should be account for, just as the low
both by the discusser's results (All and by frequency horizontal velocity affects the low
ours. However, if the body is allowed to frequency horizontal loads.
respond to waves, the body surface integral is
not small, egen for the difference frequency The discrepancy between the vertical drift
case. Thus Pinkstar's approximate inethodi force and the Wj--63L l1nit of difference
which only takes account of the second-order frequency vertical force had already been
incident potential on the body surface, may noted in (9). In the present case it does not
not be valid. appear as our numerical model is restricted to

2. We are thankful to the discusser that the infinite water depth case.
this second comment has made us aware that all
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DISCUSSION success however may have been partially due to
by R. Zhao the fact that the diffraction-radiation

problem was solved with a fluid finite
(1) Discuss about vertical drift force by elements technique, which allows for an

using direct pressure integration or based on accurate evaluation of the fluid particle
momentum and energy relations, velocities.

Author's Reply [A3] B. Molin and J. P. Hairault, "On Second-
Order Motion and Vertical Drift

In an earlier paper(A31 of the author Forces for Three-Dimensional Bodies in
computed the vertical drift forces on the same Regular Waves", Proc. Int. Workshop on
models, using both the momentum method and the Ship and Platform Motions, Berkeley, 1983.
direct pressure integral method. Numerical
results showed excellent agreements. This
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ABSTRACT

A finite-element method is presented for solving a nonlin- numerical schemes. For example, two-dimensional problem

ear free surface flow problem for a ship moving in a towing was treated by Washizu et al. (1977), Hess (1977), Korving

tank. This problem is formulated as an initial/boundary & Hermans (1977), Salvesen & von Kerczek (1978), Yen,

value problem governed by Laplace's equation. The varia- Lee & Akai (1977) and Mori & Shin (1988). Recently, a three

tional functional used in the present paper is basically sim- dimensional nonlinear problem is treated by Dommermuth
ilar to the variational functional given by Luke (1967). & Yue (1988).

In the numerical precedure, the variational problem is There is another line of investigations on the nonlinear
reduced to a set of nonlinear ordinary differential equation free surface flow problem based on the shallow water approx-
where the unknown functions appear as the first deriva- imation which results in the Korteweg-de Vries, Boussinesq
tives with respect to time. In this numerical procedure, the and Kadomtsev-Petviashivili equations and Green-Naghdi
governing equation, i.e., Laplace's equation, is treated as a formulation. Many references along this approach can be
constraint to the ordinary differential equation. In solving found in Choi & Mei (1989). To name few, Choi & Mei
this problem, we employed the lumping and the upwinding (1989), Ertekin, Webster & Wehausen (1984,1986) treated
schemes to maintain the numerical stability in the integra- three-dimensional problems.
tion with respect to time. To illustrate this method, a simple
wedge-shape ship stretched to the bottom is treated. Com- In the present paper, we initially planned to investigate

putations are made for the range of depth Froude number, two different computational methods, i.e., the finite-element

Fh = 0.7 - 1.1. The computed results show a good agree- method and the fundamental singularity-distribution method

ment with the previous results obtained by other methods. for a three dimensional nonlinear problem. However, the

Even though the present computations are made mainly in progress along the second approach is not quite satisfactory

the neighborhood of Fh = 1, this method can be applied to at this time. Thus we describe only the application of a

general Froude number. finite element method in this paper. One may find the ap-
plication of fundamental source distribution method for a
sloshing problem in three dimensional rectangular tank in

1 Introduction Kim (1989). To illustrate the present numerical method,
computations are made for a wedge-shape ship extended
from the bottom to the free surface. Main computational uf-

A free surface flow of an inviscid, incompressible fluid forts are made for the critical Froude number, i.e., F, = 1.0,
past a ship moving with a constant velocity in a towing tank just because of les computation time compared to the small
is described by an initial/ boundary value problem governed depth Froude numbers. To treat the case of small Froude
by Laplace's equation with a free surface as a part of solu- number, one simply has to take more finite elements. The
tion. computed results show two dimensional solitons periodically

generated in the upstream and complicated three dimen-
In the past, the problems of this type were generally sional waves in the downstream. The comparisons show a

treated after the boundary condition on the free surface was good agreement with the previous results.
linearized. Recently, however, there are growing interests in
treating the nonlinear free surface flow problems by various
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To put our formulations in a scale-indepenent form we

riondimensionalize all physical variables by h, ph" and2 Mathematical Formulation
for length, mass and time scales, respectively. With some
abusement of notations we can re-write the above governing

We adopt a moving coordinate in this paper. Let Oxyz equation and boundary conditions as
be a coordinate system with Oz opposing the direction of
gravity and z = 0 coincides the undisturbed free surface.
The origin 0 is placed inside the body which moves with V2(z, V Zt) 0 in D (0)
velocity U in the negative x-direction. We assume that the
fluid is inviscid and incompressible and it's motion is irro- On = -Fhns on So (II)
tational such that the velocity field of the fluid t can be 1
defined as -Fh . + -On on SF (12)

na

iz.(x, () = - O, - - P on S (13)

where 0 is the velocity potential and satisfies the Laplace - 0 on z -1 (14)
equation On = 0 on V- =±B (15)

where Fh = 0 is the depth Froude number and all vari-
,, z, t) --0 (2) ables are redefined as nondimensionalized ones.

in fluid domain D and the boundary condition

On = -Unz (3) 3 Method of Solution
on the body surface So where ,i = (nz, ny, ns) denotes the
outward unit normal vector on the boundaries. 3.1 Variational formulation

If the free surface is represented by z = c(x, V, t) the kine- For the convenience of the formulation we start with a
matic and dynamic boundary conditions on the free surface homogeneous problem; Fh = 0 and all boundaries except
SP can be given as free surface are rigid walls. Then we introduce a variational

form of the above problem based on a funtional J and a

= +1 .Lagrangian L defined as

n,= -U .+- (4)

= () 1 J Ldt (16)
2p

where g and p denote the gravity constant and the density L = A. qkt dS (17)
of fluid and p = p(z, y, t) is taken zero when the pressure
distribution is absent. -/ adS- ifff V ,dV

By assuming that the fluid is initially at rest, the initial
condition may be given as where §r is the projection of Sp on Ozy plane and t* is the

final time.
q= 1=0 att=0 (6)

Taking the variations on J, first with respect to 8 , the
and the resulting radiation condition is given as variation on , denoting 6J, and with respect to 68;, denot-ing 8J#, respectively, we obtain

-* 0 as z+Y 2 
-_, 0. (7)

It should be noted that a modified radiation condition was f oP" [f -
treated in the computations for the downstream boundary. fJ = dt (#8st--6 )d$

For the fluid domain of finite depth h with the side walls -. f ivf 2 8 d1
at y = ± h the additional boudary conditious are ivEn as 2 I 1-,

= on z-h (8) = fI#8 J.dS- ff I48f,=o dS (18)
On= on y = :hBh. (9) A ,

- If0 [/f.(Ot + !IVOI2 + ) 5 dS]dt
ir 2



not necessary for the present method in applyig to a gen-

and then with respect to 60, eral problem. Then we approximate 0 in N dimensional

function space whose basis is continuous in D and has con-
tinuous derivatives in each element. However, it is allowed

1." [/ to have a finite discontinuity in the normal derivative across
8 = t 60 dS the common boundaries of the adjacent elements. We de-

note the basis of this space by (Ni)i=i,...,N and approximate
IAf V# . V6 5 dV C by the span of the restrictions of (Ni)i=1,...,N on Sp which

D is also continuous and piecewise differentiable on P;

= o f dct - 60(- dS (19)

+fff v2A8 4 ) V O (z,Y,z,t) = O,(t) Ni,(,yZ; ) (20)

+JJ r •(Xy,t) = (t) Mk(Z,Y) . (21)

Here,J= 6J r + 6J4. where

Mk(x,y) = Ni,(z,y, z;),= k= 1,...,Np (22)

and N is the number of nodal points on Sp and ik is the

Equation (18) shows that the stationary condition on nodal number of the basis function Ni of which the node
J for the variation of " recovers the dynamic free surface coincides with that of the free surface node k. Summa-

boundary condition in each time and that the wave elevation tion conventions for the repeated indices are used here. It
at t = 0, t should be specified as the constraints, should be noted that the basis function (Ni)i=1,...,N is de-

Equation (19) shows that the stationary condition on J pendent on the free surface shape - = &(z, y,t) but its re-

for the variation of ) recovers the kinematic condition on stricition on Sp is the function of (z, y) and independent

pand the governing equation. of . This special property of (Mt)k=1,...,N, is due to the

S aisimplicity of the fluid domain D which has no variation in z-

The variational form written above is previously given direction such that we can change the position of the nodal

by Miles (1977) and is slightly different from that given points only in the z-direction in each time step.

by Luke(1967). In the present variational formulation the Once the trial function is approximated by using the
wave elevation " is assumed to be known at t = 0, t*, whereas above basis function, we obtain the Lagrangian L for this
Luke assumed the potential 4) to be known at both initial
and final times additionally. Specifically, the present varia-

tional form is obtained from Luke's form by subtracting the
volume integral of the potential resulted in the process of the
integration by parts with respect to time. The present vari- L = Tk1 (23)

ational functional has more advantage over the original Luke 1 1
variational functional in treating the nonlinear free surface - i - fiPMi-

boundary conditions.

where

3.2 Finite-Element Discretization.

TMi = & MkM1 dS
The original initial/boundary value problem is well de-

fined for 4) of which the admissible solution should be twice Ki = fff -VN i dV (24)
continuously differentiable in space. However, in the above JJJD
variational method, it suffices that the admissible trial func- ffMMdS
tions have the square integrable properties of the function PM = jj Mk dS

4) and only their first derivatives in space. This enables us
to look for an approximate solution in a wider class in the The tensors K,,, Pi are the kinetic and potential energy
variational method. tensor and TM is a tensors obtained from the free surface

A; in uisal finite element analysis we discretize the fluid .ntcgral, which can be. interpreted - a tensor rel ted to

domain into finite number of finite elements. In the present the transfer rate between these two energies. It is of in-

computations, the finite elements are generated such that terest to note that in Eq. (24), TM = PMi. However Tki will

the projections on the horizontal plane, i.e. z=0, is un- be defined differently from this in the computation through
changed while the other coordinate, i.e. the z-axis, is allowed lumping.
to change in time. This simplifies the inesh generation and
the computations considerably. However, this restriction is
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The stationary condition on J f Ldt is equivalent to
the following Euler-Lagrange equation

3.3 Numerical Dispersion Relation.

T Kij Oi, (25) If one solves the above variational formulation numeri-
1 Ki Pk, cally, one encounters the effect of numerical dispersion de-

T i, - -, (26) pending on the specific numerical schemes employed. How-
ever, it is difficult to analyze the numerical dispersion effect

for k = 1,., NF in the above nonlinear three-dimensional problem. There-
fore, we restrict ourselves to a linear problem and test the

Ki = 0, i ik. (27) numerical dispersion in the following. The linear version of
the Eq.'s (25)-(27) is given as

Here Eq. (25) and Eq. (26) are the nonlinear ordinary
differential equation for { a, Ojkk=,...,NP and Eq. (27) is Tk = K j (32)
the algebraic equations for {Oj }jiuj which is the constraints
for the above two equations. Ki# Oj = 0, i 0 k (33)

It can be easily shown that the solution of the above TMi #. = -Pi 1 (34)
discretized problem satisfies the conservation of mass and
total energy, i.e. for k -- 1,...,Np where K. is the linearized kinetic energy

tensor evaluated in the undisturbed fluid domain.

We use the 8-node brick element with linear interpolation
d P( pk ) = 0 (28) along each coordinate. Then by separation of variables the

k,l velocity potential O(z, y, z, t) can be represented as a prod-

d uct of the following three sets of functions:
= 0. (29)

p(,t)= pC ()XiN, 3)
This property of the conservations is independent of the ten- oVV(y , t) = P, t) Yj(Y), j=1,...,N, (36)
sor Tki if it satisfies o(z, t) = poZ(t) Xk(z), k =1,. .,N (37)

where X, (x), Y,(y), Zk(z) are the one dimensional basis func-
ET = E PM. (30) tions and Nz, Ny, N, are numbers of nodal points in x,y and
k k z coordinates, respectively. Taking Fourier transformation

from the time domain to the frequency domain, w, we have

It should be also pointed out that the direct use of (26) the following set of eigen-value problems.
leads to some difficulty in the computations. This difficulty
arises from the first term in the right-hand side which is the
derivative of the kinetic energy tensor with respect to the / - k X z (38)
wave elevation. We have avoided this difficulty by utilizing
the fact that (26) is equivalent to the condition of vanishing - V

of the right-hand side in Eq. (18). In Eq. (18) 65 can be
regarded as test functions on Sp. Then Eq. (26) can be
given as W+, - f (ZZ' + kZZ)dzop = (40)

where o9 = p'(o) and k2 = k.2 + k2. Here 6 = 1 ifi= 1

TMi = - f Mji, g dS and zero otherwise. It is understood that the time depen-
d' dent terms are now functions of frequencies without chang-

i- Jf Mj 0V 1j2 dS (31) ing their notations.
jSP Moreover, we can treat a two-dimensional wave prop-

- PMl . agatine in the x direction without loss of generality since

the linear wave is isotropic in Ozy plane as long as we use

If the integrals in Eq. (26) and (31) arc evalutated ex- the same mesh size in x and y directions. To obtain the

actly, they are equivalent. However, in the present compu- dispersion relation, we assume the type of solution for p' as

tation these integrals are calculated by integral quadrature
rules. Therefore, the conservation of energy may not be
satisfied exactly due to the error caused by the numerical ° 2(z'W) = AeiD"Z (41)
integration. This test result is given in the next section. where A is a constant amplitude and
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On= -, n= 1,2,3,... (42)n 20. ,"

is the discrete wave numbers and Ax is the horizontal mesh
size. By solving Eq. (38) and (40) after substituting Eq. 1 N=1

(41) into Eq. (38), the dispersion relation can be obtained 2

as

k 62 = 6 1-cos(O2Az) (43) 5.- L

AX2 2 + cos(OnAz)

W = W(8,,) (44) L _j
0. A -

,Az V- G 1 FA - ,6 2N 0. 2. .. 8. 0.

= Z ,NF 1 - #INF2

where 
(b)

6 + 2p 2 ± 3V)p/3 (45) Fig. 1 Comparison of numerical and exact dispersion
6 -p 2  (relations.

(a): Eq. (43) and Eq. (48)
F(4) (b): Eq. (44) and Eq. (49)

6)- , (N : No. of elements in vertical direction.

G - 1-_1/6-,6i 1 -- , i=1,2 (47)

Fig. 1 shows that the numerical dispersion relation pre-
with the number of elements in z-direction N = N5 - 1 and dicta higher values for w than the exact values. This inher-

# = cAz with vertical mesh size Az = 1/N. ent property of finite element method based on variational

The well-known exact linear dispersion relation corre- formulation restricts the numerical stability in time-domain

sponding to Eq. (43), (44) is analysis. A simple remedy to correct this inherent draw-
back is the use of the so-called 'lumping' in the tensor Tw

exact n (48) which is originally equal to Pu as in Eq. (24). The lumped

Wexac= ktanhk. (49) tensor Tw2 is given as

The comparisons between these numerical and exact dis-
persion relaions are shown in Fig. 1. It can be shown that Tk = 41 E Am (51)
for Az << 1 with On held fixed m

where 6k. is Kronecker's delta. Then the dispersion relation

k=- = k.24 . (X + O(Az 2)), (50) corrected by this lumping is

which means that w(On) has an error of O(Az 2), however = W(On) (52)
small values of Ay we choose. + cos(nAz)W(#)

3

The order of correction term in Eq. (52) is O(Ax2) which is
same as the error in W(On). For the shortest wave length

1.0 ' - 2Az, W(O,) of the lumped case predict one third of the
SF.E.Id values of W(On) of the unlumped case. This means that

I- with lumping we can take time step three times larger than

Exact the standard finite element method without loss of the or-H 5  der of accuracy in the dispersion relation. The dispersion
correction given in Eq. (51) by the lumping also preserves
the conservation of the mas and energy, sin.;e Eq. (30) is
satisfied when Tk is replaced by Tki defined in Eq. (51).

0.0 0.2 0.4 o0.6 0.8 1( 3.4 Treatment of thue Convective Term.

We assume that a ship is moving with a Froude number
(a) Ph. Then the pure convection terms are added to free sur-face boundary conditions. Since the presence of convection

term due to the introduction of a moving coordinate does
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not change the original dispersion and nonlinearity, we ana- In a similar precedure given in Eq. (41) through Eq.
lyze them separately and then add it to the original problem. (43), the following numerical dispersion relation is obtained
Therefore if suffices to consider a pure convection problem for Fh = :
separately here.

Let a convection problem for f be given as 3 = sin(9Az)

t = -Fh1 . on Y. (53) 3a 1- cos(9.Ax)

The numerical scheme based on a direct weak formulation - Ax 2 +cos(.Ax)"
for the above equation is known to have a considerable phase
error for short waves. To reduce the contamination of the The real and imaginary parts of the above equations are
phase errors in the computational domain caused by the plotted in Fig. 2a and 2b, respectively. In Fig. 2a the real
short wave components, an upwinding scheme by using asym- part of w is compared with the exact relation
metric test function has been successfully employed as in
Hughes & Brooks (1982). The discretized form of Eq. (53) w = 9,. (56)
based on this scheme is obtained as

In Eq. (55) it can be seen that the upwinding procedure
has no effect on the real part of w. The additonal term

T~w a ff ( in the imaginary part due to the upwinding behaves as a
T(MkFh+J.. (Mk+ 2 - Mk)2M dS (54) diffusion term and plays a role of damping mainly to theshort wave component in time. The computations based

where r is the upwinding parameter and has a value between on Eq. (54) are made for several values of a to test the
0 and 1. If o = 0, it is equivalent to the standard Galerkin effect of the numerical damping. The result is given in the
method based on symmetric test functions. If cc = 1, the next section.
right-hand side of equation (54) is equihalent to the forward-
difference formula in finite difference method.

3.5 Treatment of the Radiation Condition.

0In the present computations, the computation domain is
1.0 "taken sufficiently large in the upstream direction so that the

Exact generated solitons travelling upstream does not hit the up-
N stream boundary at the final time of computations. How-

__1 ever, along the downstream radiation boundary, we used a
0.5 . "- .F.E.M simple boundary condition in a moving frame of reference99 F7as

O n = o at X = XR (57)

o.o __ where x = zR is the radiation boundary at downstream.
0.0 0.2 0.4 0.6 o.a 1.0 This can be interpreted as the disturbance convected away

9nA.z with the negative velocity of the moving coordinate. The
present computed flow cases are such that the Froude num-

(a) Peal part ber is around one. Accordingly, the velocity of the moving
6. frame of reference is the critical speed. If there are any

then the speed of the reflected waves will not be larger than
the critical speed. Therefore one may expect the ?eflected

I 4. . wave cannot contaminate the solution in the computation
domain. Strictl, speaking this is true only for a linear prob-
lem. However, even in nonlinear cese the speed of waves at

2. downstrem do not exceed the critical speed in most cases.
This simple numerical treatment of the downstraam radia-
tion boundary condition is tested successfully aad the result

0.1 ~is given in the next section.
0.0 0.2 n 4

A.. 3.6 Time Integration on the Free Surface.

(b) Imaginary part Up to the previous subsections, we presented the numer-

Fig. 2 Numerical dispersion relation due to the con- ical treatments of the governing equations, the convective
vective term for Fh = 1. (Eq. (55)) terms and the radiation cunditions as boundary value prob-

lem. Once we discretize the computation domain by the
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finite elements and obtain the discretized form of matrix
equation after integrating out all the space variables, then 4 Numerical Results and Discussions
the problem is reduced to a set of nonlinear ordinary dif-
ferential equations to solve. In this reduced equations, the The computed model as shown in Fig. 3, is a vertical-
time derivatives are present in the potential and the free sur- sided wedge-shaped ship extended from the free surface to
face elevation, both defined on the free surface. The reduced the bottom of the tank. The length of the wedgeship, the
set of ordinary differential equations becomes the following length of the parallel middle body, and the beam are denoted
form: by L, Lm, and 2b, respectively. The tank has the width of

2B and the mean water-depth of h. The ship is assumed to
move with a constant velocity of -U along the centerline of

T = -FhCk' (58) the tank. In presenting our computed results,al the phys.
+Kki ii + fi, ical quantities are nondimensionalized by h, phs and

TW = -FC' Oi - PM 9 (59) for the length, man, and time, respectively as mentioned

I 2previously.
- i j ~Before we made the computations for the ship in the

for k = 1,..., Np, tank, we tested the case of a two-dimensional free oscillations
Ki i  = -fi, i : iA (60) in a three dimensional rectangular tank as an intial-value

where problem. The results are given in Fig. 4. Here the motion
started from an initial hump on the free surface and let

Ol = (Mk aAz 8a M the time increases. The normalized tank length is 40 and

, 2 ax - - a the final time in nondimensional scale is 60 with the time
step of 0.2. Fig. 4a and 4b show the results of 15 wave

-- -(Mk+ +-*A±Mk)±-Ni dS elevations with time increment of 4. The computed waveJJIL, 28 8' axelevation and the speed of propagation agreed well with the

Dl, ka = ff3 MkM1 ' N, dS (61) approximate theoretical results for the amplitude and speed
= of the wave, which is given in Appendix A.

= f MkvNi.V dS 0.75

fi = FhJJf Ni% dS. 0.0

It should be pointed out that Eq. (60) can be interpreted >V 0.25
as a constraint to Eq. (58) and (59). Equation (60) is
obtained from the boundary value problem for Laplace equa-
tion with an essential condition on free surface and a natural 0.00
condition on the body surface.

In the solution procedure for this problem, the constraint, -o.25F
i.e., Eq. (60) is first solved by the Jacobi conjugate gradient 0o. 20. no. 40.

method. Then the matrix Th is inverted. Here the other (a)
matrices, which are dependent on the free surface shape,
are treated as known from the previous time step. The fi- 0.75
nal form in Eq. (58) and (59) is solved by the fourth-order
Runge Kutta method. 0.50 "'i .. . . . . .

.0Y Bt=6 t t=40

t 0.25-

o.00,
2b -x 2 B

0. O. 20. 30. 40.

y =-B -- (b)

Fig. 3 Sketch of ship model and tank in horizon- Fig. 4 Numerical test of free oscillation in a tank
tal plane view. Here the z-axis is against the started from an initial hump at t=0. Tank
gravity. length = 40, Az = 0.4 and At = 0.2
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Fig. 5 shows the test results of the conservation of the
total energy, E, which is sum of the kinetic energy K and the
potential energy P. The computed case is same as Fig. 4.
Here the energy is normalized by the initial energy. This 0 t t
result shows that the total energy is conserved fairly well = 0.. .
throughout computations. > Tf

4)

1.0

-20. -10. 10. 20.

0.5 (c) a =0.03

0.55

0.0
0. 10. 20. 30. to. 50. 0 0.

--t t
Z0.25

Fig. 5 Numerical test of energy conservation for the
case of Fig. 4.
K: kinetic energy o.00
P : potential energy
E K + P total energy

-0.251
-20. -10. 0. 10, 20.

x

(d) a 0.05

0.50

4- t
00.5

S o.oo . ."- .

>4 0.0

'0.0.00
af

-0.251
-20. -10. 0. 10. 20. -0.25

x - t -20. -10. 0. to. 20,

_.5_ (e) a 0.1

Fig. 6 Numerical test of the effect of upwinding pa-
t t rameter a for the convective term across the

0.25 .radiation boundary. The initial disturbance is
/ \same as in Fig. 4.

4) (a): Computed in the inertial coordinates.
(b)-(e): Computed in the coordinates moving
with velocity -1.

-0.5 - Fig. 6 shows the numerical test of-the effect of the up-x winding parameter, a, for the convective term across the

(b) a 0.01 radiation boundary. The initial disturbance is same as in
Fig. 4. Fig.6a shows the wave profiles first computed from
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the formulation defined in the inertial coordinates and the
results are shifted to -/gt to compare those given in Fig.
6b through Fig. 6e. Fig. 6b through Fig. 6e are obtained
from the results computed in the coordinates moving with Table 1. Amplitude, Speed and generation period of

the velocity of-1 for four values of the upwinding parame- solitons for the blockage coefficient, S=0.1.

ter, a = 0.01, 0.03, 0.05, 0.1. These comparisons show the The values in the parentheses are obtained

dual roles of upwinding on the numerical damping and sta- from Ertekin et al. (1986).

bility. This means that too much upwinding would give too
much numerical damping effect in the numerical results. In
the moderate range of the values of a, the upwinding works U/ /'g A/h C/Vg/K UT,/h
favorably to the stability.

Fig. 7 through Fig.12 are the results for the following 0.7 0.139 1.06 14.6
computation conditions: 0.8 0.240 1.10 19.4

0.9 0.375 1.16 24.1
Wedge model: L=8, b=0.4, Lm=4 (0.5101) (1.224) (20.0)

Computation Domain: x=(-30,30), 1.0 0.553 1.24 30.0
y=(-4,0) (Symmetry is used) (0.6248) (1.280) (29.6)

Finite Element Meshes: 150 x 10 x I elements 1.05* 0.677 1.27 34.7
Upwinding Parameter: a= 0.05 1.10 0.806 1.32 39.1

Mesh sizes: Ax=0.4, Ay=0.4 , At=0.2 (0.7729) (1.390) 39.3

Fig. 7 throughout Fig. 10 shows the .results of wave

profiles as time increases with the time increment of 20, for The values are obtained from the narrow
the cases of Fh =1.0, 0.9, 0.8, 0.7, respectively. The gen- tank reduced to the 1/10 in y-direction.
eration of the upstream solitons are pronounced as the Fh
approaches to 1. For Fh = 0.7, the generation of upstream
solitons is barely noticeable. Fig. 11 shows the results of
supercritical Froude number, i.e., Fh=1.05. It is of interest
to note that the numerical instability shows up when t=60.
Further computations for t larger than 60 showed that the Table 2. Amplitude, Speed and generation period of
water 3urface hit the bottom locally. At present, our pro- solitons obtained in the tank reduced to

gram cannot incorporate with a local dry bottom. This can one half of the tank width for U//'(l = 1.

be easily incorporated in the near future.

Fig. i2a and 12b show the computed wave resistance Block. coeff. A/h C/Vg UT,/h
for Fh= 0.9 and 1.0, respectively. Fig. 13a and 13b show
the time record of wave elev,.tions for F= 0.9 and 1.0, re-
spectively. This shows that the time-dependent hydrostatic 0.06 0.404 1.18 44.2
pressure is not negligible in the resistance computations. 0.08 0.475 1.22 36.2

0.1 0.545 1.24 29.8
Fig. 14a and 14b show the computed results of wave

resistance for two different tank conditions: Fig. 14a is for 0.12 0.604 1.26 27.0

the case of the tank and ship geometry being reduced to one
half in the direction of the y-direction. Fig. 14b is for the
case of those geometry reduced to one-tenth in that direc-
tion. Thus the wave resistances are shown by multiplied by As a concluding remark the accuracy of the present com-
the factor of two and ten, in Fig.14a and 14b, respectively. putations could be improved by employing finer meshes.

Table I shows the amplitude, speed and the generation The computation time for a typical model of 1500 elements
period of solitons for the blockage coefficient, S = 0.1. Here was 260 seconds for each time step by IBM PC/XT with

T800 Monoputer. A typical number of the total time steps
the blockage coefficient, S is defined as in Ertekin et al. was 500.
(1986). The amplitude A is taken from the first solitons.
The period is measured from the computed results at the
F.P. Also shown wre the comput.d resilts by Ertekin 0t ACKNOWLEDGEMENTS.
al. who treated a pressure patch in Table 1.

Table 2 shows the amplitude, speed and the generation This work has been supported by the Nonlinear Ship Hy-
period of solitons obtained in the tank reduced to one half of drodynamics Program supported by the Korean Science &
ths tank width for several values of the blockage coefficients Engineering Foundation.
when F4 = 1. The amplitudes and the speed increases
whereas the generation period decreases as the blockage co-
efficient increases. This trend agrees well with the previous
experimental results of Ertekin.
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Fig. 7 Computed free surface for Ph=
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t=20-

Fig. 8 Computed free surface for Fh =0.9
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Fig. 10 Computed free surface for Fh =0.7
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Fig. 11 Computed free surface for Ph 1.05
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finite element method we present two different approxima-
tion in depth-wise direction. In the first approximation a

0.6 linear interpolation is used. The results presented in the
section 4 were obtained by using this element. In the sec-
ond, we use a quadratic interpolation which satisfies the
boundary condition on the bottom. The above two approx-

0.4 imations will be refered to LI and L2, respectively, hereafter.
The approximate velocity potentials of LI and L2 schemes

U in two dimensions are given as
0.2• . LI: 1(z,z,t) = fj(,t)+zf2(z,t) (A.1)

L2: f(z, z,t) = f?(Xt) + (z + 1)2 2 (z,t). (A.2)

0.0
0. 20. 40. 60. 80. 100.

t A.1 Linear Dispersion Relation
(a)

The linear dispersion relations of GN and Wu equations
0.0 are identical and can be found in Ertekin (1984). The re-

lations for Li and L2 scheme can be derived from Eq. (40)
with appropriate basis functions. The results are

0.4

GN, Wu : w2 = 3k2  (A.3)0.2 3 + !+k 2

L1 : 2 = k2(12 k ) (A.4)12 + Wk

0.0 2=k(5+k2
0. 20. 40. 00. 60. ioo. L2 : 2 = k2(15 + k) (A.5)t. 15 + 6k2  "A s

(b) The above relations are plotted in Fig. 15 compared with
the exact relation. It can be found that the finite element

Fig. 14 Wave resistance for different tank and hull method gives the upper bound for the exact values of w,
geometry (Fh = 1). whereas GN and Wu equation gives the lower bound. The
(a) B = 2, b = 0.2 L2 scheme predicts more closely to the exact values of w
(b) B = 1, b = 0.1 whereas the Li scheme deviates more than others.

6.

. LIJ 1
tExact

Appendix
2. IGN j

A Comparisons with Other Theories. i. .

The comparisons are made on the linear dispersion rela- 0. i. 2. 3. 4.
tion and the speed of the nonlinear wave of permanent form k

amng several dif rnt approximate hcrics. Wc preh*
the results obtained by the equations derived by Green & Fig. 15 Linear dispersion relations in various schemes.
Naghdi (1976) (hereafter the GN equation) and Wu (1981).
Since both equations are derived with the assumption of
shallow-water limit or equivalent assumption on the veloc-
ity field, we compare them with the result of finite element
method with one element in depth-wise direction. For the
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A.2 Speed of Permanent Wave Form

The speed of solitary waves for a given amplitude can
be found in Ertekin (1984) for GN equation. The speed
for Wu's equation is given only in limiting case of small
amplitude in Wu & Wu (1982). But one can derive the
relation using the integral invariants of Wu's equation in
steady state. For Li and L2 schemes the speed of peinanent
wave form can be derived using the dynamic free-surface
condition and their two integral invariants, i.e., mass and
momentum flux. They are given below:

GN : C 2 = I +A (A.6)

Wu C2 _ 6(1+ A)s (log(1+ A)- A) (A.7)
A2(3 + 2A) 1+A

C2 A2  (1+ A)H 2 - A 2 = 0  (A.8)
1+A 3

L2 C2A 2 + (I+A)H2  A2 =0. (A.9)
I+A 5

where

CA
u T+A (A.10)

H C + C2 -2A
I+A

and where C and A are the normalized speed and amplitude.
The above results are plotted in Fig. 16. It is of interest
to note that in the speed-amplitude relation for Li and L2
schemes two different speeds are present at an amplitude
(note the dotted lines), or vice versa. Presumably this is
due to the presence of waves other than the solitary waves.
Fig. 16 also shows that the Li (or L2) scheme gives the
bounded amplitude and speed of permanent wave form with
A = 0.600 (or 0.714) for the maximum amplitude, and C2 =
1.473 (or 1.591) for the maximum speed.

1.0

0.8

:-I !W U

0.0 0.2 0.4 0.0 0.0 1.0

A

Fig. 16 Speed of the permanent wave form in vari-
ous schemes.
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DISCUSSION idea. I am not even sure that it happens in
by R.C. Ertekin nature. We have experienced such dif

ficulties also. By changing xAy andAt we
I think this paper presents an excellent solved the problem. If you reduce your space

example of how micro computers can be and time increments your problem of stability
effectively utilized to solve complicated may disappear.
problems in time domain. Their method of
solution to the problem is impressive. I In free oscillation tests (Fig.4), the
would like to comment on some points in the oscillations in the trailing part of the waves
paper. are perhaps partially numerical. I remember

the thesis of H. Schember (Cal. Inst. of
The Green-Naghdi equations that you refer Technology, Ph. D. thesis, 1982) who studied a

to are the simplest equations in a series of similar problem on these oscillations.

equations (or theories) that can be obtained
by the Theory of Directed Fluid Sheets. Author's Reply

Shields (Ph. D. Thesis, U. C. Berkely, 1985)
have derived the theory II and III equations. Thank you for your nice comments. We have
Their derivations (with Prof. W. C. Webster), admired your pioneering research on the Green-
in some sense, resemble the Pohlhausen method Naghdi method applied to the nonlinear free-
in laminar boundary layer theory. I think the surface flow problems.
higher theory Green-Naghdi equations show
double valued phase speed (your Fig.16) like We were the comment on the dry mode, we
Ll and L2. This double-value of c is not partly agree with Professor Ertekin on the
very surprising since the highest wave is not possibility of dry bottom due to the numerical
the fatest one as shown by Cokelet and instability. However, we have observed the
Longuet-Higgins in a J. Fluid Mech. article in dry bottom in the experiments when we moved a
70's. If you used a cubic interpolation vertical flat plate in the direction normal to
function, I believe the maximum amplitude the plate and along the centerline of the tank
would become closer toA O.78as shown by in a shallow water in a wave tank (22cm X 20cm
Fenton in also a JFM article who used a very X 110cm). The dry bottom was possible in

high order perturbation expansion, nature when the flat plate is moving so fast
that the water behind cannot fill the empty

As you commented the Green-Naghdi space fast enough. Then there should be

equations can be obtained by variational locally dry bottom in nature.
methods. Solomon and Miles(1985) derived the

G-N equations by using Hamilton's principle On the last comment about Fig.4 for the
(J. Fluid Mechanics). I will be happy to free oscillation test, we believe that the
furnish these references in a more complete trailing part of the smaller waves is due to
form if you wish. the dispersion of the initial free-surface

elevation (hump) into waves of different wave
I am not sure that "dry mode" is a good numbers.
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Numerical Grid Generation and Upstream Waves for Ships Moving
in Restricted Waters

R. C. Ertekin and Z. -M. Qian
University of Hawaii

Honolulu, USA

Abstract wave speed refer to the depth Froude

The shallow-water wave equations of number, Fh =u/vrgh , being less than,

Boussinesq type are employed to equal to and greater than 1.0,
numerically solve the problem of a respectively, where U is the ship-model
vertical strut moving in a channel, speed, g is the gravitational
Since the most important parameter in acceleration and h is the undisturbed
soliton generation by moving water depth which is constant. No
disturbances is the blockage published mention of the phenomenon of
coefficient, a strut can be made ship-generated solitons could be found
equivalent to a finite draft ship. A until the reports by Thews and Landweber
boundary-fitted curvilinear coordinate (30], Sturtzel and Graff [29], and Graff
system based on elliptic equations is (9] that describe the continuous solitary
generated to deal with the difficulties wave generation experimentally were
due to the body-boundary conditions in brought to attention in 1984.
a channel containing an
arbitrarily-shaped ship boundary which
extends to sea floor. The strut problem Wu and Wu (35] reported first on some
is solved numerically in a transformed numerical calculations of a
computational plane which contains two-dimensional pressure distribution
uniform grid size. A finite-difference moving steadily over the water surface
method is applied to the equations to in which the same phenomenon of soliton
march in time. The surface elevation generation was predicted. These
and wave resistance are computed and calculations were based on generalized
compared with the available experimental Boussinesq equations derived earlier by
data. The agreement between the Wu [34]. Some of the calculations were
calculations and experimental data is, also reported in Huang et al. [13].
in general, very good.

1. Introduction The most striking feature of these
nonlinear waves is that they are almost

The phenomenon of ship-generated perfectly two-dimensional, spanning the
solitons was rediscovered experimentally tank walls, even though the generating
(see Huang et al. [12]) during the source is a three-dimensional ship model.
experiments done by Sibul et al. [28] on Only a few qualitative features of these
an unrelated subject. Huang et al. (12] solitons could be observed during the
observed that when a ship model is set experiments of Huang et al. [12] since
into motion, starting from rest and the experiments were not systematic.
quickly reaching a constant velocity, Ertekin [3] carried out a series of
........... o.... wes that precede ,, experiments in which certain parameters
model are generated one after the other such as water depth, model draft and tank
in addition to the usual width were changed systematically.
three-dimensional waves behind the During the experiments, a ship model
model. The waves that move ahead of the
model were completely above the still (Series 60, Block 80) was towed along
water line and their speeds were critical the centerline of the tank with a constant
or supercritical. These waves have been velocity. The total resistance
termed solitons or solitary waves which, experienced by the model and the
unconventionally, refer to individual run-away-soliton amplitudes were
waves in a train of waves. The measured simultaneously in these
subcritical, critical and supercritical experiments.
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The experimental results of Ertekin both the x-z plane and the x-y plane even
[3] and Ertekin et al. [4] showed some though some flow quantities, such as the
very important qualities of the velocity potential, do not depend on the
ship-generated solitons. Among several vertical coordinate z because of the
are: the dependence of soliton mean-layer approximation. Going back to
amplitudes on the blockage coefficient the discussion on Mei's results, we note
(the ratio of the cross-sectional area that the two-dimensionality of
of the model at midships to the cross- downstream waves as calculated by Mei
sectional area of the water mass, see [19] was not observed, in general, in
Eq. (3)); the phenomenon is not the experiments of Ertekin [3].
associated with equipment
malfunctioning; at critical and Ertekin et al. [5] considered a
supercritical speeds a steady-state flow three-dimensional pressure distribution
cannot, in general, be obtained; below and solved the Green-Naghdi (G-N)
critical speed soliton amplitudes die equations in the time domain. The
out leaving a shelf in front of the ship solution of this nonlinear
model; and no solitons can be generated initial-boundary-value problem also
as blockage coefficient goes to zero. showed three-dimensional downstream
The last feature of the phenomenon shoed three-dimenn wnste
implies that as the tank width or the waves, qualitatively agreeing with the
water depth goes to infinity, no upstream experimental results. This confirmed
waves can be generated. However, we note that the application of Mei 's formulation
that a recent work by Pedersen (24] has a limited range, at least, as far as
challenges this conjecture by an argument the downstream waves are concerned. The
related to the existence of Mach stems wave rasistance is also found to be in
as discussed in Ertekin [3]. qualitative agreement with the

experimental data. More recently, Katsis
Ertekin (3) also investigated the and Akylas (14] and Wu and Wu [36]

theoretical cases of a two-dimensional obtained results for a three-dimensional
pressure distribution, and a moving surface-pressure distribution by
two-dimensional bump on the sea floor using forced nonlinear
moving with a constant velocity. Both Kadomtsev-Petviashvili (K-P) and
the Green and Naghdi [10] equations for generalized Boussinesq (gB) equations,
a thin fluid sheet (see also, Ertekin respectively. The stability of the
(6]), and the shallow-water equations forced KdV equation as it relates to
derived by Wu (34) were used. Some of run-away solitons is investigated by Wu
the results were included in Ertekin et [37].
al. [4]. Akylas (1] and Cole (2] have
considered a two-dimensional bottom bump In the present study, we investigate
by using the Korteweg de Vries equation the nonlinear waves generated by a
(KdV). Lee (16] and Lee et al. (17] vertical strut by using the generalized
considered a two-dimensional bottom bump Boussinesq equations as derived by Wu
both experimentally and numerically. [34]. The no-flux boundary condition is
Some of their preliminary results were satisfied by means of a numerical
included in the Discussion Section of grid-generation technique (see for
Ertekin et al. (4). instance, Thompson et al. [31]. The

nonlinear and unsteady results areFirst attempts to consider a directly compared with the experimental
three-dimensional disturbance in data. In Section 2, we formulate the
computations are due to Mei and Choi fluid-dynamics problem to be solved with
(18], Mei [19], Ertekin et al. [5] and all the boundary and initial conditions
Mei and Choi (20]. Mei (19] considered to be satisfied. We also transform the
a vertical strut which is slender so that equations from earth-bound coordinates
the rigid-boundary condition on the body
can be applied at the center-line of the to moving coordinates in this Section.
strut within the order of perturbation In Section 3, the numerical
expansion. This approximation has grid-generation technique used is
resulted in two-dimensional waves in both discussed and the equations of Section
the upstream and downstream regions since 2 are transformed to a regular
the modified KdV equation derived is rectangular computational domain. In
two-dimensional only. A remark may be Section 4, the numerical-solution method
necessary with regard to the terminclogy is given and wave resistance experienced
used here for the number of dimensions, by the strut is discussed. The
In three-dimensional Cartesian finite-difference method employed is
coordinates where x and y are in the presented and sample results are shown.
horizontal still-water plane and z is Preliminary results are also given in
vertical pointing up, we use the Ertekin and Qian (8], and the detailed
terminology two-dimensional for flows derivations of the equations presented
confined to the x-y plane and here and some other results can be found
three-dimensional for flows confined to in Qian [25], and Ertekin and Qian [7].

422



2. Formulation ofthe em to solve the following set of gB equations
f or a constant water depth and zero

In order to clarify the physical atmospheric pressure (Wu (34]):
problem let us consider Fig. 1. This
shows a ship model moving along the t0 ()
centerline of a shallow-water channel.
The dimensionless speed of the ship-model 0 JV-.o2 h 2 C2)
is given by the depth Froude number, Fh, (2)
which is not necessarily critical. The
boundaries consist of the tank walls, where (x0,y°) are the coordinates of
the center-plane symmetry axis if only the fixed coordinate system in which
half of the physical region is to be X0 specifies the direction opposite to
considered due to symmetry (mirror-image
problem), the two inlet and outlet the movement of the ship, to is the
boundaries (or "open" boundaries) ahead surface elevation of the wave, *0 is the
of and behind the model, and the no-flux layer mean value of the velocity
condition on the model. The channel potential defined by ao0VAo in which
floor and the free-surface boundary p n
conditions are not discussed since these u- (uo,,) , h is the undisturbed water
are either exactly (in the case of G-N depth (constant) of the channel and is
equations) or approximately (in the case th twonsonal grae vecto in

of gB, KdV or K-P type equations) the two-dimensional gradient vector in

satisfied by the particle velocity the horizontal plane. Eqs. (1) and (2)
vector. Then the problem can be solved are the statements of conservation of
by using a nonlinear and unsteady mass and momentum, respectively.
shallow-water wave equation to obtain
the unknown particle velocities created The general form of these equations
by the movement of the model. One can in which the sea floor topography may
use neither linear nor steady-state depend on the xO,y ° coordinates and time
equations because of the nature of the to were obtained under the assumption
phenomenon. In fact, it can be shown that the Ursell number is of order unity
(Ertekin (3]), perhaps unsurprisingly, (Ursell [32]). However, they seem to be
that the steady form of the gB equations valid in a wide range of Ursell numbers
used in this study predicts no as shown by Lee [16]. The velocity
disturbance in the upstream region. The potential and the surface elevation in
same is true for other shallow-water wave these equations depend on xO,y ° and to.
equations. These equations satisfy approximately

the nonlinear free-surface condition and
2.1 Boussinesq equations the sea-floor condition. The

configuration of the physical region is
The two different sets of shown in Fig. 2.

shallow-water equations that have been
applied frequently to soliton-generation Before elaborating on the boundary
problems in the past, namely the conditions and initial conditions to be
Green-Naghdi equations and the satisfied, we need to justify the use of
generalized Boussinesq equations, have a vertical strut to model the conditions
both advantages and disadvantages of the experiments done by Ertekin [3].
compared with the other. Even though In those experiments, the tank width,
the derivation of both of these equations the model draft and the water depth were
can start with the assumption that the systematically changed to obtain 27
fluid is incompressible and inviscid, different blockage coefficients, Sb;
only the gB equations require that the
flow be irrotational. This feature of A.
the gB equations allows one to consider Sb' 2-W. (3)
the layer mean value of the velocity
potential and the surface elevation as
the unknowns to be determined. On the where Ao is the cross-sectional area of
other hand, such a potential does not the underwater portion of the full model
exist in the case of the G-N equations at midships at a given draft and W is
since the flow is, in general, the half-width of the tank. Also, Fh is
rotational. As a consequence, the G-N varied to cover the range of 0.5-1.3.
equations are expressed in terms of the The most striking finding of these
unknown velocity components and the experiments was the dependence of the
surface elevation. The apparent soliton amplitude, speed and the period
advantages of the G-N equations over the of generation (the time that it takes
gB equations were discussed in Ertekin for the second soliton to generate) on
et al. [4, 5). In a three-dimensional the blockago coefficient, Sb. Typical
problem with a large domain, the gB experimental results have been given in
equations are more efficient to solve Ertekin et al. [4]. Therefore, it is
computationally. Therefore, we choose clear that one can use a vertical strut
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to model the same conditions which system (xO,y°) to the left moving
existed during the experiments, i.e., coordinate system (x' ,y') whose velocity
hull form is of secondary importance. is -Uo. Since

Now, we can go back to the discussion t 0 =t, xOx.-U'tO, y-y., (8)
of the boundary conditions and initial
conditions. Because we assume that (see the continuity equation (1) becomes
Fig. 2) AO and BC are part of the symmetry
axis, only half of the physical domain +V.[(t+h)V.] =0, (9)
needs to be considered. The
computational advantage of this scheme and the momentum equation (2) becomes
is obvious. We then have the following
boundary conditions. on the symmetry + 2
axis AO and BC, and the channel wall DE,
the no-flux condition is h 2V2;+UV2,.) (10)

00.-0- (4) 54
y

Referring to Figs. 2 and 3, the boundary
On the ship boundary, which is moving in conditions and the initial conditions
the negative x° direction, we have become

Oon.,o+¢°on--Uo'no, (S) ', =0 on AO, BC and DE, (11)

where U0 is the speed of the moving 0*,n,.+fY.nY =0 on AB, (12)

boundary and -(n, onYo) is the unit

normal vector of the ship boundary _-_+(U0qgh)K.=0,
pointing into the fluid. On the upstream
and downstream open boundaries, we use (13)
Sommerfeld's radiation condition with .+(U°o-"gh) * .- U O,"
constant shallow-water wave celerity,
i.e.,

on EO (-) and CD (+), and

() t'=O, 0'=Uox ' , at t=O'. (14)

t X Next, we nondimensionalize these

equations in the moving coordinates by
on EO (-) and CD (+). The initial the new dimensionless variables given by
conditions are chosen such that there is
no motion at time t=0-: x.

V0.0, €O-o, (7) XT -,tT

(IS)
for all x0 and yO. The governing U0

equations (1) and (2) will be solved t= tgh, U= ,=
subject to the boundary and initial

conditions (4)-(7). The dimensionless forms of the continuity

Since we will use a numerical and momentum equations then become

grid-generation technique to map the (
physical plane onto a regular rectangular t,+V' [(1+U)]=O, (16)
computational plane to avoid I
interpolations as much as possible in x Y
satisfying the body-boundary condition,
we must first transform the qB equations (2..20.. (17)
and the boundary and initial conditions 3
to a moving coordinate system as shown And the dimensionless boundary and
in Fig. 3. initial conditions (1l)-(14) become

2.2 E u ti i moving -oordinati y -,O on AO, BC and DE, (18)

The equat Lons of last section will be
transformed from the fixed coordinate + on AB, (19)
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tt,+(UF I )t.-O, equations from a physical plane to a

rectangular computational plane with a
(20) uniform grid.

C,+(Ul)C -U)-0. Depending on the boundary conditions,

one can use several different
on EO (-) and CD (+), and grid-generation systems, such as the

elliptic, parabolic, hyperbolic or
S=0. = Ux, at t= 0. (21) algebraic generation systems. An

elliptic generation system may be chosen
in our case since Dirichlet boundary

Eqs. (16)-(21) will be solved by a conditions are specified on all the
finite-difference method. Because we boundaries enclosing the
are dealing with a simply connected simply-connected physical region. The
region which has a non-rectangular Dirichlet conditions are simply the
boundary in the plan view of the ship, boundary coordinates given in the
it is preferable to use physical problem.
boundary-conforming coordinates in the
fluid domain. In the next Section, we 3.1 Elliptic Generation System
will describe the numerical generation
of these boundary-conforming coordinates Referring to Fig. 4, a uniform grid
and transform the governing equations in the transformed plane can be generated
from the physical moving-plane onto a by determining the coordinates x(t,rT)and
rectangular plane where a y(t,T) , for A = -A11= 1.0. Because of the
finite-difference method can be easily fact that the extrema of solutions of an
used within a uniform rectangular grid. elliptic system cannot occur inside the

boundaries, one-to-one correspondence
3. Numerical grid-generation between points of the respective planes

is guaranteed. This, of course also
When there are irregular boundaries ensures the single-valuedness of the

in a fluid domain, one can use several coordinate functions. Then the equations
discretization schemes in a of the elliptic generation system given
finite-difference method. One of them by
is the "irregular-star" technique which
has been used for some time in ship-wave v2 -.o, V21-O,
problems (see for instance, Ohring and
Telste [22]), and another is the can be replaced by a set of nonlinear
"staggered-mesh" system used by Miyata equations in terms of x and y to be solved
et al. [21) in a marker-and-cell method. interasomdpn:
Yet, another method suitable for the in the transformed plane:
present problem is the numerical
generation of boundary-conforming ax -2Px,,+Tx,,-0.
coordinates (see for instance, Thompson (22)
et al. [31]). In the first two schemes
mentioned above, the difficulties in ay -2Pyt,+yy,,-O,
dealing with an irregular boundary are:
the use of unequal grid size in different where
regions of the computational domain which
brings additional complexities and _= 2+ 2 p=xtX, _ 2 2 (23)
inaccuracies, the heavy use of various qx q,, x+YYx Y .
interpolation techniques on irregular
boundaries for the evaluation of the The above equations can be solved by
higher-order derivatives of a function a finite-difference method based on
being solved for, and as a consequence, second-order central-difference
the need to use very small grid size formulas, i.e.,
which results in an increased
computational time, and finally, serious u(x,,.,-2x.,4 x,.,)_ (x.,.,x,.,,.,-
questions concerning the assumption of
the existence of a function being X
extrapolated outside the fluid domain. . (24
The last difficulty is again related to
irregular boundaries. These and
difficulties do not exist if one uses a
numerically generated grid along with a
finite-difference method. However, due -

to the addition of extra terms in the
governing equations, numerical y.i,., + yj,. ,,-,)+ y(y. -

2 Y,,+-y,.,g ) -0. (2S,
calculations become more complicated and
intensive when one transforms the This results in a system of nonlinear
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equations which we solve by a Successive H--( +)V 2o-Vt.Vt
Over Relaxation (SOR) method. The
solution is accomplished by a point
iteration in which the initial guess is j
chosen as a weighted average of the
boundary points. The boundary values of 1(yf_ yto)(yt_ ytt) +
x and y in the physical plane are
specified. A typical result for a
parabolic strut whose dimensionless +
equation is given by j . -2-- -

and the Jacobian, J, of the
y12A - (26) transformation is J-xty,-xyt. Notethat even though the general formulas

are given here, x depends on t alone
where Aw/2 is the half-width of the strut since y = constant and q = constant are
and L is the length of the strut, is parallel everywhere.
shown in Fig. 5. In this Figure Aw/2 S
0.3, L= 8.0, Sb= 7.5 *, and Ax-Ay=0.1. Similarly, the momentum equation (17)

However, only every fifth grid line is becomes

plotted for clarity. ol Aot+Botn+C$mn=Q, (28)

The accuracy of the elliptic where
generation system used here has been
checked against a simple ideal flow a 2 - y
problem (doublet + uniform flow) which A 3j2 , B3J2,  3j2'

has an exact solution, and found to agree 2 2 2

within a tolerance of 1 x 10-8. We note Q- -)+U_ x-3
that x = constant lines and = constant
lines coincide in their respective IYot Yt1o 2
planes, and as a result, no coordinate 2 J
contraction has been used. The purpose
of this scheme is to preserve the symmetry
boundary AO and BC. If we had allowed
x to depend upon q also, then we would Al- .U(JAo-Joa), B l-- E.--(JB o-2d o ),
have had to solve the problem in the 3j4 3j4

entire physical region, not just in half Cl= 2U (JC0_Joy), D=U
of it. In that case, the boundary points 3 3j4 = 3 j3 y~a
would not have been uniform. E=-- U(2YP+Ya),

3.2 Governing equations in the

transformed plane U U
F=y-7(yqy- 2ytP), G=- -U yy,

The purpose of transforming the M

equations from an earth-bound system to
a moving system was to avoid the nYt
generation of a numerical grid at each 2 22+
time step, thereby not allowing the time nynYt+
derivatives to produce extra terms. If (Xty.+xqy)yt.-xtytyqq,
we now apply the differential relations
between the derivatives of a function in 1
(x,y) and (,71) planes (see, Thompson et Ao= 2(y a ,- y a ,)

al. (31]), the continuity equation (16)
becomes = 2=xy'lxlt-xqytxnq+YqYtn-YtlYtYnii

tt-H, (27) Bo y.p -yp, =xnX+ (xty,-x~yt)xt.-
2

where XtytXq+ y y t-y~y.,
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present time step, indicated by the
CO= (YYt -ytY') superscript (2), may be obtained by

modifying the values obtained in the
2 middle step, indicated by the superscript

, (m). The middle-step values are
evaluated by modifying the
previous-time-step values, indicated by

And the dimensionless boundary and the superscript (1).
initial conditions (18)-(21) become as
follows. With these preliminaries, the

continuity equation (27) becomes).0on AO, BC and DE C29)

on AB. (30) t ( ) + At H(1), (33)
- +).0 n S.(3) (2) f(1)+L~(HlO)+H(m)), (4

2 Jfl)),(34)
, Zi.2, where At is the time interval and H was

given by (27). similarly the momentum(31) equation (28) becomes

where tm An nn
O 1+rC(0 AtQ(1), (35)

Z , = ( U :F ) { ( y' t t =yt t ' .) -Ui,
J 0() + B0 (2) +O(2) + .2) _ (1) + A (,

J --t*) "" 2) "- 1) Q(m))' (,_N

on EO (subscript 1) and CD (subscript

2), where A, B, C and Q were defined by (28).

t=0, O=Ux(t), at t=O. (32) The upstream and downstream
open-boundary conditions become

As before, the subscripts t and il denote
the derivatives with respect to these t(m)()+AZ()
variables. We are now ready to solve 

(3)

equations (27) and (28) subject to the t(2)= o)+t +
boundary conditions (29)-(32). 23.212

O(M) = (,)+ AtP())( 9

4. Numerical solution of gB e uations 1.' (39)
and wave resistance (2) = () + L t f (p()) + 4(m)

In this Section, we present 
the method

employed to solve the nonlinear and The right-hand-side terms of these
unsteady shallow-water equations as e r- andsieterms o the
given in the last Section, and also, give equations are calculated from the
the formulation for wave resistance, previous time step, and then considered
Some of the results obtained will be as known variables in the present time
presented and compared directly with the step. During each time step, t can be
available experimental data. The directly solved from (33) for the middle
accuracy of the equations and the step, and from (34) for the present step.
numerical method will be revealed when t and can also be found directly on the
we discuss the speed, amplitude and the open boundaries from (37) and (39) for
period of generation of solitons, and the middle step, and from (38) and (40)
wave resistance, for the present step as the solution of

the initial-value problem. 0 will then
4.1 Finite-difference mnethod be determined iteratively from (35) for

the middle step, and from (36) for theBecause of the success of the Modified preent step as the solution of the
Euler Method in previous applications, p r y-valu prbtes n
we use this two-step method to march in boundary-value problem.
time. The spatial derivatives are As in the case of the numerical grid
approximated by second-order generation, we use the SOR method to
central-difference formulas. The
truncation error of the resulting solve the set of simultaneous equations

truna io eoro t2e rwhich resulted by the application of the
equations is O(Ax2 ,Ay,At2 ). In this Modified Euler Method. A five-point
method, the values of t and * at the filtering formula (see Shapiro [27],
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Haussling [11], and Ertekin et al. (5]) At, denotes the surface of the
is applied to reduce the effect of tha computational region, remains constant
numerical errors which are caused by within 1%, showing that numerical
high-frequency cross-channel waves, accuracy is very high.
and are filtered in the t and r
directions in the transformed plane after The gB equations are solved by a
each time step. The SOR parameter varied computer program which uses tho grid
between 1.5 and 1.9 in our calculations. points generated by another computer

program. Two sets of numerical tests
4.2 Wave resistance are conducted and the parameters of the

problem are selected to approxinately
The wave resistance, R, experienced correspond to the experiments done by

by the vertical strut can be obtaied by Ertekin (3].
evaluating the pressure, Pr, on the
strut, i.e. In the first set of the numerical

tests, two different blockage
R() coefficients, 7.5% and 12.5%, are

CR() 2 pdz)YxdX. (41) selected. The grid size on boundaries
Pgh O h is chosen as Ax=Ay= 0.1, and the time

interval is chosen as At - 0.0S even though
The pressure on the strut can be obtained Von Neumann's stability method applied
from Euler's integral once the velocity shows that At car. be th3 same as Ax
potential and the surface elevation aredetermined. Following Wu [34] and Wang without any stability problems. Two
et el. [33], we obtain different speeds, Fh=U=0.S and 1.0 , are

used so that precursor solitons can be

generated quickly, The perspective plots
pdz= 0 +)U +t+ (see Fig. 6 a,b) as well as the contour

f h 2 plots (see Fig. 7 a,b) are shown here
for Case 3. For other results see Qian

g2 2) + 2 U2)+} (42) (25]. In perspective plots the strut
(42) below the lowest wave surface could not

be plotted because of the limitation of

in the moving coordinates. Equation (42) the graphics software that we used. The

is obtained by expanding the pressure in period between the first and serond
a perturbation series wherej the error soliton or the period of generation, the

apr i samplitude and the speed of the first and
term is O(ES) , and E is the dispersion second solitons are calculated (see
parameter. One can now substitute (42) Tables 1-3). The period of generation
into (41) and obtain the wave resistance is obtained from the numerical
as a function of time after transforming moving-gauge results as shown in Fig. 8
the variables from the (x,y) system to (continuous lines). In Fig. 8 the
(l.u) system. location of the numerical gauges are at

distances-of 0.625L (Gauge 2) and I(Gauge
4.3 Discussion on the numerical 3) ahead of the strut on the symmetry

accuracy and results axis. Note that in the first set of
numerical tests (Cases 1,2 and 3), W=4,

When the water depth, h, is constant, L=8 and IR-IL =64. Comparisons with the
the conservation of mass statement given experiments (Ertekin [3] and Ertekin et
by (1) is exact. Therefore, this equation al. (4] are also made in Tables 1-3.
can serve as a check on the numerical
accuracy of the results. We note that To understand the effect of ship length
the same argument cannot be made by using on the computational results, we
the conservation of linear momentum conducted another numerical test by
statement given by (2) since this increasing the ship length to 15.2 but
equation is approximate. The leaving all other parameters of the
dimensionless water mass, rn/ph 3 , given problem the same. This test is referred
by to as Case 4. Case 4 results are shown

in Figs. 6 c,d and 7 c,d, and in Fig. 8rqr d} (dotted lines). As can be seen from
(1l+t)JdAt,+JjJ SdPSd1dt, (43) these Figures, shorter strut has

considerably more wave build-up around
the bow and stern than the longer strut,

where and also, the downstream waves are
smaller in the longer strut case. From

LFig. 8 we see that it takes longer to
generate the first soliton in the longer
strut case than the shorter strut case.

and 'L''R represent the left and the Also the amplitude of the first soliton
right open boundaries, respectively, and is smaller, and the amplitude of the
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second soliton is larger in Case 4 stern, and eventually, the computations
compared with Case 3 (see also, Tables could not be continiued. The unphysical
1-3). waves in the absence of filtering

occurred for various grid sizes and time
In the second set of numerical tests, intervals.

we used exactly the same Sb=14.2, W=6.1
and L=15.2 used in one set of the From the results presented here, we
experiments of Ertekin (3]. In the see that general appearance of the waves
experiments, h=10 cm, d=7.5 cm and Fh=l.0 agree with the results of earlier
were used (Test No. 1936). The location research (e.g., Huang et al. [13],
of the moving gauges were given in Ertekin Ertekin [3], and Ertekin et al. (5]).
etal. [4]. This numerical testis called For each soliton, including the first
Case 5. In Case 5, Ax=Ay= =0.15 and and the second one in all cases, the
At =0.08 are used since the computational amplitude increases rapidly while the

speed increases. The relation betweenregion is larger than before. Also IR-IL the amplitude and speed of the solitons
=137.25 in this case. The perspective (computed) satisfies approximately the
plots of Case 5 results are shown in Fig. dispersion relation for a general two
9, and the contour plots in Fig. 10. The dimensional soliton propagation, such as
numerical wave-gauge results and the wave the second-order formula proposed by
resistance results are shown in Fig. 11 Laitone [15], and a formula derived by
The corresponding experimental results Schember [26]. However, solitons
are shown in Fig. 12. The numerical generated by ships do not have an exact
results in Fig. 11 are shifted in time permanent form. The amplitude of each
so that the moment the towing carriage soliton gradually increases after
started moving in Fig. 12 (see the sudden generation. This, of course, may be
increase in resistance at t=2.5 s) partially due to the governing equations
corresponds to t-0 s in calculations. which satisfy the free-surface
This shift in time in experiments is due conditions only approximately. Also,
to starting data acquisition before the the rather small differences between the
carriage is put into motion. The computations and experiments may be also
quantitative differences between the due to the neglect of viscosity (although
experiments and calculations in Case 5 this effect must be very small), and, of
are given in Tables 1-3. The agreement course, computational as well as
can be considered quite good. experimental errors, especially in the

case of period of soliton-generation.
The average total resistance measured

during the experiments was 9.3 newtons The soliton generation clearly depends
for Case 5. In the calculations the on the blockage coefficient and speed of
average wave resistance is obtained as the moving strut, but it also slightly
9.6 newtons. We estimate the frictional depends on the length of the strut. An
resistance as 1.4 newtons from increase in the Froude number, or the
Schoenherr's flat plate skin friction speed of the ship, can delay the
formula. of course, the eddy or form generation of the first soliton, and thus
resistance must be included also. Thus, increase the period between the first
one can conclude that the total and second solitons. Soliton amplitudes
resistance predicted is slightly higher and speeds increase correspondingly.
than the experimental datum. Some other Fast movement of the disturbance
cases which are not presented here also increases the period of soliton
support this conclusion, generation an larger blockage

coefficient decLeases the period of
In conjunction with the numerical soliton generation. The second soliton

schemes used in this study, we mention almost always comes out with a smaller
that the surface elevation and the amplitude and speed than the first
velocity potential are filtered along soliton. As can be seen in Table 2, the
both the and q directions at each agreement between the experiments and
time step. The average number of computations for the amplitude and speed
iterations is 15 for the first-step of the second soliton is very good.
solution (for a tolerance of 8 x 10- 7)
and 6 for the modified or second-step 5. Conclusions
solution (for a tolerance of 5 X 10-7).
The computations, which were performed The waves generated by a ship in a
on the X-MP/48 Cray Computer of the San shallow-water channel can be modeled by
Diego Supercomputer center, took about numerical calculations of Boussinesq
90 minutes of CPU time for 2200 time equations, and two-dimensional solitons
steps in Case 3. Single precision is may be generated ahead of the ship. The
used on this 64 bit machine. Filtering shallow-water equations of gB type can
was absolutely necessary in our successfully simulate this phenomenon.
calculations. Removal of the filtering The generation of a boundary-fitted
scheme caused very high waves at the curvilinear coordinate system is very
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Case U Sb A, U,
No. (%

C E D C E D
() (%)

1 0.8 7.5 0.18 0.15 20.0 1.05 1.07 -1.9

2 1.0 7.5 0.54 0.50 8.0 1.20 1.22 -1.6

3 0.8 12.5 0.29 0.27 7.4 1.12 1.11 0.9
4 0.8 12.5 0.25 0.27 -7.4 1.12 1.11 0.9

5 1.0 14.2 0.70 0.62 12.9 1.27 1.23 3.2

Table 1. Dimensionless amplitude and speed of the first soliton.

Case U Sb A, U,
No. (%) I

C E D C E ,
__ __ _ __ __ _ __ __ (%) __ _ _ 1_ _ _ _ (%)

1 0.8 7.5 0.11 0.12 -8.8 1.02 1.03 -1.0

2 1.0 7.5 0.50 0.49 2.0 1,20 1.18 1.7
3 0.8 12.5 0.21 0.23 -8.7 i1.09 1.09 00
4 0 8 12.5 0.24 0.23 4.3 1.09 1.09 0.0

5 .0 14.2 0.69 0.56 23.2 1.27 1.23 3.2

Table 2. Dimensionless amplitude and speed of the second soliton.

Case U Sb UTO

Notes on the Tables: N g (%)

C : Present computational results, C E D
E : Experimental data (Ertekin [3]), CM)
D : Difference between the calcula-

tions and experimental data, 1 0.8 7.5 31 34 -8.8
Sb: Blockage coefficient, 2 1.0 7.5 44 47 -6.4
h : Depth of undisturbed water, 3 0.8 12.5 21 23 -8.7
g : Gravitational acceleration, - -

U : Speed of the ship, 4 0.8 12.5 20 23 -13.1
As: Amplitu.e of the first or second [ 5 1.0 14.2 27 33 -18.2

soliton,
Us: Speed of the first or second soli- Table 3. Dimensionless period between

ton in earth-bound coordinates, the first and the second soliton as
Tg: Period of generation of solitons. observed in the moving coordinates.
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Figure 3. Fixed (x°,y°) and moving
(x',y') coordinate systems.
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Figure 1. (a) Sketches of crest patterns N' "
during the emergence of a soliton in a
moving reference of frame, (b)
superposed sketches of (a) and a train Figure 4. Physical (x,y) and
of solitons from Ertekin (3]). computational (trj) planes.
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Figure 2. Configuration of the physical Figure 5. Numerically generated grid
rcuion. for thd parabolic strut, Cases 1 and 2.
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Figure 7. Contour plots of computed
surface elevation (a) and (b): Case 3
(shorter strut), (c) and (d): Case 4
(longer strut).

'.3'

(d) U xT h 40

Figure 6. Perspective plots of computed
surface elevation (a) and (b) : Case 3
(-,hort.er strut), (c) and (d): Case 4
(longer strut).
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DISCUSSION ficulties due to MEM and convection.

by J.W. Kim
[All Ertekin, R.C., Webster, W.C. & Wehausen,

The authors should be congratulated on J.V., Ship-generated Solitons, Proc. 15th

their successful extension of Boussinesque Symp. Naval Hydrodynamics, Hamburg, 1984

type equation to 3-dimensional free-surface pp.347 -364 .

flow problems. We would like to make comments
on the following two points. Author's Reply

The first is the time integration method We would like to thank Mr. Kim for a very

adopted in the present paper. As pointed out useful and timely discussion.

in your earlier paper(1984) [All numerical
solutions of the gB equation for a disturbance Your comments on the use of MEM and its

moving at near the critical speed show the effects on the numerical predictions are

gradual increase of the amplitude of upstream agreeable. It is clear to us that a fourth-

solitons whereas the GN equation shows nearly order method such as the RK4 method used will

constant amplitude. We have also reprcduced produce more accurate results. However, it is

this numerical calculation based on the 4th not very clear that reducing the truncation

order Runge Kutta method for the time errors by using a higher order scheme will

integration and then we have obtained the totally eliminate the continuous amplitude

constant amplitude for both equations. The increases observed when one uses the gB

only difference between ours and your previous equations. One must keep in mind that the

calculation is in the time integration method, momentum and, therefore, the energy is not

where you used the Modified Euler Method exactly conserved in gB equations even if the

(MEM). In the present paper you also used MEM sea floor is flat. When the disturbance is

for the time integration. From our experience small, the amplitude increase may be reduced,

in both time integration methods, we believe perhaps to a minimum. But we do not think

that the difficulties you experienced in your that it can be eliminated when large

present work before introducing the filtering disturbances are used. The same is not true

process in mainly due to the inadequacy of MEM when the Green-Naghdi equations are used since

for this problem. these equations satisfy the conservation of

mass and energy exactly, even if the sea floor

The second point I would like to discuss is not flat. On the other hand, one may

is on the treatment of the convection term. justifiably argue that if the disturbance is

Although the gB equation given in your paper large, then the assumptions behind the

has no convection term explicitly, the derivation of the gB equations are violated,

perturbed velocity potential and wave and therefore one should not expect that the

elevation will have convection effect im- amplitude does not grow. We agree with this

plicitly since the basic flow is uniform agreement.

stream. For the convection operator it is
well-known that the central difference scheme It is true that the MEM causes high

in spatial discretization has a considerable frequency waves because of the presence of

phase error on short waves with wave length central differencing. That is why we used

comparable to the mesh size. We have also filtering. Filtering eliminates high

experienced similar difficulties in our frequency waves which occur around and behind

calculation by the finite element method. As the hull. But, obviously, it does not effect

a remedy for this difficulty we used the par- the very low-frequency waves ahead of the hull

tial upwinding scheme, in the upstream region. Since these waves are

the primary concern to us, we did not worry

From the above two points, we believe that the about using MEM which proved to be a very

filtering process in your computation scheme valuable scheme because of its efficiency

has presumably played a role of eliminating compared to a higher-order scheme.

the overall combined effect of the two dif-
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Wave Resistance and Squat of a Slender Ship Moving Near
the Critical Speed in Restricted Water

H. S. Choi
Seoul National University

Seoul, Korea
C. C. Mei

Massachusetts Institute of Technology
Cambridge, USA

Abstract

The wave resistance and implied squat of a considerable changes in resistance, trim and
slender ship advancing near the critical speed in sinkage, or better known as squat. One of most
restricted water are studied. Employing matched exciting aspects in this now identified
asymptotic expansion techniques, it is shown that phenomenon is that a three-dimensional
the response can be described by the disturbance, such as a ship, generates 2
homogeneous Kadomtsev - Petviashvili (KP) dimensional waves propagating upstream in a tank
equation with flux conditions on boundaries, of finite width. In addition to it, the
when the channel is wide compared to the ship propagation speed of the upstream waves, named
length. Numerical results show the generation and solitons, is faster than the constant towing speed
radiation of straight-crested solitons in a periodic so that a steady state cannot be attained.
manner ahead of the ship, when it moves at Linear theories fail to predict the flow.
transcritical speeds with moderate blockage. Katsis and Akylas (1987) clarified it in the light
The solitons are initially three dimensional, which of the linearized dispersion relation. Among all
are followed by a depressed region and a train of waves radiated from a disturbance advancing at a
complicated ship-bound waves in the wake. speed U, those which may remain stationary with
Hydrodynamic forces are computed by using the disturbance in the direction Y must have the
slender body approximation, and the implied wave number k such that F ia cosy = (kh tanhkh) 1 2,

sinkage and trim are estimated based on where F is the depth Froude number (= u , Wg7).
hydrostatic relations. These quantities vary with It means that at a transcritical velocity,
time and strongly depend on the ship's speed and F = 1 + O(kI)9, long waves must be in nearly the
blockage. Near the critical speed, the wave same direction as the moving disturbance, i.e.
resistance and the trim oscillate around mean cosy = 1 + 0(kh) 2. Furthermore the group velocity
values in phase with the emission of solitons, tends to vanish in the moving frame.
while the sinkage takes place out of phase. The Consequently the long waves become almost
calculated results are in crude agreement with the nondispersive and the associated wave energy
measurements. cannot be radiated. It implies, in order to deal

with the problem, we have to include a balanced
interplay by the nonlinear and dispersive effects1. Introduction to the leading-order wave equation, and to keep
it in mind that transient waves evolve slowly.

A couple of investigators have reported the Wu and Wu(1982) were the first who
fascinating phenomenon observed during shallow calculated the generation and propagation of
tank tests that a ship model towed near the solitons for a moving disturbance spanning
critical speed v'7 (g = acceleration due to gravity, uniformly across the channel by using the
h = water depth) radiates a succession of generalized Boussinesq equation. Akylas
upstream-propagating waves in an almost (1984) also considered a two-dimensional
periodic manner (Thews & Landweber 1935 ; pressure band travelling on the free surface but
Izubuchi & Nagasawa 1937 ; Graff 1962 ; Huang focused attention to the immediate neighborhood
et al. 1982). As a result, the ship experiences of the critical speed. He showed that the physics
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can simply be described by an inhomogeneous 2. Formulation
Korteweg-de Vries (KdV) equation. In a joint
theoretical and experimental study, Lee et al. We consider a ship advancing with a constant
(1989) found a broad agreement between the speed in a shallow channel. For simplicity, the
experiment and two theoretical models, the sp is a oaposchsnn el F r s m ty
generalized Boussinesq and the forced KdV ship is assumed to possess the lateral symmetry
equations, for a moving two-dimensional bottom and to move amid the channel so that it is
topography in a shallow water tank. All these enough to take only the half of fluid domain into
works are concerning with 2 dimensional account. A rectangular coordinate system is
disturbances and thus one-dimensional wave introduced, which is fixed on the waterplane of
fields. the ship. The x-axis coincides with the

longitudinal axis of the ship and the centerline ofFor a rectangular patch of surface pressure the channel (Fig.1). Under the usual assumptions
whose width is comparable with the tank width, of potential theory, fluid motions are described in
Ertekin et al. (1986) solved Green - Nagdhi's terms of the velocity potential 6*(x,y', z', t'),
directed - sheet model numerically. Their which is the solution of the following initial -
calculations have yielded two-dimensional flow boundary value problem. The Laplace equation
upstream and three-dimensional flow downstream, holds in the fluid region
in qualitative agreement with the measurements
they carried out systematically (Ertekin, 1984 and
Ertekin et a1.,1984). Wu and Wu (1987) V4*=0 (-I, SZ . ). (1)
obtained similar results using the generalized two-
dimensional Boussinesq equation. Katsis and
Akylas(1987) calculated some 3 dimensional long The kinematic and dynamic boundary conditions
waves bounded by side walls using the on the free surface at z = " are
Kadomtsev-Petviashvili (KP) equation. Quite
recently, Lee and Grimshaw (1989) studied the
three-dimensional slowly-varying evolution of X= (U+6 ) ", (2)
wave fields ahead of a bottom topography in a
horizontally unbounded fluid domain by using a
forced KP equation. Meanwhile, Bai et al.
(1989) applied finite element method to a t+).+U4 .+l12(V6)9=0. (3)
vertical strut sliding in shallow water.

It is, however, as yet unclear how these No net flux condition holds on the channel
methods with pressure distributions can be bottom
applied to three dimensional bodies such as a ship.
In this respect, Mei and Choi (1987, hereinafter (4)
referred to as I) extended the theory of Mei
(1986) to treat the transient forces on and
responses of a slender ship. They found that the on the channel wall
waves in the far field can be described by one- 0.=0 (-.
dimensional inhomogeneous KdV equation for a ; (5)
special class of channel width (=2w) and ship's
slenderness parameter (=s) as follows; and also on the ship's hull r*=RC(x*,O)
WIL=O( -Y ' ) with Ornsl2 and 8=o(i=Z),
where 2L. stands for the ship length and

1* - h/L = o(1) for the dispersion. It correctly 4,:=(U+-4) R.[l+(R/R) 2 ]"2 , (6)
predicts the upstream solitons, and the estimated
sinkage and trim for a destroyer favourably where r" and 0 are polar coordinates on the
compare with the time - averaged experimental (y*, z) - plane. Under the assumption of
values of Graff et al. (1964). But the theory slender body,the normal derivative on the ship
fails to render three-dimensional waves in the surface has been approximated by that on the
wake. in viewing the result of Katsis and Akylas transverse plane at constant x along the ship.
(1987), it strongly suggests us to modify our Before the initial instant t=O, there was no
theory in their direction. In fact, it was already disturbance
pointed out in I that the KdV equation is to be
replaced by the KP equation, when the canal is
much wider, i.e. w iL = 0(p- ). We have done 4"0, =o (r'o). (7)
it in this paper by following the same scheme
described in I, but for a wider channel.
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In order to solve the problem approximately, (ii) the intermediate field ; x'=O(L),
we employ perturbation techniques by defining
two smallness parameters (y', z)O(h)=O(t.LL), (16)"

e=A/h , ILhL, (8) (iii) the near field ; x=O(L),

and assume without loss of generality e= which • 2
implies that the nonlinearity and the dispersion z )=O(Ro)=O(p3L). (17)
are both important to the leading order solution
of the problem. In eq.(8), A means a typical We shall first analyze each field separately and
wave amplitude. Variables are normalized as then conduct matching by following the line
below: reported in I. Accordingly most parts must be

very similar to those in I and it is already obvious• ,that modifications which will appear are solely
A, . = (gALIU)$, t'= (L1g)t. (9) attributed to the different definition on the length

scale of W/ L. Neverthless steps are explicitly
Herein we rather focus our attention to the flow given here in order to keep this paper self-
near the critical speed. Thus the Froude number is contained.
expanded

F2_ 1-2aj 2  with a = O(1). (10)

3. The Far Field
To cope with the slow variation of flow, we have
to rescale time In accordance with the scheme defined by eq.

(15), the far field variables are madeT'2 ,  (11) dimensionless

The channel is assumed wide in comparison with x=Lx ,y=Wy , z*=hz. (18)
the ship length

The normalization of other variables holds
P/L=I/o with oi%=O(1). (12) effective as defined in eqs.(9) - (11). In this

field, the banks and the bottom of the channel
As pointed out by Mei (1986), the blockage directly affect the propagation of waves.
coefficient s, must have a magnitude of o(p4) However, the boundary condition on the ship hull

is of no meaning and the forcing agency is not
2 known. The governing equation and theS8= R,, / 2Wh=O( , (13) boundary conditions are rewritten in terms of the

dimensionless farfield variables:
where R, denotes the characteristic transverse
radius of ship and the blockage coefficient is .2(.+ 2cl)+ n= 0 (-_Iz : Z (19)
simply the area ratio of the midship section to the
channel cross-section. Consequently the
slenderness parameter must be 4,= I2( 1-2 a L2 )11+ ILj L2,+

= R 0  L = (5 2). (14) + = ,(z t)' (20)

It implies that the nonlinearity arises from the (I -v2aW) ( +i,,) + :'a" +
slenderness of disturbance. 4- rP2(,2.. P

2
.
2

2
2
).4.,h 2j = 0 ,2), (21)

Because of these vastly different length 2
scales involved, it is relevant to divide the channel
cross-section into three regions as: ,j,0 (z-1), (22)

(i) the far field; Ix'<*, y*=O(W)=O(Lp.),

z* (15)y Y=, (23)
z =o(h) =O(4L), (15)
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Substituting the expansions 1,2r)= (z.o). (30)
2 ",o-' 

(30

4,.,,t,°+ ~.2j)+ , . .• • •, (24)
It is the homogeneous KP equation, which is the
three-dimensional counterpart of the KdV

tt(o) +2 () + +..., (25) equation, since it contains the transverse
dipeqrsion as well as the longitudinal dispersion. If

into eq.(19), we obtain )0, the KdV equation is recovered.
An observer in the far field is too far away

,,(°)=o, (26a) from the ship so that he just observes waves
without knowing the details of wave generation,
which can only be found through matching with

,()=-,.,(2). (26b) the intermediate field. For this purpose, we
need the inner expansion of the far field potential
for small y

(')- )+-Q 04 (26c)
-r ,g ',O'ryy :", =, °)x,o,)+ho4°i(x,O,T)+ p2t , k>x,iJ,')-

With help of no flux condition on the channel
bottom, the general solution straightforwardly -(+1) 2 'k=°]+°( )" (31)
y4elds to 2

S(°)= (°)(X'y,¢), (27a) 4. The Near Field

1) + (27b) In a fluid domain close to the ship, the
2 characteristic length is Ro and thus let us

nondimensionalize the near field variables

(4)-=/(4)(XY ) -+1 + 2,p.,)) +

2
1 4o

(27c) r=RF, R'=RoR, (32)

where p(") are unknown functions to be determined but retain the rest of the normalizations. The
later by matching with the intermediate field Laplace equation is now transformed for
potential. The free surface elevation is derived -<
from the dynamic condition, eq.(2 1)

(z=o), (28a) 824, +4, +, =o.  (33)

On the free surface at Y=(/s), we have
X "* 2 = 2 (28b)

Utilizing the above relations, the kinematic + P (34)
condition of 0 (4) on z =0 turns out to be + +

Q,(4)(2)+-(O)-2ur)-r 2 (O)() (:=o). (29) (1- 2.1,2)(t + -0,)+ v Rl32'i4,+
, , .9, *, .,

1 ?[X? ? - . -? -(35)
Combining eqs.(27) - (29) and differentiating with + 2 1%t ('44 r]+ o =. 305

respect to x, we finally get the leading order wave
equation On the ship hull F=k(x,o), the condition is

o 4 6 o_ O;=(/)2(R - 2 ILJ +  x
[1+ (WO / R) 2 ]-1. (36)
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As already discussed,the slenderness parameter is determined
a saml quantity of o(t 2) and thus we suppose
the following expansions: q= 2 F2  46)

(37) 'no 8

where s8 is referred to the blockage coefficient(0 ) + (38) and S(x) to the longitudinal distribution of the
cross-section area of the ship. It is reminded that

the blockage coefficient has a magnitude of O( 4 )
Then the Laplace equation and the boundary near the critical speed, i.e. F = 1 + 0(R2). For the
conditions are readily expressed as below: sake of matching with the intermediate field

solution, it is necessary to expand eq.(44) for large
$(").+ "=O (-** < fs 0, n=0,1,2), (39)

"=0 (F= 0, n = 0, 1,2), (40) To"()x' )  2i()xr q n ]+ .. (7

Z(')=_$ To) (zo,(41)

5. The Intermediate Field

T")=o (r=,W, n=Ol), (42a) Here the proper reference length for y* and r*

is h, hence we introduce the dimensionless
TX(2)=k x [1+ ('ff/ )2 j-1,2 (F=,f), (42b) intermediate coordinates

~~~*h ,i(~ r*=)2  (48) (2b
From eqs.(39) and (40), it is clear that ) may be y=Y, r=hi, (48)
absorbed by (0). The leading-order problem is of
homogeneous Neumann type, of which solution and keep all other normalized variables
formally takes the form defined in eqs.(9)-(11) and (18). The

nondimensional equations are
$(°=.(°)x,),(43)2

IL2 b.+, fi+ o,0 (_-I . t• L2C), (49)
The next-order solution contains a particular part

owing to the inhomogeneous term in eq. (42b) = p.4 / ±+ 2(22) +

$(2)=f(2)(x,)4 )., ,z ,). (44) + 4 + 2 ,9 (z (50)

The particular solution represents the disturbed (++
flow due to the motion of the ship,of which outer 1 2 222 2
approximation for large F will prove to be more +2 ++ o = (51)
meaningful in the viewpoint of matched asymptotic
expansions. For large F, the ship shrinks to a line
source and thus $ 2ris expressed (52)

-(,2) 1qX,)I n F + C(X,T), (4)t2 P2 0)f-,

(F =R0 (53)where q stands for the source strength and c may (5be regarded as a part of f(2)(xj).

Applying the law of mass conservation to the In anticipation of matching with the near field,
fluid domain surrounded by the ship, the free we introduce expansions in the form of ecjs.( 37)
surface and a control surface located far away and (38), with T and replac, .1 by k and
from the ship, th'v source strength is readily 1,respectively, it then follows
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4 )  +j =-  (-1 : Z0, n=0,1), (54a) P(2) - y(61)

( += =-,(0). (54b) so that the outer expa-sion of the intermediate
field is, in terms of the far field variables

From the Taylor expansions of the conditions on
the free surface, we get q 2  L+ 2  (2_1)2j.)]+..(62)

0 Z =( =, =,, =O,1), 
(55a)

Matching provides useful information:
(°,),O) (z=O), (55b) f (63)

It is immediate to have
4 0 SBql(O(,,T ==-=. (64)

s(0) *(0)(r) (56a) 2q 42' 4*

$(2)=P2 (X,T )- I(z+ 1  0+ (56b) Differentiating eq.(64) with respect to x and
2 recalling the relation of eq.(28a), we finally get the

-(2)boundary condition for 0) at y=0

The particular solution c,4; again corresponds to
the response to a line source at the ship's 1
centerline, hence takes the following form for (0 )(x,O,T)= --- 23S,(x). (65)
small P

$(2) 1 in In I in (57) We realize that the result thus obtained is

, 7-(x,j ( basically the same as those Katsis and Akylas
(1987) derived.

The solution has the inner expansion Once C) is calculated, q,(O)=f()-=/O) is known.
Since the leading-order dynamic pressure is

(0) linearly proportional to the surface elevation, the
'j()(x,)+ tt[ j(

2
)(x,)- +f,)-l forces and moment acting on the ship can easily be

evaluated by invoking the slender body
SI( approximation. The implied sinkage and trim

+"I in( r-)]+.... (58) may be estimated from the hydrostatic relations
(Tuck, 1966), which are given in I.

Matching with the outer expansions of the near
field results in the relations

q=4, (59)

f (°)(X,"r)=A "°)(x, (60a)

f(2)( i.)=f 2 (xT)- 1 ) (60b)

/(2)(2

The source strength measured in the
intermediate field is indeed idendical with that in
the near field. Fr6m mass conservation, the
approximation fo- $P(2) must be
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6. Numerical Results S(x)f1-x2  (Ixi 1: 1).

To further investigate the wave field and In Fig.2, the evolution of the wave field at the
resulting hydrodynamic forces, we have to rely on critical speed is illustrated with time interval
numerical computations for the homogeneous KP AT=0.2 up to T=1.0. The parameters are chosen
equation with proper boundary conditions. In as below:
contrast to the KcV equation, only a few
literatures are available, in which numerical
methods for the KP equation have been p=h/L=0.25, WIL=1.0 (',%=4.0),

discussed. Katsis and Akylas (1987)
applied an explicit finite-difference method for the
standard KP equation and investigated the wave SB=0.105 (0=25,6), F=1.0 (a=0.0).

patterns due to normally distributed pressures in
shallow water laterally bounded and unbounded. The blockage coefficient seems somewhat too
We adopted their scheme. To facilitate large for our theory to be valid. Neverthless this
calculations, it is convenient to integrate eq.(30) case is taken up, because it is possible to
with respect to x compare with the experimental and numerical

results of Ertekin et al. (1984 and 1986). They
(0) + 3 1(0)1 2 X calculated Green-Nagdhi's model for a rectangular

r°,r)+3r(°)r)+lr°+ yd(X)z, (66) pressure patch,which should be roughly equivalent
,,- 2" 6 " 2 "'d -' to a ship with blockage coefficient, S8 =O.lO5, in

where use has been made that t(0) and its the viewpoint of the hydrostatically displaced free
derivatives must vanish far upstream. If the surface. The figures are exaggerated vertically by
integral term on the right hand side of the above 2.5 times. It is to note that 1 r corresponds to
equation is neglected, it becomes the standard their nondimensional time uTvh=64. During this
KdV equation. time span, the ship advances a distance of 8 times

In the discretization, simple forward the ship's length.

differences are implemented for time derivatives, At T=0.2, three-dimensional waves emerge
and central differences for spatial derivatives, ahead of the ship. A depressed region is built
But at the wall and the centerline of channel, therebehind, which is followed by a train of
one-sided differences are used instead of the complicated ship-bound waves in the wake and
central difference, and the boundary conditions, also reflected transverse waves far downstream.
eqs.(23) and (65), have been incorporated. As time elapses, the upstream waves develop
Integrals are evaluated by trapezoidal rule. From further and gradually become straight-crested as
diverse numerical tests, the scheme has proven to they are reflected from the wall. The first soliton
be stable for almost completes its formation and becomes two-

dimensional at r=0.4. The second soliton starts to
take its shape at r=0.6, while the first soliton

Ax-O.1 , Ay=0.l , A =0.00002 steadily propagates upstream and the depression is
being elongated. At r=1.0, the second soliton is

with the ship's length as 2.0 spanning from completed and the third one begins to appear.
x= -1.0 for bow to x= 1.0 for stem. These values Such a trend can also be recognized in Ertekin et
have been used for all computations in this work. al., but the waves downstream here look more
As Katsis and Akylas pointed out, reflected waves ship-bound.
from the numerical boundaries far upstream and In Table 1, a comparison is made for the
downstream seriously deteriorates the result. amplitude, propagation speed of the first soliton
Several devices for radiation condition have been and the period of first two solitons. It is to note
tried without success. Thus the computation that the amplitude was taken at T=1.0 (UTh=64),
domain is taken as large as possible and the portion since it continuously increases during the
is discarded, where numerically reflected waves developing phase. Let us first compare prsent
are apparent. To save computing time, it is results with those of Ertekin. The propagation
advised to begin with a small domain and to speed agrees excellently,but significant deviations
enlarge it continuously as time passes. exist in amplitude and period. It is not probable

Our primary concern is to examine the that these are caused simply by numerical
generation and propagation of solitons by a ship. round-off errors. It was concluded in the works
For this purpose, let us consider a slender ship of Ertekin et al. that the amplitude increases
whose cross-sectional area varies parabolically and the period is shorter as the blockage is
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larger, and the details of the disturbance is less the ship are dominated by the generation and
important. The blockage co.fficient is identical radiaton of solitons. The wave resistance and the
in both cases, but the presumed ship of Ertekin trim fluctuate in phase with the periodic soliton
is much fuller than our slender ship. It might act emission, while the sinkage takes place out of
as a stronger forcing agency and result in higher phase. It seems unlikely that a steady state will be
amplitudes. If it is true, then the present period attained in time.
should have been longer in order not to contradict To assess the effect of ship's speed, we
the measurements. But it is not the case and let consider the same slender ship as above but in a
us leave it as open question. Now we turn to Bai slightly deeper channel
et al.(1989) who applied finite element method to
a vertical strut sliding in a shallow channel.
Their result is closer to the present for amplitude, 1L=0.3 33 , I-3.0 (w'L = 1.0),
but to Ertekin for period. The propagation speed
is slower than both. We may postulate that it is
attributed to the different mathematical models. 13"5.0 (s8 0o.62)
But no clear-cut conclusion can be drawn at this
stage. for five speeds : two subcritical speeds

a=2.5 (F=0.667) and a=1.0 (F=0.882), critical speed
a=0.0 (F= 1.0), two supercritical speeds
a=-1.0 (F=1.106) and c=-2.5 (F=1.247). The

Table 1 Soliton amplitude,propagation speed wave resistance,sinkage and trim are plotted in
and period for 13=25.6 at c=o.o Fig.5,6 and 7 in this order. At transcritical

speeds, the wave resistance indeed oscillates. The

A /h c J'M Tg h amplitude of oscillation reaches its maximum not
--- Azat the critical but at a slightly faster speed, and the
i period becomes longer as speed increases, which
SBai 0.553 1.24 30.0 supports the experimental findings. At the low

Ertekin 1 0.6248 1.280 29.6 subcritical speed,the wave resistance increases
I upto a certain threshhold with an intermediate

Present 0.5625 1.281 28.8 step, and it arrives at a near - steady state. At
, _ _Ithe high supercritical speed,the wave resistance

initially reaches a maximum and then diminishes
with time to a small steady value.

Fig.3 shows the wave profiles along the Similar trends are to be observed for the
centerline and the wall of the channel at -=i.0. sinkage and trim in Fig.6 and 7. It is to note
The completed first soliton assimilates each other that the sinkage oscillates around zero at the
closely. But there is a slight difference on the critical speed and it becomes negative (lift up) at
rear side of the second soliton, because a new supercritical speeds. Generally speaking, the
soliton is just about to burst. A train of overall behaviour of the wave resistance, sinkage
modulated wave packets follows a depressed and trim is quite similar to two-dimensional cases
region, which is directly reponsible for the sinkage described in I, as long as the channel width is not
and trim of ships. The downstream configurations too wide and thus the flow around a ship is chiefly
are in general quite dissimilar. affected by upstream solitons.

The time evolution of the wave resistance, The variation of soliton amplitude, propagation
sinkage and trim is depicted in Fig.4. The wave speed and period according to ship's speed is
resistance and sinkage are normalized by the listed in Table 2. The amplitude given here is
displacement and half length of the ship, referred to the computed value at r=3.0 for the
respectively, while the trim is in degrees. Positive first soliton. The numbers in parentheses
values indicate resistance, downward sinkage and designate the experimental counterparts. The
trim by stem. The computed sinkage and trim difference in emission period is again remarkable.
are cf qu .itativC mAing onl , b aus no However, it can be buid (ht theoiy provides at
dynamic effects are included. Caution should be least crude predictions.
paid on three differently-scaled ordinates. All
these quantities rise initially from zero to first
maximum and then oscillate around mean values.
The oscillation period is approximately rg=0.45 in
coincidence with that of soliton. It reflects the
fact that hydrodynamic forces and their effects on
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extreme corresponds to the first maximum and
Table 2 Variation of soliton amplitude, propagation the second extreme to the first local minimum.

speed and period for three ship's speeds The extremes and their deviations take greater
values as the channel becomes narrower. For
sinkage, the first extreme represents lift up for
W . L=0.5 and 1.0, but downward sinkage for

I A h .ClI~ Uogih W/L=3.0. The ship sinks more in average in a
6 1.31 50.8 wider channel. The time intervals between two

a=-1.0 (0.60) I (1.26) (53.7) extremes for all three quantities are consistently
0.4 and 1.7 for W IL=0.5 and 1.0, respectively.

CE= 0.0 0.45 1.21 40.5 But there is no such a correlation for W / L =3.0.
(0.49) (1.20) (49.5)
0.29 1.1) 31.0 Hang S.Choi would like to thank the Korean

= 1.0 0.29 (1.13 31.0 Science & Engineering Foundation for financial
(0.26) (1.12) (41.6) support. He also wishes to thank I.H.Cho, a

graduate student at Seoul National University, for
his drawing pictures.

Next we examine the wall effect on the
response at the critical speed. Three channel
widths are chosen as WIL=0.5, 1.0 and 3.0, while
the channel depth and the ship are kept unchanged References
(..=0. 333). It implies that the corresponding
blockage coefficients are 0.123, 0.062 and 0.021. Akylas,T.B. 1984 On the excitation of long
Fig.8 a - c show the wave fields at T= 1.0, when nonlinear water waves by a moving pressure
the ship moved a distance of 4.5 times the ship's distribution. J.Fluid Mech. 141,455-466.
length. The vertical scale is stretched by 3.2 Bai,K.J., Kim,J.W. and Kim,Y.H. 1989
times in comparison with those on the horizontal Numerical computations for a nonlinear free
plane. Since the lateral coordinate is normalized surface flow problem. to be presented at the 5th
by the half width of the channel in all cases,the Intern. Con]. on Numerical Ship Hydrodyn.
banks are designated by -1.0 and 1.0. For a wider September, Hiroshima.
channel, it is necessary to reduce Ay for a better
resolution. For IVL=0.5, there is an indication Ertekin,R.C. 1984 Soliton generation by moving
that the second upstream wave develops on the disturbances in shallow water : theory,
back of the front waves, whose crest line is spear- computation and experiment. Ph.D. Thesis, Univ.
headed. The depressed region is relatively long Calif. Berkeley.
and the downstream waves are pronounced. For Ertekin,R.C., Webster,W.C. & Wehausen,J.V.
IVL=3.0, there is no sign for upstream- 1984 Ship - generated solitons. Proc. 15th Synip.
propagating waves and diverging waves with large Naval Hydrodyn. Hamburg, 347-364.
run angle prevail. The downstream waves are
hardly two-dimensional. Katsis and Akylas Ertekin,R.C., Webster,W.C. & Wehausen,J.V.

(1987) suggested that the maximum canal width 1986 Waves caused by a moving disturbance in a

for which the downstream waves remain to a shallow channel of finite width. J.Fluid Mech.

reasonable approximation two-dimensional 169,275-292.

depends on crudely the source characteristics. Graff,W. 1962 Untersuchungen ueber die
They found that the maximum channel width is Ausbildung des Wellenwiderstandes im Bereich
about 20 h for an elongated pressure distribution. der Stauwellengeschwindigkeit im flachem, seitlich
Since we are dealing with a slender ship, it may be beschraenktem Fahrwasser. Schifftecluik,
possible that the downstream waves remain Bd.9,Heft 47,110-122.
practically two dimensional upto a certain range
of channel width. But we have not attempted to Graff,W., Kracht,A. & Weinblum,G. 1964 Some
confirm it. extension of D.W.Taylor's standard wries.

........ wvrstnTrans.Soc.Naval Arch. & Marine Engnrs. 72, 374-The wave resistance, sinkage and trim are 401.

summarized in Table 3. Again the resistance and

sinkage are made dimensionless with the Huang,D.-B.,Sibul,OJ. & Wehausen,J.V. 1982
displacement and the half length of the ship. Trim Ships in very shallow water. Festkolloquium zur
is in degrees. First two extremes are given with Emeritierung von Karl Wieghardt, Institut fuer
the nondimensional time in parenthesis at which Schiffbau, Hamburg Univ. Bericht Nr.427, 29-
they occur. For resistance and trim, the first 49.
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Izubuchi,T & Nagasawa,S. 1937 Experimental Tuck,E.O. 1966 Shallow-water flows past
investigation on the influence of water depth slender bodies. J.Flidd Mech. 26,81-95.
upon the resistance of ships. (in Japanese) Japan
Soc. Naval Architects, 61, 165-206. Wu,D.M. & Wu.T.Y. 1982 Three-dimensional

Katsis,C. & Akylas,T.R. 1987 On the excitation nonlinear long waves due to moving surface

of long nonlinear water waves by a moving pressure. Proc. 14th Symp. Naval Hydrodyn. Ann

pressure distribution.Part 2.Three-dimensional Arbor,103-129.
effects. J.Fluid Mech. 177, 49-65. Wu,D.M. & Wu,T.Y. 1987 Precursor solitons

Lee,S.-J.,Yates,G.T. and Wu,T.Y. 1989 generated by three-dimensional disturbance

Experiments and analyses of upstream-advancing moving in a channel. Proc. IUTAM Syrup. on

solitary waves generated by moving disturbances. Nonlinear Water Waves, Tokyo,69-76.

J.Fluid Mech. 199, 569-593.

Lee,S.-J. and Grimshaw,R.H.J. 1989 Upstream-
advancing waves generated by three-dimensional
moving disturbances. to appear in Physics of Fluid.

Mei,C.C. 1986 Radiation of solitons by
slender bodies advancing in a shallow channel. Table S First two extreme values of wave resistance
J.Fluid Mech. 162,53-67. sinkage & trim for a slender ship in channelswitha different width (cx = 0.0, p.= 0.333)

Mei,C.C. & Choi,H.S. 1987 Forces on a slender

ship advancing near the critical speed in a canal. W/L 0.5 1.0 3.0
J.Fluid Mech. 179,59-76. Rw 0.140 (0.7) 0.105 (1.1) 0.085 (2.1)

Thews,J.G. & Landweber,L. 1935 The influence 0.101 (1.0) 0.074 (1.8) 0.082 (2.8)

of shallow water on the resistance of a cruiser S -0.008 (0.5) -0.005 (0.8) 0.017 (0.5)

model. US Exp. Model Basin, Navy Yard - 0.013 (0.9) 0.014 (1.5) 0.011 (1.9)

Rep.408. "T 12.082 (0.6) 8.827 (1.0) 7.900 (1.7)
8.334 (1.0) 6.456 (1.7) 5.894 (3.9)

2W 2L

Fig.1 Definition sketch of a slender
ship advancing in a channel
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" (b) T = 0.4

1 i(C.).T==0.6

o.(d), T 0.8

o-
o )T= 1.0

Fig.2 Evolution of wave field generated by a slender ship
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Fig.3 Wave Profiles along the centerline & the wall of channel at =1.0
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Fig. Evolution of wave resistance, sinkage and trimfor a slender shir
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450



Rw

a-.O a='1.0 a =0.9
C;
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Fig.5 Evolution of wave resistance on a slender ship
for five different speeds

(3=5.0, -q= 3. , IL 0.333)

5.0, =3.u, = 0.33
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Fig.7 Evolution of timkg for a slender ship
for five different sees

(3=5.0, ,q, 3.0, p. = 0.333)
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i (a) WI L =0.5

(b) W, IL =1.0

(C) WIL: 3.0

Fig.8 Wave pattern generated by a slender ship

for three different channel widths at • = 1.0 (a = 0.0, = 0.333)
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DISCUSSION additional assumption that the depth Froude
by R.C. Ertekin number is expandable near the critical value.

We have done it to obtain the two-dimensional
I would like to make a few comments before Kdv equation or KP equation. Consequently it

asking some questions on the points that are is obvious that our theory is valid for
not clear to me. transcritical speeds.

Precursor soliton generation is not In reply to the question about the
restricted to the critical speed. These waves comparison of wave resistance with
have been observed and reported for Froude experimental data, we tried to calculate for a
numbers as low as 0.2. The theory you used destroyer model. But still more computations
may be restricted to critical speeds but the are necessary before we are able to arrive at
phenomenon is .iot. a conclusion.

Soliton speeds are not necessarily faster
than the towing speed always. As Fr -1.3 DISCUSSION
solitons form a bore attached to the bow. by T. Inui
Around critical speed if the soliton amplitude

is very low it is also possible that the This morning's Session (Session 7)
soliton and model speeds are almost the same. reminded me my undergraduate diploma thesis
For all subcritical speeds it is not clear (1943) on "Restricted Water Effect on Ship is
that steady state cannot be reached, since Wake" (1943).
soliton amplitudes (if 2nd, 3rd, etc.
solitons) decrease as the ship continues to We measured the wake at two lengthwise
move forward. In some cases, solitons would positions, i.e. at midship and at the
no, have been generated if we had a model tank propeller position, and we also traversed in
which is very long. beamwise direction at midship. For the

midship wake, which is approximately
I am surprised that Sommerfeld's condition "potential" wake, we found an unexpectedly

did not work in your case. We have had no good agreement between our measurements and
problem so far at the open boundaries. Kreitner's simple I-D theory. The three
Perhaps something went wrong in the different flow stages, i.e. subsonic, tran-
implementation process, sonic, and supersonic, were clearly obtained.

I am curious why you have not compared Couple years later, I applied linear wave-
your resistance results with the experimental making theory to this phenomena (1946), and
data. Could you please comment on this? found that

i) For purely shallow water dRw/dV is

Your theory seems to be valid at Fr=l. discontinuous at Fh=l, and
However, most practical ship speeds are well ii) For restricted water Rw is discontinuous
below that. Can you extend the theory for at Ph=l.
subcritical speeds which may be low? If you However, naturally, I could not succeed to get
can, your method will be much more efficient theoretically the transonic region. Since
than a numerical method which is valid for all then it was my dream to bridge this gap by
Froude numbers. CFD, because it is essential to take into

account the bodily sinkage and squat for the
Author's Reply hull boundary condition.

Prof. Ertekin's discussions are highly The authors already obtained the first
appreciated. Since we have no experimental approximation for this. Then you may have a
experience, your comments on the phenomena sufficient possibility by applying iteration.
observed during tank tests will be much The authors' comments are highly appreciated.
helpful for our further research.

Author's Reply

It is not to mention that the Boussinesq
equations are effective over a wide range of We thank Professor Inui for the comments

speed in shallow water, once the corresponding on his own research. In response to it, we
Ursell numoer is close to unity. It is also would like to emphasize once again that both

true that the expressions are rather the nonlinearity and the dispersion are
complicated and an immense computation is important to the leading-order solution for
required. For a simplification, we need an the flow caused by a moving disturbance near
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the critical speed in shallow water, and that

a steady state can hardly be attained.

To the question, direct approaches such as
the works Prof. Bai and Prof. Ertekin

presented at this conference may give a better
answer by taking the instantaneous hull-
boundary condition exactly into their

numerical schemes at the expense of a rapidly
increased amount of computing time. In our

slender-body approximation, it can be done

only indirectly, if we include the temporal

variation of the longitudinal distribution of
ship's cross section in terms of source

strength.
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Some Numerical Computations about Free Surface Boundary Layer
and Surface Tension Effects on Nonlinear Waves

E. Campana
Universiti "La Sapienza"

Roma, Italy
F. Laili and U. Bulgarelli

latituto Nazionale per Studi ed Esperienze di Architettura Navale
Roma, Italy

Ah irlat fluid velocity vector
vorticity vector

This paper is a first approach to 9 density
the development of a full nonlinear T = surface tension
numerical method implementing the k = wave number
exact boundary conditions, taking into v = group velocity
account viscosity and surface tension Y = kinematic viscosity
effects at the free surface. At this g = acceleration of gravity
step, the following results have been p = pressure
obtained, maintaining the simplicity of Rw = wave resistance
the collocation method proposed by z velocity potential
Dawson [5]: = perturbation potential
1) effective fully nonlinear O = simple layer density

numerical procedure, taking into r p-qj
account the effects of viscosity at the r* p-qi
free surface on potential flow; p = field point
2) simple preliminary results for the q = source point
linear gravity-capillarity problem. q* = image source point

All the obtained numerical results
have been tested with analytical
solutions or experimental results.

The Rankine source method has been
succesfully adopted in recent years for
the numerical solution of potential
free surface flows.

List of simbols In the usual approach the free
surface boundary conditions are
linearized and applied on the

Oxy frame of reference fixed with undisturbed free surface. Then, using
the body : Ox is oriented in the simple layer potential function,
the opposit direction of the the boundary value problem is reduced
body velocity V, Oy is to an integral equation which can be
vertical upwards solved numerically.

D = body surface With this approach, in 1977 Dawson
L = characteristic body length (5] proposed a simple and effective

(chord) procedure for computing the wave
h depth of the body center resistance of ships in the steady-state
S = free surface case. Such procedure was based on the
n = unit vector normal to and S idea of writing the above mentioned
(x) = cartesian equation of the linearized boundary conditions along

free surface the zero Froude number flow streamlines
K = curvature of the free surface on the undisturbed free surface.
1 = curvilinear abscissa defined in the wake of Dawson's paper

along S several studies have then appeared in
= free surface boundary layer literature; some Authors deal with the
thickness linear problem, discussing about the

J(U,O) z body velocity vector consistency of different kinds of

455



linearizations [9,13]. the numerical case of Re--oo , the usual Bernouilli
implementation of the radiation condition is obtained.
condition [10,12,141 or the numerical Numerical results have been
stability L12]. computed for the full nonlinear
On the other hand some Authors, formulation in the presence of a free
maintaining more or less the simplicity surface boundary layer, while simple
of the collocation method, and the use linear results are presented for the
of an upstream finite differences gravity-capillarity inviscid problem.
scheme [5] for the radiation condition, In order to validate the
proposed some kinds of iterative capability of the proposed model,
procedures to solve the nonlinear numerical simulations of somL typical
problem [6,11,15]. test problems are described and

The present paper is a first discussed.
approach to our future aim to develope
a full nonlinear method, implementing
the exact boundary conditions taking
into account viscosity and surface
tension effects at the free surface. a &tiut i 12Iaaimia

This combined gravity-capillarity
problem is interesting because can give We consider the following
some more informations on nonlinear mathematical formulation for a 2D
waves behavior, with respect to the steady state potential flow, due to the
classical model which neglects surface motion of a submerged non-lifting body
tension. As a matter of fact, Longuet- in a fluid of infinite depth. The
Higgins [ 2] proppsed a model for the extension to the 3D case can be easily
nonlinear transfer of energy from steep obtained. The velocity 1=(U,O) of the
gravity waves to capillary ripples, body is directed in the negative x
which "ri4e" on the forward faces of direction, the y axis is positive
the long waves. In this case the upwards and the undisturbed free
surface tension can be locally surface level is given by y=O.
important and play a significant role Consequently the fluid domain D is
in the generation of waves by wind. bounded on the upper part by a free
Furthermore capillary waves, taking boundary S, and it is unbounded in the
energy from gravity waves and loosing other directions. We assume that the
it by viscosity,tend to delay the onset fluid velocity, q=(u,v), can be written
of breaking. as:

On the other hand Maruo and
Ikehata, in an experimental work £8), (1) 9 Vt
pointed out the importance df surface
tension on the shape of the wave where
pattern around the model, in particular
at the forebody; how wave resistance (1')
coefficient depends also on the Weber
number is furthermore shown in [8]. In (1') the term Ux is the undisturbed

Among the free surface phenomena, flow potential and the term fCJXq) takes
the presence of a thin boundary layer into account the interaction between
can also be. considered. All real fluid the free surface and the body. Let be
motions are of course rotational; even y= (x) the cartesian equation of the
in nearly irrotational flows the free boundary S, and I a curvilinear
relatively small amount of vorticity abscissa defined along S.
present in thin layers, can be crucial The potential 4 (x,y) satisfies
in determining the main flow Laplace's equation inside )Vi , where
characteristics, as it's well known. v U B C Iz is the body:
The condition of vanishing of the
tangential stress at a perturbed free
surface cannot be satisfied by an
irrotational motion. Consequently we (2) V4( )O (n13)e :-FI 4 (4
regard the incompressible flow as a
combination of a thin rotational free
surface layer and a potential flow
region. The uxacL drounL of Lhe The following boundary conditions,
vorticity jump generated at the free which include the effects of surface
surface can be written as a function of tension T , must be associated to
its curvature and of the potential equation (2)
velocity [4].

So we obtain a nonlinear dynamic
boundary condition including viscosity z.
effect at S; of course in the limiting (3) Z 0 on S
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Therefore, in this case, the linear
r. model describing the motion of a

(4) K on S submerged body is constituted by (2),
t j. (5), (6'),(9) and (8) or (3'). It isworth to notice that, for this

(5) 2O on 6 formulation, theorems for solution
existence and uniqueness have beengiven in r7J.

(6) lirn Ivi bounded

jf 0 2.2 The linear formulation with TO

Here K(l) is the curvature of S, Without neglecting surface
considered negative when the centre of tension, conditions (9) and (8) can be
curvature lies on the fluid side of the written as:
free surface:

T T
0 ) +?I--f 1 .T tV=

(1 T on y=o

From now on, in every model we

will present, an extra boundary Hence, in this case , the linear model
condition must be imposed at the botton is given by (2), (5), (6), (10) and
of 1 whenever the domain is supposed (11) or (3').
to have finite depth.

We are going to consider different

kinds of approximations for the problem 2.3 The nonlinear formulation with T=O
previously described, in which the
boundary conditions given on S, In the nonlinear case, with T=O,
obtained from (3) and (4), are suitable condition (9) becomes:
for computational purposes. More
precisely four models are delineated.

(12) 1- +2110 on S
tL n

2.1 The linear formulation with T=0
while the nonlinear Bernouilli equation

Assuming T=0 in (4) and neglecting give:
the nonlinear terms both in (3) and
in(4), we get the linearized free -

surface conditions: (13) -=  on S

Therefore the nonlinear model,
(3') U' i . on y=O neglecting surface tension, is given

Ix T by equations (2), (5), (6). (12) and

(13) or (3)

2.4 The nonlinear formulation with T#0

and the well known Neumann-Kelvin
condition: Assuming T*O, the unified free

surface condition is obtained by
eliminating NL between (3) and (4):

(9) (14) +K on S~

hcrc, for the condition at infinit, (1
we have (see 2.6): So the nonlinear model with surface

tension is given by equations (2), (4),
(5), (6), (14). It is worth to observe

(6') Jim VV'i V that conditions (3) , (10) , (12) can
x - -o be easily deduced from (14).

In the sequel we confine ourselves
to consider the models given in 2.3
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and 2.2. (16" V1='VX4

2.5 The effect of viscosity at the
free surface

and, for y=' (x):

Let us consider the model

described in 2.3, in which we will
introduce, in the hypothesis of large
Reynolds numbers, the modifying effect (17) V
of viscosity. Z

The introduction of a boundary
layer at the free surface can be
considered as a first step of a zonal Since the integral on the left hand
splitting of the global problem into side of (17) is path independent, we
several interacting ones: can integrate both sides of (17) along

- the irrotational subdomain; S, which in the steady flow is a
- the boundary layer at the free streamline. Requiring that:
surface;

- the boundary layer about the body lim Jq U
- the wake; --- 0

Furthermore the new dynamic
boundary condition improves some we obtain:
convergence properties of the numerical
procedure [15].

To deduce the above mentioned I1 Jl IX
condition we start from the (18) 9. cpq
consideration that the irrotational 1 2--
motion does not fulfil the condition of Co
zero tangential stresses at the free
surface (if the free boundary has a non since SX4.J =0.
zero curvature). Consequently, we The kernel of the curvilinear
introduce into the model given in 2.3 integral can be trasformed as follows:
a partition of the flow field into an
inviscid region, free from vorticity,
and a thin viscous layer at the free (19) (VxK ) ! - _ -
boundary. Across the second region a
vorticity jump, connected with the
curvature of S, is considered, as well where n is the unit vector normal to S,
as the consequent velocity jump, due to oiented outwards.
the viscous component inside the By substituting (19) into (18), we can
boundary layer. In fact, although a easily get:
rigid boundary is the commonest source
of vorticity, in the case of a free
boundary the vanishing of the
tangential stresses generates vort)city t

and consequently a viscous boundary (20) =) -- - -.N +
layer. Across this layer the above- -l
mentioned finite jumps of the velocity -o
and of the vorticity are generated.

To include the effects of the
vorticity at the free surface, we The normal derivative of , if
start from the steady Navier-Stokes the viscous layer is sufficiently thin,
equation: can be expressed as the ratio between

the vorticity jump across the boundary
layer and its thickness6:

(15) V(.V9 = _9.
- - ' 2 (21) __

where + , is the Now we shall use Helmholtz
dynamic pressure, is the atmospheiic decomposition and a boundary layer
pressure and is the fluid density. approximation to evaluate the above
By using the following identities: mentioned vorticity ,and velocity jumps,

in terms of the velocity potential
16') •. 9 ))jK~ grdient an d of the geometrical

.. curvature of the free surface. The
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expression of & can be readly obtained from (25) in the limiting case
evaluated C41 as: of 6-- 0 (i.e. Re- oo).

(21') A Iv I 2.6 An integrodifferential formulation
for the gravity-capillarity problem

Moreover an extimation of the Let's consider now the linear
oscillatory boundary layer thickness problem with surface tension described
can be given [4] by: in 2.2. We are going to develope some

mathematical calculations in order to
obtain an integrodifferential formula_

(22) tion, in which the third order deriva_
tive present in (10), that create some
difficulties for numerical implementa

Furthermore we observe that the tion, does not appear. Moreover, we
velocity distribution in the fluid intend to explore the behavior of the
domain can be decomposed as: solution.

Solving (11) with respect to
=Vf+ " it follows:

where q r is required to satisfy: P- L FCX)

(2-6) 1~ T = -

In particular the velocity at the free that is:
boundary can be thought as the sum
of IJV and the jump A19,I of the .-- F ( - 1
rotational component .across the (27) NVx) e A.+ £() +
boundary layer. This jump can be L 2J
estimated [4]: 0

(23) At%.I 't [~'~A-.(
hence, we have: 9. k 0

(23') l t l+ l - +
-- where A4. and A are arbitrary

J f = I constants, and O. - /
Since S is bounded for Ixl-- 00, we
find:

By introducing (21),(22),(23') in (20), A P--
neglecting teims of order we get: 2,a(

:= f _ ± 2.
(24) A -4X)

+ e 5- and hence:

-D(28) if(X)J _ 0 0
The unified free surface boundary ( 2XL=

condition is obtained from (3), (24):

(25) (1 4d +< eJ4- (_ j

2, , K) 0 At this point , three different
Sformulations, involving respectively

T" , o t andbuc will be obtained.
W:e observe that the usual inviscid Substituting the expression of 'F4)

nonlinear dynamical condition can be and integrating by parts we get:
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The relations (30), (31) or (33)

can be used instead of (10), to avoid

(9 () A - the calculation o f the Lthird order(29) W= derivative y 1y the

numercal fXXY or, 'f'YYthnumerical implementat ion.

We notice that from (32) we obtain

-OixJ "5 ](9) when T--* 0 , that is o/ --+ o0.

In order to study some properties
2 of the solution, we consider the simple

free wave problem, given by (2), (10),
(11); by me.ans of the -ieparation -)f
variables we can write, up arbitrary

From (29), deriving with respect to x constants:
and applying the kinematical condition

(34) Re

U where k is the separation constant.
(3) T- 4.4- Substituting (34) in (10) we get the(30) lop dispersion relation:

The formulation involving with: 14~.{..A

follows directly from (28), de iving ZT
with respect to x 'and using again
condition (3'):

oV4

(31) elHence,. if g or T lo 0 we obtain
( ).T x respectively:

d yX -t =: (pure gravity waves)
e e cnd th s

00 (pure capillary waves)

Since we consider the steady case.

Finally, to get the last expression the phase velocity is zero, while the
with , we integrate by parts group velocity is given by:

~(36) vr = -

(32) P-4 d - (36 -

x which can be writtent

and the unified condition is obtained (37) T
as above: 4&T

(33) 2a [ J The positive sign must be chosen for
gravity waves, and the negative one for

_ e (e.t €I capillary waves: it is easy to
) T recognize that the group velocity is

positive for the formers, and
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negative for the latters. So it follows
that gravity waves and capillary. -
ripples propa ate in opposite (44) tI ivtr i =0
directions C1,2j, as it is yell known X--*400
from experimental obser~ation.

These formulations can be strongly
2.7 A simplified formulation for the simplified assuming:

linear gravity-capillarity problem q _

Now we reconsider the linear (45) X,

formulation described in 2.2. Let us
assume.,

4 c that is, the free surface is
T= + sinusoidal. Of course, hypothesis (45)

can be a good approximation only for
(38) C the far field: the solution available

with this assumption can so be
considered asymptotical. We have:

where the superscripts G and C indicate
the terms connected respectively to the =04 ( ',,4)2)

gravity and capillary waves; in fact, (46) (- +-L )" 0
as it has been shown in the preceding
section, in the capillarity-gravity
problem two wave sistems are present:
the capillary wave preceding the body, (47) 0
and the gravity one following it.

So we can write:,)

X qand, considering (35), we get finally:

x -OA (48) 4

Jim IJim IVT I =o

lir C (49) )z 0l 0

x--+0 +00 x--V4 -0

(50) M -
Since the problem is linear, we (. -

can apply the superposition of the 1.1k1
effects, solving two splitted problems:

(51) + 0
X

(39) V4=
X In order to solve problem (48),

(49) condition (41) must be considered,
r as well as condition (44) for problem

(40) + -q 4 (50), (51).

(41) V( o1

?z, Numerical nrocednro Rld. re_.slst

(42)
IX The numerical solution of the

mathematical models given in 2.3, 2.5
c _T 0and 2.7 is reached by means of a simple

(43) "V +0.( =0 layer formulation:
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go to step 4
(Tn flil 4 - external loop (index m) : calcu_

(52) lation of the new approximationT Bof S, with

in which III jj-'.
r jp-q,6I(N)C4
r p - cr- when max. iA 1t.ZI is less
r" jP-q6 then a relquired tolerance, theS1 numerical procedure is considered

with p field point, q,,.0 , , to be concluded.
q64 9 source poinTs, being £' the
image of i with respect to the undi- Near the downstream boundary, also
sturbed free surface. if the damping zone suggested in 5] is

The surfaceeD6 and a local portion present, an oscillatory behavior has
of S are discretized, by means of the been observed, though for all the other
classical collocation method C5, with grid points convergence has been
segments tangent to the boundaries, reached; this phenomenon becomes more

evident as the Froude number increases,
as it could be expected. Moreover we

3.1 The nonlinear gravity problem notice that convergence is reached
more rapidly for wave resistance than

In the numerical procedure the for wave height; this behavior, rather
free srrface S is followed, step by obvious since the former is an average
step, updating its discretization and, quantity, can be useful for practical
of course, the influence matrices, applications.

The iterative scheme consists of The same numerical strategy has
two cycles. An 'internal' one, in which been used also for the nonlinear
the nonlinear problem given by (2), (5) formulation (24), (25), which includes
and (12) is solved with an iterative the effects of viscosity at the free
procedure; when the solution of this surface; the use of such formulation
system satisfies the required accuracy, instead of (12), (13) extends
the free surface is updated in the considerably the range of applicability
'external' cycle by means of (13). At of the method 15 , though the terms
the first step, to inizialize the involving viscosity are rather mall.
procedure, the potential flow and the We remark that the term C-9
free surface configuration are computed in (12) or in (25) is discretized with
with Dawson method. the four points finite differences

The computational steps, for the scheme proposed by Dawson; the
double iteration scheme, can be downstream damping zone, in which a two
summarized as in the following: points operator is used, is fixed equal

to a quarter of the wave length.
I - solve the linear vioblem (2) , To validate the present method,

(5), (6), (8), (9) to initialize the numerical procedure has been
the numerical procedure; Xm) applied to a submerged hydrofoil, whose

2 - external loop (index m):, , geometrical characteristics and
41i are known on each boundary location in the fluid dynamic field can

element i; be found in fig.1; several
3 - internal loop (index j) : solve experimental results for this case (an

the nonlinear system b" found in [33.
In all the examples the free

Q+4> boundary has been discretized by 250
~I 9 panels, and the boundary of the body by

40 elements. The number of panels per
wave length has been chosen equal to

2.(j) Q+4d) 40, and a,'out 80 fiee surface elements
IIq =O have beeen placed upstream the body

leading edge. In the first two examples
WP ,nOmn,,tp thp wave pattern

in which the quadratic terms are corresponding to two different Froude
considered explicitly, and the numbers (.4406 and .617), with the
condition II is imposed on the Froude numhaer defined as U/V8gF, (L is
previous appproximation (m) of the eroi d leneth). The wave pattern,
the free surface configuration; computed by the thonlinear procedure
when maxjA. I J i3 described before, by means of (25), is
lower then a prefixed tollerance compared with the experimental data
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obtained in [3] and with the linear dispersion relation (35); in this case,
numerical solution computed by Dawson's 30 panels per wave length have been
method []. As it's shown in fig.2 and used.
3 the full nonlinear formulation gives
a numerical solution which fits the
experimental data better than the 9ng im
linear one. We notice that in this
range of Froude number the inviscid Both the proposed numerical models
nonlinear formulation gives almost the seem to be promising and suitable to
same results of (25), the only have more investigations. At the
difference being a small damping in the present the introduction of viscosity
wave amplitude for the viscous effects is rather effective in order to
formulation, as it can be expected. get convergence with highly nonlinear
This behavior is shown in fig.4 boundary conditions. The model with
(Pr=.704), in which the typical steep surface tension can be a very deep tool
wave shape can be recognized; the for describing nonlinear energy
damping appears to be significant transfer phenomena; the results
rather fat from the body: at a distance obtained with the simplified linear
about 1O*L a 4 per cent attenuation is model are preliminary steps for
present. studying a radiation condition suitable

In fig.5 the wave resistance as a also for the nonlinear model.
function of the Ptude number is plotted
(for this figure, Fr=U/V"F7H): also in
this case the nonlinear method behaves Acknowledgements
better then the linear one, with
respect to the experimental data. We wish to acknowledge Prof. P.

We remark that the inviscid Bassanini, Dept. of Mathematics, Univ.
formulation gives practically the same 'La Sapienza' of Rome, for the helpful
results for the wave resistance, but suggestions and encouragements, and
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DISCUSSION In the linear model, in fact, the capillary

by K. Nakatake wave amplitude remain constant, as well as for
the gravity wave. Anyway, since the

I appreciate your results about capillary attenuation increases with the curvature of
waves in front of the hydrofoil. I would like the free surface, as it has been pointed out
to know the way of decay of that kind of wave. dealing with viscosity effects at the free

And how large is the effect of surface tension boundary, the damping of capillary ripples

on the wave behind the hydrofoil? must be much stronger with respect to the

gravity waves.

Author's Reply
For the 2nd part of the question, the

I thank Prof. Nakatake for his kind effect of surface tension on the wave behind

appreciating comment about our work. I remark the body is easily evaluated. In fact, if the

that our computations about gravity-capillary pure gravity wave length is equal to 2nF

waves have been performed by means of a in the presence of surface tension the wave

simplified linear model which, for its nature, length become (1+/--4/W 2 )F2
cannot give any information about attenuation. 

r
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A Boundary Integral Formulation for Free Surface Viscous
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Abstract tion of a submerged cylinder with both linear and non
linear free surface boundary conditions [61 , yielding

The possibility to generate numerical models based in a more efficient way the same results previously

on a boundary integral formulation for rotational free obtained by finite difference in curvilinear coodinates

surface flows, either viscous or inviscid, is explored 151.

with the purpose to maintain some of the computa- On the other hand, the viscous flow field about

tional efficiency proper of potential flow approaches. a submerged body and the interaction between the

A simple method for the simulation of the unsteady viscous phenomena and the free surface wave gener-

nonlinear behavior of the free surface has been de- ation have been usually investigated by finite differ-

rived, starting from a mathematical model which de- ence schemes of the Navier-Stokes equations in their

couples the kinematical and the dynamical aspects of differential form. The proper numerical approxima-

the flow field, without introducing the potential ap- tion of the boundary conditions of the free surface,

proximation. The strict relationship with the coupled togheter with the need to confine the computational

models based on the integral formulation for viscous domain are the main difficulties connected with the

and inviscid flows, is discussed in details to extend use of this technique. In spite of these drawbacks,

the present method to these more general conditions. some interesting results have been presented recently

The mathematical and numerical aspects of the re- for the unsteady flow about a submerged body, even

lated integral equations are analyzed and an efficient in the case of breaking wave conditions 141.

numerical solution is proposed for the solution of the The main purpose of the present work is to analyze
flow field generated by a moving submerged cylinder, the possibility to generate numerical models based on

a boundary integral formulation for the simulation of
rotational free surface flows either viscous or inviscid,

1 Introduction which maintain some of the capabilities briefly dis-
cussed for the potential approximation. In this case

Among the several methodologies adopted for the anal- the field equations --either Navier-Stokes or Euler-

ysis of the free surface flow problems - usually non- are both non linear and unsteady thus preventing

linear and unsteady - a special role is played by the the explicit confinement of the related terms into the

potential flow approximation. This actually leads to free surface boundary conditions, as for the potential
a very appealing model consisting of a linear steady flow. In the past few years we investigated the in-

equation for the field and a nonlinear unsteady bound- teor. In ppa f o lare Redtnumber
ZU c!,d;+;^n ^n te f= urf-ce Th bundaa- inc- tegral equation approach for large Reynolds number

ary end~xenon te fee erfac. Te ~flows about streamlinead bodies (31 . We like here to
gral equation method is particularly appropriate for extend the formulation to viscous free surface flows
the numerical solution of such problem for two main for the applications to ship hydrodynamics.
reasons. First, when applied to linear equations it
reduces by one the space dimensions of the computa- Following this idea, in section 2, the Navier-Stokes
tional domain, second it provides a description of the equations are writtein in ntegral form by using the
complicated nonlinear boundary conditions more ac- fundamental solution for the unsteady Stokes operator
curate than any other computational approach. This and a representation formula for the velocity vector in
technique has been recently used for the numerical the field in terms of the velocities and tractions at the

simulation of the wave pattern generated by the mo- boundary is obtained. The numerical solution of the
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relevant integral equation presents some difficulties at equations are recasted into an integral form. It is well
large Reynolds numbers, mainly related to the ten- known that the integral formulations for the Navier
dential singularity of the kernel. The limiting case of Stokes equations have been mostly used for study-
zero viscosity, that is the integral formulation for the ing the matematical aspects of viscous flows. A typi-
Euler equation, is discussed in section 3 to better ob- cal example is the theory of hydrodynamic potentials
serve the critical behavior of these equations and to which provides many important results for the lin-
device the proper way to recover simplified models for earized Navier Stokes equations. A detailed descrip-
a quite general, but still sufficiently efficient, compu- tion of the method, introduced by Odqvist, is given
tational procedure. To this purpose we like to point in [1], where the direct integral representation for the
out that the great advantage of the potential models steady state problem is also presented. The aim of
in the framework of the free surface flows, is not as Ladyzhenskaja's analysis, is devoted to the existence
much connected to the introduction of the potential and uniqueness of solution for the Navier Stokes equa-
itself as it is to the decoupling between the kinematics tions. It is on these theoretical topics that the inte-
(Laplace Eq.) and the dynamics (Bernoulli Eq.) of gral formulation for viscous flow has found their best
the problem. The Bernoulli equation which is non lin- application, due to the simple analysis of the proper
ear and unsteady has to be solved at the free surface boundary conditions.
(if the pressure is not required) to give the so called More recently, due to the developments of the bound-
dynamical boundary condition. A further kinematical ary element methods, integral formulations have re-
equation is required to describe, in its Lagrangian or ceived new interest for the numerical simulation of
Eulerian form, the motion of the free surface in time. viscous flows. Although these methods have their best

A brief review of the set of boundary conditions application in linear problems, the advantages of inte-
to be applied at the free surface for different approx- gral formulations can be largely recovered in the nu-
imations of the flow model, starting from the more merical simulation of viscous flows about streamlined
general interface between two viscous fluids, is car- bodies when no massive separation occurs [3]. Actu-
ried out in section 4 to understand the role of each of ally in this case the nonlinear source term related to
these conditions with regard especially to the coupling the vorticity in the field, is confined to a small region
or decoupling of the field equations. More specifically, in the boundary layer and the wake, thus allowing for
we like to understand how the free surface boundary an efficient discretization procedure in terms of finite
conditions reduce for flow models still rotational, but elements.
simplified through a decoupling procedure analogous hi this section the formulation, which has been
to the one for potential flows. We analyze this subject previously described in 121 in full details, will be briefly
in section 5, where we derive directly from the Euler reviewed in order to present an extension to free sur-
representation a decoupled model which recovers for face problems. In order to introduce the integral for-
the velocity the Poincar6 kinematical formula. The mulation, for the sake of clarity, the Navier Stokes
role of dynamics in deriving the proper boundary con- equations are given here:
ditions is discussed in connection with this point. The
proposed model resulting from the above procedure, 2 VP
is consistent and well equipped to treat the nonlinear +u u2 = +V V II (1)
free surface behavior. It has a value in itself, as the nu- 2 V = 0-P

merical results shown in section 6 for the submerged
cylinder may indicate. Furtherly, starting from this In equation (1) the term fi = gz is the poten-
model, for which we have studied the mathematical tial energy per unit mass related to the gravity force.
and numerical aspects of the solution, we intend to The direct integral formulation for the system (1),
recover, through a backward procedure, the coupling as obtained in [2], gives the velocity of the fluid in
aspects and the diffusion phenomena neglected at this terms of convolutions of the proper fundamental solu-
moment. The direct connection between this model tions which will be denoted in the following by u( )
and the more general representations for the Euler and p(k) with the related traction given by t() =
and the Navier-Stokes equations, which has been de- 0uc4) (&)

scribed in the present paper, indicates the main lines -p(k)n +. a , + -z )
to fo!low n ...t.....th n t ons.

2 Integral formulation for vis- =(u)jg.)dsdt (

cous flows o pv ' ui u j dsdt -I -

ft xa(k)dvdt - f U*)dvj,
As mentioned before, in this section the Navier Stokes Ito"f X3  n °
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In deriving the integral representation formula (2) values assumed by the velocity and the traction at

from the Navier Stokes equations in differential form, the boundary. If we know one of them, for a given

the term X = -u x C (C = V x u) has been assumed as configuration of the domain representation (2) gives

a known forcing term; furthermore the traction vector a Fredholm equation for the remaining one (either a

is mdednfira, kind for the unknown traction or a second kind
is modified in the form for the unknown velocity). The fundamental solutions

Utk) and p(k) satisfy the equations:

+ V -+ l- + a (3)
SV UM = 0 (5)

w h ere: pUU_ )

P=--u + 1 (4) at

is the Bernoulli group. For the sake of clarity it is which must to be considered in the sense of distribu-

to be remarked the difference betweeD the traction tion theory with 6(x - x) and 6(t - t) Dirac delta

vector tj involved in the boundary conditions and the functions in space and time respectively. The explicit

modified traction vector iV = ti + 12u + II). solution of (5) for the free space problem in two di-

As shown by (2) it appears that the solution u is mensions gives

given in terms of surface as well as volume intsgrals.

The first surface integral gives the effect of the bound- 8 2 E()
ary values of the velocity and of the modified traction. = (6)
Nonlinear terms are present in this integral through
the modified tractions ti. P(k) - _- 6(t* - t)

The second surface integral accounts for the mo-

tion of the boundary, which moves with velocity v, where:

(normal velocity component of a geometric point be-
longing to the boundary), and gives the effect of the
momentum flux due to the boundary motion. G = In(r) (7)

This integral gives a nonlinear contribution in free 1 =-rZ4L,(t*-t)
surface flows for the dependance of the boundary ve. F 4 1-m(t - t)
locity , on the fluid motion. The source of this non- 1 ( r )

linearity are always confined to the boundary as the E = .- 4- -V ( ) -G
ones acting in potential flows.

Different is the case of the first volume integral V2E = F

which is related to the term X and accounts for the
rotational effects in the fluid. This source of nonin- Lwhere E g is the exponential integral.
earity, which directly comes from the field equation, that all t the fu integral representation that

is confined to the rotational flow region. In the gen- ta a terte ithe tegral r epre at t
eral case it would require a large computational effort coin efrfa deraienrt to = can b reasted
and it would penalize the computational procedure in the form of a gradient ( = - -) by taking
in comparison with other computational approaches. the derivative with respect to xk, out of the integrals.

However for the flow about a submerged streamlined These terms give an irrotational contribution to the

body, either attached or without a massive separa- velocity field, while the rotational effect is related to

tion, this term can be efficiently treated by finite ele- the function F, which is not reducible to a gradient

ment teniqes etanin in biawaya geatdea oi form. The function F is the fundamental solution forments tecniques retaining in tii way a great deal of them he trfeeuation a tefnd eameta sharperond

the computational efficiency of the boundary element the heat transfer equation and it becames sharper and

method. In order to complete the description of (2) sharper as the kinematical viscosity v goes to zero.

the last volume integral carries the information on the The function E has the same behaviour as it ap-

initial conditions. pears from the last equation in system (7). The main
The integra! reprsentnticn gi.ve- a bu::dar" inc- difficulty in solving these equations for large Reynolds

The nteralrelpre-ntaien -i- a --una-r m number flows is related to the crucial behaviour of thegral equation for the collocation point, at which the functions F and E, rather than to the evaluation of

velocity is evaluated, approaching the boundary. To

account for the jump properties of the double layer the volume integrals.

kernel ti) a factor c (= 1, for smooth boundaries) In order to gain a better insight on the proper-

appears in the limit at the lef'. hand side . The ob- ties of representation (2) in the case of large Reynolds

tained integral equation is a constraint between the numbers, we analyze the limiting case of Re infin-
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ity An integral formulation related to the differential ( aG (12)

model for inviscid flows (that is the Euler equations) ) = H(t 4- Olzjx)1)is obtained in the next section. P za a~ )(2

with the corresponding traction vector given by:

3 The limiting case for inviscid tk) aG t) (13)

flows = (13)
The direct combination of (12) and of (13) into the

The Euler equations for an incompressible fluid are integral representation (2) readily gives the limiting
obtained from the Navier Stokes equations for the formulation which is given below in vector notations
Reynolds number infinity. Consequently one of the with the explicit expressions of the surface integral
boundary conditions for viscous flow should be re- while the remaining volume integrals are denoted by
laxed, due to the lowering of the order of the partial 1.
differential equation. For this limiting case a bound-
ary integral formulation is directly derived from the
one valid for Navier Stokes equations, rather than u* f (u . n) VGds + (14)
from the differential model. Some introductory con-

siderations on the proper boundary conditions to be f P [(n V) VG - V'G] dadt +
applied is presented while the general discussion on 'to 6f(t)

the free surface boundary conditions for both viscous V' f , [(u . V) VG - uV'G] dsdt + I.
and inviscid models is given in the next section. fto J6(t)

As a first step we obtain the limiting expressions It clearly appears from (14) that the kernels in
for the fundamental solutions. As it appears from the second and third integrals have an hypersyngular
(6) the pressure fundamental solution p() doesn't de- behaviour when the collocation point approaches the
pend on the kinematic viscosity v, so that it retains boundary. The formulation (14) does not present a
the same expression as for the viscous case. This is direct computational interest, but it has great interest
not surprising since the pressure fundamental solution for the comparison it provides with the viscous case
is related to the compressibility effects in the fluid, showing in particular the computational difficulties to
which in both cases is assumed of constant density. be expected for large Reynolds number. In this case
Looking at the limiting behavior of the function F in in fact the fundamental solutions do not present a real
(7) the following relationship holds: hypersingular behavior, but they are very difficult to

be numerically evaluated in an accurate way for their
close relationship with the hypersingular ones.

lim ff(x)F(x,x;t,t)dv (8) Moreover, the following analitycal manipulations
-H ft*t)f(x) to set eq. (14) in a better form from the compu-tational point of view will give some usefull sugges-

From (8) it directly follows the distributional limit for tions for an accurate treatment of the viscous equa-
the function F as: tions. Following the procedure suggested for potential

flows by Hsiao and Nedelec, eq. (14) can be rewritten

F = -H(t* - t)(x - x) (9) through some known vector identities, in the form

The limiting value for the function E (note that V2G = u* (u n) VGds + (15)
6(x - x*) is given by

ft. fafn(t)o"f 2v (V x n)x Gdsdt
V2E = -H(t" - t)6(x - x') (10) V * x V x Gdsdt

Therefore we have: -. X f: Lnt)2 v (V x u) dsdt-V. x [. o /(u X VG) dadt + I
Jto j6fl(t)

E = -H(t" - t)G (11) where V. = ek0. In the present form the hypersin-
gular kernel doesn't appears any more and the con-

Finally the limiting expressions for the velocity fun- tribution of the modified pressure P is closely related
damental solutions are to that of a vortex layer of density I = VP x n. Fur-

ther manipulations may be performed on (15) in or-
der to show its close relationship with an uncoupled
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model based on the Poincar kinematic formula as it t = t" (17)
is shown in the next section. At the present stage it is
of some interest to notice that eq. (15) could be used where the subscript u stays for the upper fluid and
in the numerical simulation of nonlinear free surface the values of both members of (16) and (17) are un-
flows with no difficulty other than the computation of known. From the integral representation (2) it follows
the volume integrals. It is also worthwhile to notice that the boundary conditions are appropriate for the
that, for a two dimensional case, the velocity u at any interface problem. Collocating the integral represen-
point in the field is given in terms of two scalar valued tation for the lower fluid at a point belonging to the
functions at the boundary, instead of the two vector free surface, one integral constraint between u and t
valued functions appearing in (2). This fact is strictly is enforced. Analogously the other integral equation
related to the lower order attained by the differential is obtained for u. and t. In this way at each point
model for the limiting case. As a result only one inte- of the interface we have four vector unknowns and
gral constraint is expected among the two scalars as four independent vector equations that is two bound-
the collocation point approaches the boundary. Ac- ary integral equations and two boundary conditions.
tually the boundary integral equation is given by the In the case of no motion of the fluid acting upon the
normal component of the vector formula (15). The interface the problem is more simple and only one
other component gives, even on the boundary, a rep- boundary condition, the dynamical one, has to be im-
resentation for the tangential velocity component in posed, in the form, for instance, of a known pressure
terms of given normal component and the modified distribution:
pressure.

In the next section the proper boundary condi-
tions for the free surface will be reviewed for both
the viscous and the inviscid model. The kinematical In this case we have one unknown (the fluid ye-
description of the interface will also be presented. locity at the free surface) and one integral equation

where the value specified by (18) for the traction vec-
4 Free surface boundary condi- tor is introduced.

A similar procedure leads to the boundary condi-
tions for coupled models tions to be used for the formulation (15) for the second

case. Due to the inviscid character of the fluids it is
In both the integral formulations presented in the pre- expected to get a discontinuity in the tangential ve-
vious sections the kinematical and dynamical parts of locity component across the interface while only con-
the flow problem are strictly coupled. The proper ditions on the normal velocity component and on the
boundary conditions for the free surface problem in pressure may be used
the coupled models is introduced here in some details
in order to show the differences with the correspond- U, = (19)
ing treatment in decoupled models (splitting of kine-
matics and dynamics) to be introduced in the next
section.

The two possible kinematical descriptions of the P Pu (20)
free surface (Lagrangian and Eulerian) are also intro- We have now four scalar unknowns and four scalar
duced and discussed at the end of this section. The equations: the t-o boundary conditions and the two
bourdary conditions which directly follow from i.he in- integral equations relating the normal velocity com-
tegra! formulations are treated first. Let us consider ponent to the pressure. As in the viscous case, for no
the general case of an interface between two different motion of the fluid acting upon the interface, a given
fluids. Two different cases are considered. In the first pressure distribution is assigned.
one both fluids are assumed to be viscous while in In order to complete the formulation, the kine-
the second one they are considered both inviscid. For matical description of the interface has to be briefly
a given position of the interface the boundary condi- recalled. As it is well known, for the geometrical anal-
tions are given by the dynamical balance of the free ysis of a moving surface two possible decription are
surface and by the no slip property of the viscous flu- available. The Lagrangian one, gives the position of
ids. Neglecting surface tension effect, the boundary the geometrical points on the surface as a function
conditions are of a Lagrangian parameter C. Denoting by x! this

function, once the velocity of the point labeled by C
were known, the surface geometry may be determined

u = uu (16) solving the initial value problem:
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dx U f (21) 5 A general kinematical repre-
dt sentation and the dynamicalx(,)= x0(C) EDex( ,0) o (e Dfboundary condition

where DC is the set of values of the Lagrangian pa-
rameter C and uf is assumed to coincide with the lo- In this section a purely kinematical integral represen-
cal fluid velocity. Some problems are expected in the tation will be recovered as a semplified version of the
case of the interface between two inviscid fluids due to integral formulation for inviscid flows. It follows a
the discontinuity of the velocity across the interface, direct similarity between the two representations, in
Some intermediate value for the tangential component the sense that boundary integral equations with sim-
should then be assumed to move the free surface. ilar properties are attained in the two cases.

The procedure which leads from the inviscid inte-

In the Eulerian description the free surface config- gral formulation (15) to the present one is based on

uration is defined by the implicit function f(x, t) = 0. the idea of a back substitution of the Euler equations

In the restrictive hypotesis in which a single valued in differential form into the inviscid integral repre-

function is assumed for the free surface configuration, sentation. In this way the dynamical variables are

the geometric description is given in the more usual dropped out thus reducing (15) to a purely kinemat-
form z = q(x, t). In this case the only normal compo- ical formula. In order to apply in a simple form the
nent of the surface velocity (v ) is defined. By equat- above procedure a quite drastic approximation is per-
ing its value to the normal fluid velocity the proper formed by considering the fluid domain fi to be fixed

equation for the kinematic evolution of the free sur- in time. A more rigorous approach should reach the

face is attained. same conclusion through fairly more complex calcu-
lations without leading to a deeper understanding of
the analogy between (15) and the present model. Un-

The two geometrical formulations are equivalent. der this assumption the surface integrals containing
In fact the Lagrangian description is slightly more the boundary velocity v, no longer appear and the
general than the Eulerian one, in which some reg- representation (15) may reduce to a much simpler ex-
ularity assumptions on the function f must be ac- pression. Actually, by combining the Euler equations
cepted. Moreover, whenever an Eulerian description and the vorticity transport equation
exists, the two formulations are equivalent. Only in
the computations some difference appears. Actually 9u
the Eulerian description doesn't modify significantly -t + VP + X 0 (22)
the dimensions of the boundary elements, while the t

Lagrangian one concentrates the elements near the
crest of the waves where sharper velocity gradients ap- + XX 0 (23)
pears and more computational accuracy is required. -t
For these reasons the Lagrangian description is pre- the following representation is attained from eq.(15)
ferred in the computational model for the nonlinear by a simple integration in time
free surface problem discussed in section 6.

From the previous analysis it clearly appears the - n).n)VGds (24)

simple use of the boundary conditions for free surface f(u x n) x VGds -
problems when using coupled formulations in integral
form. Coupled models allow to impose the boundary x VGdv
conditions directly in terms of boundary velocity and fn

tractions. The integral form allows for a simple use Representation (24) is the well known Poincare
of the boundary conditions also in the discrete form, formula when the velocity field is assumed solenoidal.
with no alditional difficulty as in the numerical mod- This is a purely kinematical identity which can be
e!s bsed on *he differential equations. uswd Lo obLain boundary integra equations for the

kinematics of the flow. When the collocation point

In the next section a decoupled model 3 intro- approaches the boundary , two equations follow from

duced as a semplified version of the inviscid one. In eq. (24) by performing the tangential and normal

this case the definition of the boundary conditions is projections.

not as direct as for the coupled models.
474



It is worthwhile to add few more comments on the

n + 6G ds f f uGds +I, (25) relationship between the present decoupled model and
6 r* ~the coupled inviscid one. The normal component eq.

(15) is very similar to (26). In the case of the coupled
inviscid formulation the role of u,. is played by the

cu.* + U+ (26) tangential derivative of the dynamic pressure. A part
6n - n from the integration in time the kernels are identical,

where It stays for the contribution of the volume inte- so that the numerical methods for the two equations

grals. Equation (25) is a second kind Fredholm equa- are expected to be essentially the same. The main

tion for the unknown u, or a first kind equation with difference between the two formulations is due to the

Cauchy kernel for the unknown un. Analogously for fact that from (15) it follows only one integral equa-
eq. (26). The properties of the FRedholm equation are tion, while in the kinematical decoupled model any

well known from the potential theory while matching of the two equations (25) and (26) may be selected.

properties can be found to hold for integro differen- This feature of the kinematical model may be used to

tial one (see ([7]). As expected the equations (25) and avoid the solution of the Cauchy type equation which

(26) are not independent, in the meaning that, what- is more difficult from the numerical point of view.

ever is the unknown, for a given data the solution
of the first one is also a solution of the second one. 6 The numerical simulation for
When the boundary is a solid wall the value of u, is
assigned and u, is the unknown. Different is the case a submerged body
of a free boundary, where u, is the unknown. In this
case to determine the boundary data u, the dynamical Some numerical results obtained by the formulation
part of the model should be used. The procedure is introduced in the previous section are presented for

strictly similar to that used for potential flows where the unsteady flow about a submerged body. The flow

the values of the potential 4) are evaluated by means of field is assumed to be irrotational and the nonlinear

the Bernoulli's equation. In the present case, due to free surface configuration is followed in time by the

the vorticity in the field, which has been retained, no Lagrangian description. The evolution of the wave

potential function exists. The Euler equations must pattern generated from rest by a moving cylinder is
be used to obtain the relation between the tangential simulated ad the steady state configuration is reached
velocity component u, and the known pressure distri- in the case in which no breaking wave occurs.
bution. In order to write the required equation we The numerical procedure adopted makes se ofthe
shall fix a point on the free surface, labeled by the dynamical equation (29) and of the kinematical equta

Lagrangian variable C. Due to the boundary motion, tion (21) to evalute u, on the free surface and the

the unit tangent vector re, at the boundary point e free surface configuration respectively. The following

will change in time. By projecting the Euler equation notations are used: 6
0lB and f! denote the body

on this tangent vector we obtain boundary and the free surface respectively. 6fl,, de-
note the fictitious boundary used to cut the computa-
tional domain at P. finite distance from the submerged

Du, Ore OP (27) body. When treating the flow in. a channel, the fi-
Dt- u t- r nite depth bottom is denoted by 6ilb while bflfo is

given by an inflow part (6fli) and ail outflow part
In order to semplify eq. (27) the second term on the (f. 0 ). As a boundary condition to be used in the
left hand side is written as: boundary integral equation, the normal inflow veloc-

ity, time dependent in general, is be assigned on 6fl1.
.T, = * + - (28) The zero normal velocity condition is assigned on the
at at n at bottom boundary for both the channel flow or the infi-

Noting that re. - = 0 the final expression is nite depth case. At the outflow boundary the normal
velocity component is also given or a suitable radi-
ation condition is applied. On the free siirface the

Du, -nf - - - - (29) tangential velocity component is evaluated by the dy-
Dt - n t 2 ar Or namic equation (29). The reference frame is assumed

where the dynamic boundary condition p =: const has connected with the body, which is moving at a costant
been used. This nonlinear evolution equation for the depth beneath the indisturbed free surface. The dy-
tangential velocity component gives the free boundary namic equation is used in the inertial frame connected
condition for the two boundary integral equation (25) to the indisturbed fluid and the proper value of u,.
and (26). is evaluated by changing the reference frame to that
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fixed to the body. to break before the last instant showed by Ligget and

As shown in the previous section any of the two Liu. In the case, shown in fig. 3, although thc Froude

boundary integral equation either (26) or (25) cwt number is higher than in the previous one, a steady

be used to determine the unknown velocity compo- state solution has been attained due to the greater

nent. The most efficient choice, from the computa- submergence of the body. Fig. 4 shows the time his.

tional point of view, is the use of the second kind Fred- tory of the forces acting on the cylinder. Although the

holm equation, in order to avoid the variational tec- free surface configuration appears to reach the steady

niques required for an accurate solution of the Cauchy state, both lift and drag are oscillating around the

type equation. To this purpose a mixed approach is presumed steady value. In fig. 8 a simulation with

used here by assuming the normal component (26) a smaller channel depth shows the evolution towards

to hold on the free surface and the tangential corn- the breaking of the wave, which is attained by an over-

ponent (25) on the other boundaries. The equation turnig of the front face of the first crest behind the

which follows from this mixed formulation does not body.

present a Cauchy type singularity and can be easily
solved by numerical methods. b) the case of multi- 7 Concluding remarks
connected regions, some attention must be devoted
to the eingenvalue related to the circulation around A computational method for unsteady free surface
the body which in the present numerical study will flows has been derived from a mathematical model
be assumed to be zero. which decouples the kinematical and the dynamical

In the computational procedure standard finite el- aspect of the flow field. The method, valid in gen-

ements tecniques are used to discretize the equation. eral for rotational flows, has been shown to have the

In more details, piecewise linear shape functions are same computational efficiency of the potential based

used to describe the geometry while piecewise con- approaches. The strict relationship with the coupled

stant functions are used for the unknown. In order to models based on the integral formulation for viscous

assure the solution uniqueness the condition of zero and inviscid flows, have been discussed. While the

circulation around the body is imposed. The corn- numerical solution of the Fredholm integral equation

putational prozedure is splitted in two part3. The gives vety satisfactory results, the numerical tecnique

boundary unknowns are evaluated first by solving the for an efficient as well as accurate resolution of the

boundary integral equation. With the velocity dis- Cauchy type equation is to be completed. This is the

tribution on the free- surface completely known the crucial poi.±t for the numerical implementation of the

confi,,uration of the domain and the values of u, are limiting coupled formulation for inviscid flows. The

updated. The second order accurate Adais Bash- viscous model, should be treated in similar way by re-

forth scheme is used to perform this calculation. No casting the equatioi in trms of vortex layers as shown

redistribution procedure is used for the free surface for the inviscid case.
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Fig. 2. Steeping of the wave for the same case as in Fig. 3. Free surface configuration vs time

Fig. 1. t =10. Pr = .95 D = 1

Submergence h =3

Dt = .25

0 0

t = 15 t =75

0 0

t= 30 t =80

t 45 t 85

1 0

t 60O

t =90

Fig. 4. Configura~tions of the computational domain~
for the same case as in Fig. 3.
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Fig. 5. Wave elevation. Fig. .im e ivtrfthercesg ontecyidr
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~~~Submergence h = 3 UD

Channel depth H = 4
Fig. 7. Pressure distribution on the cylinder. Same t = 14.25
case as in Fig. 5. t = 85 Dt = .25

479



Development of a New Velocity Measurement System by Using
Computerized Flow Visualization and Numerical Method

K. Mor and S. Ninomiya
Hiroshima University

Hiroshima, Japan

Abstract
by the image processing techniques [1]

A hybrid method is developed to [2]. Most of them are for 2-dimensional
measure 3-dimensionai flows where the flows but some are intended to be 3-
image processing method and numerical dimensional flows where the tracers are
computational method are complementari- tracked 3-dimensionally by making use
ly used; the 3-dimensional flow field of several cameras (3](4]. However,
is reproduced by the numerical calcu- the instruments for measurements and
lations by making use of several scan- the algorithm for analysis are compli-
ned plane flows which have been ob- cated.
tained by the flow visualization and
image processing. On the other hand, recent develop-

ments in computational fluid dynamics
The combination of the numerical to simulate flow fields by solving the

computation has made the flow visuali- N-S equations are remarkable. However,
zation system much less sophisticated. there are still limitations in the
The method is applied to measure the hardwares of computers to have reliable
flow field around the Wigley model to results even by modern computers of
conclude that the method is promising high-speed and large memory storage;
although the used system is rather the computing domain and the grid size
primitive. can not be taken enough for required.

The present method is a kind of
1. Introduction hybrid methods of the image processing

and the computational fluid dynamics;
It is common to measure velocity a 3-dimensional flow is reproduced by

fields by traversing an anemometer at numerical computations from several
one position after another even in a 3- scanned plane flows obtained by the
dimensional domain. Needless to say, flow visualization and image pro-
it is time-consuming and requires much cessing. It consists of five stages, as
labor. Even more, there are some the block diagram shown in Fig.1; 1)
cases where the velocity field cannot flow visualization, 2) image process-
be measured by the conventional method ing, 3) image analysis, 4) numerical
due to reverse flows, abrupt changes of computation and 5) graphic display.
h.v.locity or stagnant flows. The rethod is cailed "Three-dimensional

Anemometer System by complementarily
The flow visualization has ever been use of Computational and Optical

a qualitative method which is useful Methods" (TASCOM).
to understand the flow field globally.
However, owing to the advent of a new Although the method is still under
era of image processing techniques, it developnent and the instruments used
can be e'e,i quantitative, here are rather primitive, the system

may be much improved by an introduction
There are some pioneering researches of more sophisticated machines or

where the velocity field is determined higher-version of softwares.
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2. Plane Flow Analysis The electrode is made of platinum
wires which are formed ladder-like as

2.1 Flow visualization shown in Figs.2 and 10. They can pro-
duce vertical segments of bubblas

The arrangement for the mea arements which cut the laser light sheet without
is shown in Fig.2. A laser light fail.
sheet is used to scan a plane flow
field which is traversed in z direction In general, there are some regions
whose velocity component w is presumed where tracers do not get into; we call
the smallest among the three compo- such regions "unmeasurable region"
nents. A 25 mW He-Ne laser beam and a here. We do not pay special attentions
circular cylindrical lens are used to for such regions and we expect the
realize a light sheet in the present velocity there will be supplied by
experiment, numerical computations.

Hydrogen bubbles are used as tracers 2.2 Method of image processing
which are generated by the electrolysis
of water. The reasons for the use of The process of the present image
the hydrogen bubbles are, first, that processing is shown schematically in
they can trace flows without inertia Fig.1. This process consists of the
and both their size and brightness can following three steps.
be controlled. Secondly, but essen-
tially important, they do not pollute 1) freezing images of tracers:
the water. They can be used in towing
tanks also. Of course, they do not The path lines of tracers on the
work well for the flows whose velocity scanned plane are recorded by a CCD
is so small that the buoyant effect is camera (384 x 491 pixels), as shown in
relatively large.

25mW Ile-Ne Laser
(FLOW
VISUALIZATION]

ScanningbyLase Laser Light Sheet Cylindrical Lens
Light Sheet INUMERICAL

COMPUTATI ON . Hydrogen Bubbles

(IMAGE Velocities at
PROCESSiNG] Grid Points T =

Picture b PO y
CCD Camera Reproduction of]

3-Dimensio na Platinum Wire

Acquisition * Velocity Field
of Images i d e vi e w

I Platinum Wire
ComputatIo

Binary Unmeasurable
Processing Points 70r] FLOW UP .

ThInnIng Pressure and

Poesng *.Force

............! .............. . .................... 400W(max)

(IMAGE Iiydrogen Bubbles
ANALYSIS] DC Pulse Generator................. ......... ... \

idcntl[flcatlon [GRAPHIC Casera
of Tracers DISPLAY)

ofRe 0 , Ve"to.izati l7 Image Processing

View of Dvc
Velocity of ' CRT

Plane Flow .......................... . Host Computer nonitor

................. ............... P ly T

Fig.1 Block diagram of the present Fig.2 Arrangement of the system
measuring system, TASCOM
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Fig.2. The acquired analogue image city (u,v) is evaluated from the two
signals are converted to digital data distances, RI and X2, between the three
by making use of a image processing images of the same tracer at the three
device (256 x 256 pixels, 8 bit). The sequential times, t1, t2 and t3. The
device can freeze successive four three images have been identified to be
frames at once at the time interval of the images of a single tracer. The
50 msec. plane flow velocity components are

determined from the components of the
2) binary processing: distances in their directions.

The 8-bit value of brightness of 1) identification of tracers:
each pixel are binarized based on dis-
criminating level. It is important how The algorithm of identification of
to set the value of the level, for the tracers is schematically shown in
optimum value depends much on experi- Fig.5. A priority is given to the

mental conditions such as brightness of image to be identified when it lies

tracers, velocity and so on. Here it within a certain distance and fan

is set by a trial and error method, angle; the image A 2 on the frame at
time t2 is identified with A, because

3) thinning processing: A 2 lies within the fan angle of a-a"
and a-a"' and within a given distance.

In order to have more reliable data At the next time step t 3 , A3 is identi-

of the tracers such as the length and fied. Thus all the images are identi-

the positions of start and termination, fied as BI-B 2-B3 , C1 -C2-C3 , and so on.

the thinning process is essential. As
shown in Fig.3, the thinned line Ci is Through the above processes, if a

determined as the centerline of the tracer could not be identified, the
segment Ai-Bi. tracer is assumed "stray" and is neg-

lected in the following analysis. The
2.3 Calculation of plane velocity distance and the fan angle are empiri-

cally given here.

As shown in Fig.4, the plane velo-
2) selection:

There are still some possibilities
to identify wrong images. If the two
distances between the three identified
images, P,' 1 2 in Fig.4, are extremely

A, AC4

B3  , B,-

As2

C2

B2 B,. . a
Fig.3 Thinning process of images - -a

L ____

appear onto LIS disappear from LbS
Fig.5 Identification of the images on

Fig.4 Calculation of the velocity three different frames
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different each other or their average
differs much from the surroundings, the
set of images is assumed wrong and
removed from the stored data. d = L (3)

n
3) calculation of the velocity compo-

nents: where n is the number of pixels and L
is the actual size of the object to be

The plane velocity component (ui, pictured.
vi) is calculated from the distances
between the identified images on the In the present system, the number of
three sequential frames by the fol- pixels is 256 x 256 and the size of the
lowing equations; picture is about 100 mm x 100 mm. Then

the resolving power d is 0.4 mm/pixel

Jj and the accuracy of positioning may be
At ±0.2 mm/pixel.

-1 (1) The minimum velocity, which can beAt resolved, Umin, is given by

where At is the interval time between Umin = d (4)
the frames and Lix and Ziy are the x- At

and y-components of the length 9i.
where At is the sampling interval time.

4) interpolation of the velocity: In the present system 10 frames (pic-
tures) are frozen per a second and the

It is necessary to have the velocity accuracy of the measured velocity is ±2
on assigned matrix points, which can be mm/sec. The optimum sampling interval
realized by the weighed interpolation time should be determined depending on
of the original data at arbitrary the uniform flow velocity and the den-
points. The velocity vector q(x,y) at sity of pixels.
(x,y) is calculated by

In practice, the final accuracy must
include the errors which arise during

q (x,y/ -,. the image processings due to non-
u= , uniformity of image brightness, wrong

identifications and so on.

50o

(ntm/s)
where ri is the distance to the data
interpolated, and N is the number of 400
the possible data for interpolation.
The maximum ri is properly chosen and

iC
if N is less than 3, the velocity at
the point is regarded as "not mea- 100

sured".

200
3. Accuracy Analysis of

the Measuring Sse

It is important to estimate the 1Go
iccuracy of the measuring system. The
nomitial accuracy of the image analysis,
is given in terms of the density of the o100 200 00 400 500
pixets of CCD camera and the sampling (mn/0)
interval time. alicage Speed

The resolving power of the image Fig.6 Accuracy analysis of the image
processing, denoted by d, is given by processing
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150 4. Reproductionofthe 3-
Dimensional Flow Field

4.1 Invoked equations and the scheme

The reproduction of the 3-dimen-
sional flows from the scanned plane

1velocity fields is achieved numerically
by a variational method to satisfy the

gcontinuity equation (5]. There the
E-measured plane flow velocities (u0 , v0 )

R=on the scanned planes are used as Ini-
tial values.

50
The reason why the variational

method is invoked is that the scheme
must be robust or tough enough even if

/" 'the initial values, provided by the
scanned plane flows, are contaminated

'" £ ! by measurement errors. The use of the
200 250 300 350 400 variational method is expected to cor-

rect the given boundary values to sa-

Measured VeIoc ty (mM/s) tisfy the continuity equation.

Fig.7 Histogarm of the measured velo- The functional, F, is defined as
city for the uniform flow

F (u, v, w, A)
To confirm the total accuracy of the

present system, two measurements are = |a1i2 (u-U)
carried out in advance. One is to V

analyze the velocity of a pin-hole +a22 (v-v0)I +aj2 (w-wO)I

light which moves as a constant speed;
this is realized by fixing the light +A(-r-- - + azJ--]dv

onto the towing carriage. The other is + (5)

to measure the uniform flow velocity of
water circulating channel.

where X is the Lagrangian multiplier,
Fig.6 shows the results of the first and al, 2 and a3 are weighing con-

experiment; the abscissa gives the stants. The problem is to find (u,v,w)
carriage speed and the coordinate, the to minimize F in the computing domain
analyzed velocity by the present meth- V.
od. The mean curve seems to be giving a
good correlation and the error of meas- The first variation of F is given by
urement is smaller than the resolving
power of the imaqe processing. 6F (u, v, w, A)

Fig.7 is the results of the second r 2 a, 2 (u-ue)- A u
experiments; the measured velocity of f RH a
the uniform flow of circulating water

channel. 367 measured data are shown in a A
histogram. The nominal velocity of the +2a,' (V-ve) -- v

uniform flow by the indicator is 300
mm/sec and the nominal uniformity of 2

the flow is about 96%. The total I" .. ....... 8z J

average of the measured data is 307.1
mm/sec. 64% of the measured data lies + --- + - _ .+ -W 6A] dV
within 300*25 mm/sec of the uniform 1 5x Sy az I
flow velocity. H{Acunx+A}vny+A~nz}dS

S

(6)
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where 6 is the first variation, (nx, city vectors (u,v,w) is calculated from
ny, n z ) are the components of the ,,or- (7),(8) and (9).
mal on S which is the computing bound-
ary surface of V. Because the velocity component w,

normal to the scanned plane, is impor-
The condition of 6F=0 yields a set tant in the present calculation, the

of following equations; ratio of al/a 3 and a 2 /a 3 should be
properly chosen.

11 = t 1- (7) The boundary condition of (11) can2a1
2  

9X be satisfied by providing a suitable

1 (8 subsidiary conditions for (6u, 6v,
2a2 ay 6w)=O or X=O on the boundary S.

= 1 A (9) 4.2 An example of reproduction of
wal =9 T 23-dimensional flow

- -_-- = 0 (10) In order to confirm the present
ax ' az 8Zsch ,me to reproduce the 3-dimensional

flow, the flow behind a sphere is ana-

J {Aunx+A6vry+Abnz}dS = 0 lyzed.

S The coordinates and the analyzed

region is shown in Fig.8. The plane

flows are provided on twenty horizontal
planes by the potential flow calcula-

Substituting (7). (8) and (9) into tion. The computation region is di-
(10), we have vided into 20 x 20 x 20 cubic cells.

This grid size may not be sufficient

[3 + 9 A + A for enough accuracy, but the use of
A -- + . - ; too fine grids does not always meet theexperimental condition where the depar-

= a2 H a -  4- + aw_8 tures between the scanned planes can
O-x &y a--Z not be so small as expected in

(12) computation.

(12) is the Poisson equation by The boundary conditions for X and
which X can be determined. It is 6u, 6v ind 6w are given as
solved by S.O.R. method under the boun- follows:
dary condition of (11). Then the velo-

on x=0, ax/az=0,

Sona,, for analysis 6u, 6v and 6w=-0,

on the other boundary planes,
'- X=0,

(13)

0.0 The boundary condition (13) satis-
x fies (11).

The weighing constants a,, a2, and
a, are assumed as fol'lows;

l A... :0.0
Boundary - Ct 1 , Ct2  = 10.0,
Condio 1 Io LA o0. 0 t3  = 0.1 (14)

The Poisson equation (12) is solved
Fig.8 Com putational domain for 3- by S.u.R., where 1.4 is used as the

dimensional reproduction relaxation factor.
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.......... by Analytical Method The reproduced y-z plane velocity
vector is shown in Fig.9 together with

- by Present Method the results calculated analytically.
'10 tZI t ,f , , / / . A It is seen that the third z-component

of the velocity is well reproduced,
'# , 01 , , / , . . A although there can be seen some discre-

pancies between them where velocity
I t , ,. / / , I - " gradients are large just behind the

sphere. The use of a finer grid has
f ( I / / / p -e improved the results.

F /~ / / / . . - - We can now conclude that the present

variational method can be applicable to
t I I / / - - - - our analysis.

.' /5. Measurement of the Stern

' / / - Flow of Wigley Model

" " '* - - 5.1 Arrangements and sampling

0 -. . . . To study the applicability of the

present method, a measurement of the
. 11 .21 .21 .11 .5 . . .11 .1 .11 .11 stern flow of the 1.2m Wigley double

I1 hull model is carried out.

Fig.9 Comparison of reproduced The arrangement of the i, asurement
3-dimensional velocity is shown in Fig.10. The laser light
vectors behind a sphere sheet is installed parallelly to the
with the analytical uniform flow; the x-y plane is scanned.

In the present experiment, the model is
traversed vertically for the plane
flows to be scanned.

,/t
Electrode (anode)

Vigley Double Hull

Laser Lig-ht Sheet CDCmr

Fig. 1O

to te Puse enertorArrangement for the meas-
to the Image Processing urements of the wake of
Sysien Wigley model
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01 IMeIur iI.
Region - - -

FLOW - - I

(a)(-P4-- -

Wigley [fill I.. . - .
S(.anne'l Plane .....

IC IIl• 0

.01 / IIU,, "'/""//

.06 MIeasuring --

.- Region

____z)_ __ _ _ _ _ b

Fig. 11 Measuring region and scanned -
planes for the Wigley model .

As shown in Fig.11, eight planes are
scanned at 0.02 intervals. Although the ..........................................................

number of scanned planes may not be
enough for the following calculation, Fig.12 Frozen images onz=Oplane (a)
the hardware of our system can not and the thinned images (b)
afford any more. The region for mea-
surements, i.e., the scope of the
camera, is determined to have a reces- ture from which background noises are
sary accuracy. The maximum accuracy of removed by smoothing, while (b) is the
the image processing unit here is ±0.2 thinned picture of (a).
mm/pixel.

From the picture (a), we can judge
The experiment is carried out in the that the present technique of the flow

circulating water channel whose dimen- visualization can stand for the quan-
sions of the measuring section is as titative analysis of the velocity and
follows; L x B x d = 2.Om x 1.4m x also that the images of the tracers are
0.9m. The uniform flow speed is 100 well frozen for the following proc-
mm/sec and the Reynolds number is about essings. However, the pictures of the
1.2 x 105. thinned images, (b), suggest that we

have still some ill images when thin-
One measuring plane has 60 pictures ned due to noises or non-uniformity of

whose sampling time is 100 msec. This the brightness of tracers. The wrong
means that the determined velocity images are removed by estimating their
fielId is the mean velocity for 6 length.
seconds.

Fig.13 shows the plane velocity
5.2 Results of the plane flows vectors analyzed by the procedure men-

tioned in 2.3. They are well measured.
Fig.12 shows one example of tracer Thus we have 8 plane flow vectors where

images on z=0 plane, the reflecting u and v are determined but w is assumed
plane; (a) is the original binary pic- zero.
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5.3 Results of 3-dimensional flow cal- The computing domain is 1.00 < x <
culations 1.10, 0.01 < y < 0.08 and 0.0 < z <

0.14. The boundary conditions are as
For the calculations to reproduce follows;

the 3-dimensional flows, 22 plane flows
are presumed by the B-spline interpo- on the reflecting plane (x-y plane,
lation of the eight scanned plane velo- z=0.0 );
city fields. This is because the de-
parture between the plane flows of the a/az = 0
present measurements is not small
enough for the numerical calculations, on the other planes;
More plane flows are expected to be
scanned to have more accurate results. A = 0 (13)

1.0 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 (X).09 The 3-dimensional velocity vectors
0.00 at the section of A.P. is shown in

Fig.14 compared with those measured by
.01 - -- .-- .-- .-- .-- -- a 5-hole pitot tube. The calculation

-- - can be carried out on the same compu-
.02 . . . .- -- -- - ters as real time.

03 - - .- .--- .-- .- Although the results do not always
- --- --- agree quantitatively with those by

.- ..- -..- - -- conventional method, the third velocity

--------- '-'- components are well reproduced. The
.05 .- .. . - computation was stable and robust as

_ _ _ _- -expected even if the measured plane
.06 "-'--- --- ' - - -- flows contain some errors.

.07 ,--'-"- - - - - We can say through the present
- - example that the method is applicable

.08 -------------- to 3-dimensional measurements. It can
be also pointed out that an introduc-

.09 ()tion of more qualified hardwares will
guarantee us to have more accurate

Fig.13 Plane flow vectors on z=O results.

( Y I ( b ) (Y), 1  J 2 3 1 ( s 1  y ,,tei 2 3 1 s 1 ; , .11

.0 ~ NNN .03 --. N-.01 " , , . .0

.03 --- N'N N . - -5 .03

.00i
.oS. \ \ \ \ %, /.. .os

.0.1

.01 N \ \ ' " -2 " .01
.0! /

.2 1 .12 Fig.14

.1 3 0 1 .13 ( 1 0 2 8 / s e / 3 - d i m e n s i o n a l
(Z) 0 ' .10 velocity vectors

at the A.P.
section
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6. Conclusion the Society of Naval Architects of
Japan, Vol.162, pp.81-89 (1987) (in

In the present paper, a new method Japanese).
to measure the 3-dimensional flow field
by a complimentary use of the flow 2. Kobayashi,K., Saga,T., Segawa,S. and
visualization and numerical compu- Tohnosu,S., "An Image Processing
tation, TASCOM, is demonstrated with Technique for Determining Two-Dimen-
some pilot examples. The attractive sional Flow Fields with Reverse
feature of the present method are the Flow", J. of the Flow Visualization
simplicity of the experimental appara- Society of Japan, Vol.5, No.17, pp.
tus and technique. The method is po- 57-64 (1985) (in Japanese).
tentially applicable to the measure-
ments in the towing tank also. 3. Doi,J. and Miyake,T., "Three-Dimen-

sional Flow Measurement by Shape
Through the present study following Reconstruction from Multiple Video

findings are summarized; Images", J. of the Flow Visualiza-
tion Society of Japan, Vol.7, No.24,

1) The use of the hydrogen bubble with pp.46-52 (1987) (in Japanese).
the laser light sheet is practical
and efficient for the image ana- 4. Sata,Y.,Nishino,K. and Kasagi,N., "A
lysis. The vertical segment of the New Algorithm of Three-Dimensional
bubble always cuts the light sheet Particle Tracking For Whole Field
and leaves clear images. No pollu- Velocimeter", J. of the Flow Visua-
tion remains in the tank after the lization Society of Japan, Vol.9,
measurements. No.34, pp.237-240 (1989) (in

Japanese).
2) The present algorithm for image

processing, although primitive and 5. Ishikawa,H., "Calculation of Three-
directive, is efficient and accu- Dimensional Wind Flows by Varia-
rate enough. The use of more sophi- tional Method (WIND04)", JAERI-M 83-
sticated machines will assure more 113 (1983) (in Japanese).
efficiency and accuracy.

3) 3-dimensional flow can be reproduced
from several scanned plane flows to
satisfy the continuity condition.
The variational method is useful for
the reproduction calculation where
the measured plane flow components
are contaminated by errors. This is
because the method is tough enough
through relaxation.

The authors wish to express their
appreciations to Professors Y. Doi and
T. Hotta at Hiroshima University for
their variable discussions and advices.

The present research is partially
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DISCUSSION In the present measurement, the platinum

by T. Suzuki wire was moved parallelly to the main flow

direction by every 50 mm step. In this case

This question is about the measurement the maximum angle of inclination can be

principle, Fig.2. The laser sheet in Fig.2 estimated about 9 degrees at most, then the

shows us a cross section, x-y plane, of the maximum error in the u-component is about 2%

hydrogen bubble sheet, so that you can get the under the assumption that w is 0.1u.

velocity components u and v independently on w
in this paper. Because the present study is still at the

beginning, we didn't take this error so

However, the hydrogen bubble sheets are serious, but it can be corrected iteratively.

inclining their vertical plane, even if the
platinum wire is kept vertically, after the

sheet streams down along the streamlines nedr hydrogen bubble sheet

the ship stern (see Fig.Al). In this case, Z
one of the particles in the sheet should go
upward (or downward) along the sheet and

additional horizontal movement should occur.-t=0 t-0

I think that this movement is not caught in A'
this paper and it gives the error of v
components.

Could you give me comments on this error
and how it effects the w component?

A0

Author's Reply | additional
, --" movement

Thank you for your instructive discussion. Ayw.ttanO
It is a crucial point of our method. As you
pointed out, if the hydrogen bubble segment

have an inclination, there may be an error by

Ay/ At in the u-component. This error can be
minimized by keeping the bubble segment as
vertical as possible.
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Automatic Particle-Image Velocimetry
Utilizing Laser-Induced Fluorescent Particles

T. C. Fu, R. Bing and J. Katz
The Johns Hopkins University

Baltimore, USA
T. T. Huang

David Taylor Research Center
Bethesda, USA

Abstract flows are the ability to handle large amounts of data, the
required processing time, variations in velocity scales in the

Microscopic, neutrally buoyant particles containing same flow field, the capability to record and identify fine
fluorescing compound have been adapted as tracers for details in large scale images as well as the availability of
velocity measurements of large scale turbulent flows. This the appropriate particle tracers in large quantities. The
technique consists of illuminating a thin slice of the flow approach opted for utilizes double exposed images of laser
field with a laser sheet, which is pulsed following a specific induced fluorescent particles which are analyzed
illumination code. The multiple exposure image is recorded automatically by digital image processing. This method
on photographic film and later enhanced while being enables one to resolve the entire velocity field
digitized. Algorithms have been developed for analyzing simultaneously, thus allowing the identification of large
the resulting images. They rely on the illumination code and scale flow structures as well as provide quantitative details
the particle streak morphology in order to identify and about the velocity, circulation, etc. This technique is
compute the tracer velocity vectors. A one-inch diameter jet specifically suited for the study of large scale complex
has been used as a flow field for preliminary tests. turbulent flows. Similar to the techniques of Gharib &

Willert [5] and Khalighi [61, it consists of recording two
Introduction exposures on a single frame. This approach minimizes the

difficulty of identifying particle traces on successive frames,
The present paper focuses on the development of a and still allow for short sampling intervals. Unlike the

quantitative flow visualization system which is particularly others, we have opted to identify the direction of flow by
suited for large scale towing tank experiments. Until recently, keeping one of the exposures longer than the other. The
flow visualization has been utilized for providing only following paper focuses on this method.
qualitative information, while quantitative data, namely An important assumption in all particle tracking techniques
the velocity field, has been determined by single point is that the seed particles follow the flow without slipping
measurement techniques (hot wire anemometry, laser doppler and do not alter the flow dynamics. This requirement
velocimetry, etc.). Due to their nature, as well as cost, these prescribes the size, concentration and specific gravity of
techniques are limited to simultaneous sampling at a few particles that can be used as tracers. Most of the past studies
spatial locations. (Adamcyzk and Rimai [7], Landeth, Adrian and Yao [81,

Early experiments with quantitative flow visualization Khalighi [61), rely on the light reflected from the particles.
have been performed by Kobayashi (1) and Marko & Rimai This limitation has prohibited the use of very small
[2]. They have all used long exposure photography to record particles, due to the low intensity of the reflected light. By
both the position and mean velocity of passive tracers within utilizing tracers containing fluorescing material (Gharib and
a fluid. High speed photography has also been adopted to Willert [5]), the intensity of the emitted light is increased by
record time series of tracer particle positions (Racca & Dewey several orders of magnitude, so that even microscopic
13]). A further refinement has been to identify particles in particles can be used. The generation of particles with
successive frames, and reconstruct the velocity with a time imbedded fluorescing material has been one of the critical
base equal to the framing time (Racca & Dewey [31). Another problems, particularly when they are needed in large
approach has been to record multiple exposure images and quantities.
measure the dis placc.-'ent.. of small susjtcndcd particics to
obtain full-field velocity maps (Adrian [4]). Gharib & Experimental Procedures
Willert [51 have performed a similar analysis. However,
they have used a single extended exposure of particle streaks During the past two years we have constructed a large scale
with prescribed variations in the intensity of the light flow visualizaiion facility with multiple light sheets in the
'mitted from each particle. The variation in intensity was 140 ft. towing basin at David Taylor Research Center (sketch

a;. ieved by utilizing fluorescing particles and by varying is provided in Figure 1). While developing the flow
the wavelength of the illumination light. Finally, one visualization system in the towing tank, we have used water
shvuld mention the work of Khalighi [6] who utilized digital jets as the flow field in order to generate data for the imaging
image processing techniques to automatically analyze system. As a result the images provided in this paper have
particle btreak images and produce full-field velocity maps. been recorded in a steady flow water jet facility located in a

The primary factors affecting the capability to adapt transparent test section. The jet was 1 inch in diameter. Thin
particle displa,-ement velocimetry to large scale complex sections (approximately 1 mm) of the flow field were
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illuminated by a pulsed 300 mW argon ion laser. The water (in the yellow range) than the green light reflected from
was seeded with microscopic (5-10 microns in diameter), bubbles and contaminants. This feature allows significant
neutrally buoyant particles, containing imbedded fluorescing enhancement of the input images by removing much of the
dyes. These particles were invisible in most of the flow field, reflected laser light through color filtering.
but responded with intense spontaneous fluorescence within The filtered image was then sharpened by convolving with
the illuminated section. The production of these particles the following kernel:
will be discussed later. The temporal light modulation
followed a specific illumination code. Figure 2 shows the -1 -1 -1
pattern used in the present work. The signal consisted of a -1 12 -1
long exposure (streak) followed by a shorter pulse (dot). The -1 -1 -1
magnitude of the velocity was determined from the distance
between the two traces of the same particle, while the flow Namely, each pixel value was multip'led by 12 and its eight
direct.on could be determined by comparing the lengths of the nearest neighboring pixels were multiplied by -1. Then, the
two particles. As will be discussed later, the automatic sum of these values was added to the original pixel intensity.
image analysis algorithm could match between the traces as Performing this process on the entire image effectively
well as identify and remove streak patterns which did not sharpens the edges of the traces (Figure 6). The image was
resemble the illumination code. then equalized, namely the intensity values of the entire

The images were recorded on 35 mm film. We have opted for image were normalized to range from 0 to 255, to improve
film since its resolution is much higher than that of video, contrast.
As an example, Figure 3 contains two digitized images, brth The next step was to "threshold" the image. Pixe values
originated from the same negative. However, in the first one above a selected intensity level were set to 255 and values
the entire negative was translated to a single video frame below it were set to 0. The threshold level was determined
and then a portion of the frame was magnified. The second, from an intensity histogram of the entire image. In an
on the other hand, was magnified prior to translation to optimal situation the intensity histogram would be bimodal,
video and as a result is dearer and sharper. A video frame with well separated peaks. That is, the particle traces
has a resolution in the order of 500 x 500 lines, which is less would be easily distinguishable from the background and
than the resolution of 1 mam2 of emulsion. Thus the their edges would be distinct and clear. In practice this was
translation to video should be performed carefully to avoid not usually the case. In fact, it was not uncommon that the
loss of details. Storing the original image in the form of a brightest background pixel would be brighter than the
film negative allows variation in magnification while faintest pixel of a particle. This phenomenon occurred when
digitizing the image, and as a result enables us to control the the background illum'nation was not uniform. Therefore
resolution. While analyzing the image, one can focus a video construction of an accurate binary image using threshold
camera on the negative and select the magnification analysis requira 'he use of local threshold intensity levels.
depending on the desired detail. This is especially Additional techniques could be utilized, if needed, to further
important when examining turbulent flows where wide ranges aid in distinguishing particles from the background. These
of velocities are present. For example, Figure 4 shows a techniques include the use of gradient and Laplacian
typical image of the flow near the exit of a I inch diameter operaters, to provide edge enhancement (Rosenfeld and Kak
nozzle. Portions of the flow are unresolvable at this [91) and examination of the slope of the thresholded average
magnification. By focusing on a smaller portion of the intensity vs. threshold curve (Prasad & Sreenivosan [10]).
negative (Figure 5), the magnification and hence the The thresholded image was then reduced to a binary bit
resolution .:e increased allowing for analysis of the map of "Vs" and "I's". The "0's" represented the background
originally unresolvable traces. (pixels of value - 0) and the "I's" (pixels of value = 255) were

parts of particle traces (Figure 7). This step reduced the
Image Analysis and Processing needed computer memory space and processing time in that

the image was now represented by an array of 1-bit integers.
As noted before, the image analysis and processing The bit map was then searched pixel Ly pixel, row by row

algorithms were developed with the specific objective of until a pixel representing part of a particle trace was found
examining large scale real turbulent flows. As a result, the (a "1"). Then the total size of the trace, as well as its length
selected technique should be able to analyze images with a and orientation, were determined by examining connected
large numbers of particles at a wide range of velocities. Thus, pixels. The centroid of the trace was also found at this time.
it was necessary that the image resolution be such that both The program assumed that the trace fownd was the longer
very small (low velocity) traces as well as long (high streak. The length iand orientation of this trace, coupled
velocity) streaks could be clearly identified arid handled with the illumination code, was then used to determine the
efficiently. It was also necessary for the algorithms to be as probable location of the matching trace. In the photographs
simple as possible to maximize the speed of the analysis. presented in Figures 3-6 the illumination code was such that

The images, recorded on film, were digitized by the exposure time for the streak and the delay between
illuminating the negative from behind and by focusing a RCA exposures were 4 and 5 times the exposure time of the dot,
video camera with a microscope objective zoom lens on a respectively (Figure 2). Once the search distance and
section of the film. The camera was linked to a high orientation of the streak were calculated, the matching dot
resolution video recorder as well as to an Imaging was searched for only in a limited space. It was necessary
Technologies Inc. Series 100 Image processor and frame however, to examine the image on both sides of the slot, since
grabber which were installed in a Sun 4/260 workstation, the flow direction was not known a priori. If a second trace

Each video frame was digitized to a 512x512 pixel, 8 bit was identified within the prescribed area, the ratio of the
array. Each pixel was assigned an intensity value, ranging slot length to separation distance was then compared to the
from 0 to 255, corresponding to its relative brightness. The respective time 'atios in order to insure that they were traces
digitized image was then enhanced by color filtering, a of the same particle. The last position of the center of the
smoothing convolution and contrast enhancement to reduce the particle within the streak was then estimated by
noise. The use of fluorescing particles has the added benefit determining the width of the trace at three positions along
that the emitted light is of a wavelength which is higher the trace's major axis (Figure 8). The variation in their value
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had to remain within a specified range for them to be separation distance of 15 pixels, resulting in an error of
accepted as the actual width of the trace. The position of the approximately 10%. The error can be further reduced by
center of mass at the end of the streak was then determined to reducing the digitization scale. For example, if the image Is
be at a half width from the edge of the trace and centered digitized such that the separation distance is increased to 60
along its major axis (Figure 8). The same process was done for pixels the error decreases to 2.5 %. However, the processing
the shorter trace. The velocity was calculated from the time increases accordingly. Thus, a judgement of what is the
estimated separation distance, center of mass to center of mass best digitization scale must be made. By recording the
(Figure 8). This sequence was repeated until the entire image original image onto film, different digitization scales can be
had been analyzed and a map of the entire velocity field used for different portions of the image. This method
(Figure 9) was produced. provides the capability to optimize between the processing

Since both sides of the traces were searched there was a speed and the error. This feature is especially important if
small possibility that dots which fulfill the above gradients of the velocity are desired, i.e. during vorticity
mentioned criteria would be found on both sides of the streak. analysis. Hesselink [121 estimated the maximum acceptable
If this situation occurred the velocities would be compared to relative error to be less than 0.5% to insure an accurate
neighboring values to determine the correct direction. If the vorticity determination. This error level is quite impractical
correct direction and magnitude could not be inferred, this for the a technique presented in this paper. However, errors
data point was not used for the final velocity map. The on the order of 1-10% can be achieved, depending on the
computer program also contains additional procedures to length of the analysis. It should be noted here that to
handle unmatched traces, variations in slopes, flow near the achieve an error of 1% the traces of a single particle should
core of a vortex, etc. occupy the entire 512x512 frame.

The digitization, enhancement and processing phases were
done interactively which allowed for operator control of the Summary and Future Work
thresholding and scale of digitization. The analysis of the
bit maps was done automatically with its output being the A particle displacement velocimetry technique utilizing
velocity vector for each particle trace found. A 512x512 pixel, digital image processing has been developed for examining
8 bit image was usually completely analyzed in large scale complex turbulent flows. The technique consists of
approximately 2 minutes of CPU time. The more "trouble illuminating a section of the flow field with a sheet of Argon
spots" (unmatched traces, multiple dots for one slot, noise, ion laser while seeding the water with microscopic
etc.) there were, the longer it took for the computer to fluorescing neutrally buoyant particles. These tracers are
complete the analysis. The entire process consisting of: invisible in most of the flow field, but respond with intense
selection of an image, digitization, enhancement, fluorescence within the illuminated section. By pulsing the
thresholding, and image analysis took approximately 10 laser twice while recording a single frame each particle
minutes per image. More sophisticated automatic edge leaves two traces on the same frame. The velocity is
detectinn techniques as well as automatic thresholding are determined from the distance between the traces, and the
being implemented at the present time. direction of the flow is identified by keeping one of the pulses

longer than the other. Each recorded film negative is
Particle Production analyzed by digitizing a portion of the frame, to a 512x512

pixel array which is then enhance, thresholded and then
For the technique to be practical, particularly for large translated to a bit map. The analysis of the bit map consists

scale towing tank flows, an efficient method of manufacturing of searching the array for traces. Once a trace is found, its
microscopic fluorescent particles was needed. A substantial position, orientation, width and length are determined. From
effort has been invested in developing a reliable and this information , as well as the illumination code a search
controllable manufacturing process. The particles were distance and direction of the matching second trace are
composed of a specific mixture of acrylics and several calculated. If the second trace is found within the
fluorescing dyes. The mixture was adjusted to produce a predetermined space the velocity is then determined from
neutrally buoyant substance. They were manufactured by the separation distance. This procedure is repeated until the
dissolving the acrylics and then mixing the solution with the entire image is enalyzed.
dyes. The mixture was atomized and the resulting "dust" (5- At present, the system is installed in a 140 foot towing tank
10 microns in diameter) was then collected and used as at the David Taylor Research Center and is being utilized in
velocity tracers. the study of the three dimensional separated flows. Further

refinement of the image processing and analysis procedures
Error Estimation are also currently underway. In the future the Image

processing and analysis will be fully automated and expert
An important aspect of the analysis is to estimate the error systems will be utilized to determine proper levels of

of the measurement. Geometric distortion due to the lenses enhancement, thresholding and accuracy of analysis.
can be corrected for by using the techniques described by Green
[111. Other errors are predominantly due to the digitization Acknowledgement
which sets the accuracy of each measurement to + 0.5 pixels.
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(a) (b)
Figure 3: (a) Image of particle traces enlarged after digitization.

(b) Same image as (a) but magnified prior to digitization.
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1) Measure trace length.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1

_________________2) Determine trace width and center of particle.

W1 F-T BWW/20

_____________ - -3) Search for the partner trace.

________________________________4) Measure particle displacement.

~~00

_____________________Figure 8: General sequence of image analysis steps.
(1) Determine the length and orientation of the trace.
(2) Determine the width and the position of the

Figure 7: Binary bit map of Figure 6. center of the particle at the end of the trace.
(3) Search a small area at the calculated search distance.
(4) Measure the particle displacement.

Figure 9: Map of the velocity field of the flow near
a 1 inch nozzle, determined through analysis
of Figure 7, by digital image processing.
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Side-Wal Effects on HydroL '4 'ic Forces Acting on
a Ship with Forward and .cllatory Motions

M. Kashiwagi and M. Chkusu
Kyushu University
Fukuoka, Japan

Abstract dynamic forces acting on a ship moving at a
finite forward speed in waves. The pioneering

A rational slender-ship theory is presented work of Hanaoka [2] based on the thin-ship
for predicting the side-wall effects on the theory is a rational theory of the side-wall
added-mass and damping coefficients of a ship, effects, but did not give reliable information
moving with forward velocity and performing on the effects. Hosoda [3,4] and Takaki [5]
heave and pitch motions in a waterway with are based on the strip-theory approach with a
vertical and parallel side walls. Satisfaction number of approximations in the mathematical
of the side-wall boundary condition in the evaluation of reflection waves from the side
far-field solution is acheived by the method walls. Accuracy of their numerical results
of mirror images, with a closed-form expres- are therefore questionable despite their math-
sion obtained of the resultant infinite se- ematically complicated expressions.
ries. The inner expansion of the far-field In the present paper, the slender-ship the-
solution dictates the asymptotic behavior of ory is applied to develop a rational method
the near-field solution, thereby determining which is able to predict the effects of side-
the near-field homogeneous component. This wall interference, particularly when a ship
component accounts for the side-wall inter- has a finite forward speed. The theory desc-
ference in the inner region as well as the ribed in this paper may be regarded as an ex-
hydrodynamic interactions along the ship's tension of Newman's unified theory [6] to the
length. case of side-wall effects present.

Computed added-mass and damping coeffici- In the inner region close to the ship hull,
ents are presented for a half-immersed prolate since the side walls and the radiation condi-
spheroid. Validity of the proposed theory is tion are absent, the inner solution can be
confirmed by the comparison with the 3-D panel identified with that in the unified theory for
method for the special case of zero forward the open-sea problem. Namely it can be const-
speed. ructed by the superposition of the particulaz

solution given by the strip theory plus a
1. Introduction homogeneous solution giving three-dimensional

effects. The latter component plays an impor-
Hydrodynamic forces acting on a ship model tant role in accounting not only for longitu-

with forward and oscillatory motions are in dinal flow interactions along the ship hull
most cases measured in a towing tank with but also for the side-wall interference in the
limited width. When the forward speed and os- inner region.
cillation frequency of a ship model are rela- In the outer region far from the ship, the
tively small, reflection waves from the side ship may be seen as a segment on the longitt-
walls of a towing tank affect the measured dinal axis, but the side walls are present.
hydrodynamic forces: they must be different Thus the solution is represented by a line
from what we expect for a ship model in open distribution of 3-D wave sources with unknowr
water, strength along the ship's length. The veloci-

A diagram [1) is prepared for predicting ty potential of 2-D wave source satisfying the
whether the side-wall effect is expected or side-wall boundiry condition is derived by
not, which gives the critical value of para- considering an infinite number of image singu-
meter T=Uw/g (where U is the forward speed, w larities and a closed-form expression of the
the oscillation frequency, and g the gravi- resultant infinite series.
tational acceleration) as a function of the The source strength in the outer solution
ratio of tank width to ship length. This di- and the coefficient of a homogeneous component
agram is, however, derived with heuristic ways in the inner solution are to be determined
and thus not entirely precise, from the asymptotic matching procedure. The

There have been a few theoretical studies implementation of the asymptotic matching bet-
concerning the side-wall effects on hydro- ween the inner and outer solutions leads to an
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integral equation for the strength of 3-D wave
sources, the solution of which then settles Side Wall
the crefficient of the near-field homogeneous
solution; thereby completing the velocity po-
tential aecessary for the calculations of L
added-.ias.; and damping coefficients. BT

So!iing the integral equation obtained re- X
quires the numerical evaluation of Cauchy's
princip3l-value integrals involved in the ker-
nel func'ion representing the side-wall ef-
fects. Numerical implementation of these in- -
tegrals is performed by firstly subtracting Side Wall
the singular behavior from the intgrand, sec-
ondly integrating analytically the subtracted
singulae part, and finally integrating numeri-
cally the resultant non-singular part by means
of an appropriate numerical technique. Clen- X
shaw & Curtis quadrature is employed in this
paper with a tolerance of absolute error less
than 10-5.

Computntiona] results are presented of the
heave and pitch added-mass and damping coef-
ficients, for a half-immersed prolate spheroid r-,
of length-beam ratio 8.0 advancing at a Froude Y5
number 0.1 in the waterway of width twice the
spheroid's length.

The appearance of side-wall effects is
closely related to the wave pattern generated
by an oscillating and translating ship and to Fig.1 Coordinate system and notations
its reflection from side walls of the water-
way. Starting from the ring wave at T=O, the
wave pattein changes to the complicated one horizontal, and the z-axis is vertical and
dominated by the diverging-wave component, as positive downward, with the origin placed at
the parameter t increases across the critical midships and on the undisturbed free surface.
value 1/4. Corresponding to this complicated Assuming the flow to be inviscid with irrota-
variation o. the wave pattern, the added-mass tional motion, the flow field can be described
and damp.ag coefficients including the side- in terms of the velocity potential V(x,yz,t)
wall effects show complex variations, satisfying the Laplace equation of the form

In order to check the validity of the
theory, numerical results for the special case [L] 'xx + $yy + Izz = 0 (1)
of zero forward speed are compared with inde-
pendent "exact" calculations based on the 3-D in the fluid domain z>O, IyI<BT/2. In order to
panel method, for example, by Kashiwagi [7]. justify the linearization of the problem, the
The results of the present theory agree excel- amplitudes of ship's oscillatory motions are
lently with the 3-D panel-method predictions. assumed small. Then the velocity potential can

The present paper is restricted to the be linearly decomposed as
radiation problem of heave and pitch oscilla-
tions, but the diffraction problem may be U[-x+x(x,Y,Z)]
analyzed in a similar manner with the know- + Re[=Zi 3j(xyz)e 1] (2)
ledge of Sclavounos' diffraction theory [11] j=3,5
for the case of open iea, which is left for
future work. where X(x,y,z) is the steady perturbation po-

tential due to the forward motion of the ship,
2. Formulation of problem and the second line represents the unsteady

part of the velocity potential. Mode index j
As shown in Fig.1, we consider a ship in a is used, with j=3 for heave and j=5 for

waterway with vertical and parallel side pitch, and 9j denotes the amplitude of the
walls. Let L, B, and d denote the length, j-th mode of motion. Re means the real part
breadth, and draft of a ship respectively, and of the expression to be taken and the time
BT the breadth of a waterway. The ship is as- dependence eiwt will be hereafter understood
sumed to move at constant forward velocity U and deleted in the analysis.
and to oscillate sinusoidally with circular In this paper, we restrict the ship hull to
frequency w in heave and pitch; the depth of be slender with small beam and draft compared
waterway is assumed deep enough, with no shal- to its length, and thus we are allowed on the
low-water effect in the water-wave phenomena. free surface to neglect the contributions of

A coordinate system used is shown in Fig.l. steady perturbation potential. With this taken
The x-axis is coincident with the centerline into account, the boundary conditions to be
of the waterway and positive in the direction satisfied by the normalized unsteady velocity
of the ship's forward velocity, the y-axis is potential 4j can be summarized as
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1
[F] 4jz + Kmj + i2T4 jx -o )jxx

[R] - iW( %4j + iT~jx ) = 0 (3) 4()-,y,z)d, (9)
Here G(x,y,z) denotes the Green function or

where K=o 2 /g, T=UW/g, Ko=g/U2  (4) the potential of a "translating-pulsating"
source with unit strength, and qj(x) is the

[B] 4 jz 0 as z + (5) strength of the source to be determined. The
Green func:tion appropriate to the present

(W] 4jy = 0 on y = ±BT/2 (6) problem can be derived by applying Hanaoka's

U approach [2], in which the method of mirror

[H] Jn = nj + T- mj on ship hull (7) images is utilized.
Considering the Fourier transform with

respect to x of a unit source located at the
Here U in (3) is Rayleigh's artificial visco- origin and its mirror images with respect to
sity coefficient to ensure the appropriate both of the side walls of waterway, the Green
radiation condition [R] being satisfied. The function satisfying homogeneous boundary con-
subscript n in (7) denotes normal differentia- ditions (3)-(6) is given in the Fourier space
tion, with the unit normal vector defined as follows:
positive when pointing into the fluid domain ikKx
(see Fig.1), and nj is the components of the C*(k;y,z) = IG(x,y,z)e dx
normal vector parallel to the xj-axis with
extended definition of n5=znl-xn3. mj is the
so-called m-terms representing the forward- = 1 r ncos(nKz)-vsin(nKz) n

speed effect due to the oscillatory motions in -o n2 +V2

the steady flow, which has been originally K i-.BI+k~
derived in Timman and Newman [12] and can be -Z e- yPT dn
explicitly written as P=-

(ml, m2 , m3 ) = -(n.V)VX )-ispn(l+kT) -KZ

(m4 , m5 , m6 ) = -(n.V)(rxVX) 0 (isgn8)I__ _-• Z (leT<y-B

In order to obtain a solution of the above + P=-

three-dimensional boundary-value problem, we 1 e-Kz e-Kly-pBT/l -V
exploit a slender-ship theory. In this theory, L e P=-1
the flow field to be analyzed will be divided
into the inner and outer regions, and in each where v=(1+kT )2 , K=Kv=K(1+kc)2  (11)
region the governing equation and boundary
conditions may be simplified, making it pos- and the upper and lower expressions in brack-
sible to obtain the inner and outer solutions ets are to be taken according as kJ<v and Jkl
respectively with relative ease. However, both >V, respectively.
of these solutions include indeterminate coef- The values of k satisfying IkI=V give the
ficients, since nothing has been prescribed branch points of the square-root function,
about the respective asymptotic behavior far which are written in the nondimensional form
away in the inner problem and close to the as
ship in the outer problem. These indetermi-
nate coefficients can be settled by requiring k = -2/(1+2T;vI-+T) (12)
the two solutions to be compatible in an over- 1,2
lap region between the inner and outer fields. k3 ,4 = 2/(1-2T±I-VF) (13)

2.1 The outer problem Note that for T(I/4, k3 and k4 are real and

positive, but complex-conjugate for T>I/4. At
In the outer field far from the ship hull, zero forward speed (T=O) k2 and k3 become -1

the effects of three dimensionality and of and +1 respectively, whereas kI and k4  tend
side walls of the waterway must be accounted to respectively minus and plus infinity.
for. When the ship is seen from the outer In connection with the infinite series
field, it may be viewed as a segment on the appearing in (10), we can obtain their closed-
x-axis, and thus the flow field is insensitive form expressions under the condition IyI<BT/2
to the details of ship's hull geometry. There- as follows:
fore the outer problem is defined by the 3-D
Laplace equation [L], subject to the free- C e-KIy-PBT19 = e-Klylk
surface [F], radiation [Rj, sea-bottom (B], p=-W
and side-wall [W] boundary conditions, that +cosh(ZKy) -+coth( (14)
is, (3)-(6). Since these boundary conditions 2
are homogeneous, the outer solution can be 0 ±iK1y-PBTlk = e±iKIyIZ
described in terms of the 3-D Green function p=_e
with unknown wave sources distributed on the 2T1T . 2KBT 1
x-axis, in the form +cos(LKy) I (BT , )-l±icot( )(15)
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The function appearing as the first term in fo(k) = log - + 1i
brackets on the right side of (15) denotes the Iki
infinite series of Dirac.'s delta function, [ 1 {cosh'1(-!-)+ilsg(l+cT))
defined by {caks 1

6 (Z' ) m:- 6 (P--kB-M) (16) Cos" (21)

and therefore contributes only when P,=2lrm/KBT. In (19) and (20), two-dimensional polar co-
If we consider the limit of BT + - in (14) ordinates (r,e) are used with the relation

and (15), it is relatively easy to confirm (y,z) = (rsine,rcose), and y is Euler's cons-
that the second line on the right-hand side of tant equal to 0.5772.
each equation vanishes and only the first term The expansion of the side-wall-effect part
remains. Thus the side-wall effects are repre- of the Green function can be obtained with
sented by the second line in (14) and (15); comparatively simple reduction, in the form
this suggests that the Green function can be
expressed in an addition form of the open-sea * 1 *
Green function Go(x,y,z) plus the side-wall- GT(k;yz) (1-Kz)fT(k)

effect part GT(x,y,z). The final expression where + O(Kr(1-v),K 2r2) (22)
of the Green function can be given by consi-
dering the inverse Fourier transform of the n'(k) = (-1+coth(K i/ T))
above expressions, with the following formula: Jo n 2+v2

dn
G(x,y,z) = Go(x,y,z) + GT(x,y,z) I

=J _Go(k;y,z)+GT(k;y,z)e dk (17) I - -k ,(+kT) T 6 _ )1

In the outer solution given by (9), the 3-D + -isgn(l+kT)cot( 1
source strength qj() is unknown but will be2
determined by requiring the inner expansion of 1 -t 2

(9) to be compatible with the outer expansion / _T2 v=-1 {-l+coth( k /v (23)
of an appropriate inner solution. For this
matching procedure, the inner expansion of the As in (10), the upper and lower expressions in
Green function must be sought. Following the brackets in (21) and (23) correspond to Jkl<v
method of matched asymptotic expansions, we and Ikl>v, respectively.
seek the inner expansion with the following The final result of the inner expansion of
order of magnitude: the Green function will be obtained by substi-

Ky, Kz=O(e), k=O(1), T<0(1) (18) tuting (19) and (22) into (17) and performing
the inverse Fourier transform. Regarding the
open-sea Green function (19), the analysis for

Considering that the side-wall effects will be the inverse Fourier transform shown in Newman
expected when the forward velocity and oscil- and Sclavounos [9] can be directly applied.
lation frequency of a ship are relatively Therefore we have
small, the assumption on the order of para-
meter T in (18) seems reasonable. It should G(xz) " 6(x)G2(YZ)+2 -(IKz)
be noted, however, that this assumption does Fo(2D 'it dx (24)

not necessarily mean the applicability of the where

present theory is restricted to the range J Fl(Kx)+F 2(Kx) for x<0
under the critical value given by T=1/4. The Fo(Kx) =(25)
transitional value of the parameter T where F2(Kx) for x>0
the theory becomes invalid may be determined k o
from numerical computations and comparison of FI(X) =e kX[1 -ldk/k
those with experiments. F1 X)= Joo+Jk 2 V 7k l

The analysis for the inner expansion of the
open-sea Green function is identical to that + EI(iIklX) + El(IIk 2XI) (26)

in the unified theory devised by Newman [6], tk 3+f-iM 1 I
and hence with the present notations the F2(X) =-[ ]-k
desired result can be expressed in the form F 2 o j e L 17 ld/

•IT + e-i~ _ ,7 -lldklk (27)Go(k;y,z) = G2D(Y,Z) +4-Kz +) li1 k/k (27

where + O(Kr(l-v),K
2r2 ) (19) 1 3  

_-

G Function El(z) in (26) denotes the exponential
G2D(Y'Z) =Go(O;y'z) integral with complex argument. The expression

-- {(l-Kz)(logKr+y) (27) is applicable for T<1/4, and should be
understood for T>1/4 with k3 = k4 , where the

+ Kr(cose+esin6)1-i(1-Kz) (20) wavenumbers kj (j=Ix4) are given in (12) and
(13).
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The inverse Fourier transform of the side- Since we got the desired inner expansion of
wall-effect part (22) can be expressed as the Green function, by substituting it in (9)

1 we have readily the inner expansion of the
GT(X,y,z) (l-Kz)-! FT(KX) (28) outer solution in the following form:

where 7T dx

i -ikX ( P ,Y,z) '- qJ(x)G2D(y,z)
FT(X) = -he dk/k2Tr foo 1 ~(1-Kz)fj( j4 [Po[K(x--P)J

.~f _ hdn +F{K(x- )} ]d (31)J o " +v " / -r +-
Jo2 +V 2 I

1 .217 sgn(l+k) -ikX, 2.2 The inner problem

Tp=lM 0 Lk dv/dk-k/v J Since the ship hull is assumed slender,
changes of the flow in the x-direction are

fl k k3 ~1 -ikX 1small in the region close to the ship hull, by- .[ ~I_ k e comparison to changes in the transverse plane.
42 e1 1-k2/V2  Thus the flow in the inner region may be
cot(-T 0v)dk/k described by the 2-D Laplace equation subject

.2  to the free surface condition which is inde-

'2 4  jikX 1 pendent of forward velocity and applicable to
+2L ]Jk k e _/V

2-i the 2-D problem in the y-z plane; this can be2 1 3 mathematically justified by the coordinatec-/T stretching argument with the assumption of
k k 2 / x=O(1), y=O(e), and z=O(e). In the inner prob-

1 1 3 _ik X  lem, the radiation condition and the side-wallkle -____ dk/k-++ e-/ boundary condition can not be specified, be-
2 - cause the side walls are absent in the inner

region. With these taken into account, the

S
2

2 /k ikX 1 (29) boundary-value problem can be written 
as- -- k + Ik e A - -V dk /k ( 9

k1 L] j ,yy + jzz = 0 for z>O (32)
1

and 6 0 =1-, cc, = 1 (mAO) (30) [F] jz + %~j = 0 on z=O (33)

The first term on the right-hand side of (29) [H] qJN N. + on ship hull (34)
represents the contribution of non-radiating 1 H o i l

local waves. The second term is obtained from
the infinite series of delta function in (23) Here we note that the subscript N in (34) de-
and physically the contribution of the out- notes the normal differentiation on the sec-
going waves at infinity. In this second term tional contour in the 2-D transverse plane,
k m denotes the values satisfying KB;V'-Ci and Nj and M1 denote the slender-body approxi-
=2m (m=O,1,2,.°), which exist at most four in mation of t"Ie 3-D quantities in (7) and (8),
number and when m=O coincide with kj (j=1%4) which are explicitly given as
given in (12) and (13).

A part of the radiated waves are reflected N5 = _xN3
on the side walls, and changed in phase by the
factor n/2 and represented as the third term M3 = -NIXzy-N3Xz (35)

in (29). In other words from the standpoint M5 = N3_xM3
of hydrodynamic-force calculation, the third
term is originally to be contributed to the The inner boundary-value problem defined
damping force, as is the same as the second from (32) to (35) is the same as the conven-
term, but by the phase shift of 17/2 due to the tional 2-D formulation except that the radia-
side-wall effects, this term will contribute tion condition is absent. Thus the inner
to the inertia force. The integrals in the solution can be identified with Newman's uni-
third term must be treated as Cauchy's princi- fied-theory solution [6], composed of a par-
pal-value integral at the points of k sat- ticular solution commonly used in the strip
isfying sin(KBT/ 2z-kz/2)=O, namely at k=kpm theory plus a homogeneous solution multiplied
defined in the second term. by a three-dimensional-effect coefficient. To

The fifth and sixth terms in (29) are be more specific,
independent of DT and thus to 'e cancelled out
by some terms given in the open-sea expres- Pj(x;y,z) f o(y,z) + U oP. .
sions (25)-(27). However as discussed previ- H

ously in connection with the infinite series + Cj(x) J(y,z) (36)
of (14) and (15), these two terms play a role
in cancelling out respectively the third and (y,z) = P(yz)- P(y,Z)

fourth terms of (29) in the limit of BT + -. J = (

When T>1/4, the expressions from third to where the overbar~denotes the complex conju-
sixth terms should be understood with k3=k4. gate, and and 5 are the particular solu-
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tions determined to satisfy the following forward speed, Kinoshita and Saijo [8] derived
boundary conditions on the body profile at an analogous equation to (42) in the study on
station x: a multi-body-type floating breakwater, consis-

^ ting of an infinite array of slender bodies.
OJN =Nj , jN =Mj (38) The inner solution (36) appears formally to

be invariable regardless of whether the side
The coefficient of the homogeneous solution walls are present or not. However, through
Cj(x) in (36) is indeterminate at this stage, the 3-D source strength qj(x), which includes
but may be settled by matching the outer the side-wall effects as a solution of (42),
expansion of (36) with the inner expansion of the coefficient of homogeneous solution Cj(x)
the outer solution already given by (31). accomodates not only the 3-D interaction ef-

Far from the ship hull in the inner region, fects between transverse cross-sections but
(36) reduces to also the side-wall effects of the waterway.

U A
fj(x;y,z) 'I, [0j(x)+j. oj(x) 3. Added-mass and damping coefficients

+ Cj(x){Oj(x)-oj(x))]G2D(Yz) Since the inner solution has been deter-

- eKZcos(Ky)21c(x)aj(x) (39) mined, we proceed to the calculation of hydro-
dynamic pressure force and moment acting on a
ship with forced heave and pitch motions. The

Here o(x) and j(x) denote the 2-D effective linearized hydrodynamic pressure is given from
source strengths; tkese can be given by sol- Bernoulli's equation. Then the hydrodynamic
ving the - and 0_-problems respectively, force in the i-th direction due to the J-th
G2D(Y,z) is the 2-D Green function and iden- mode of motion can be provided by integrating
tical to the one shown in (20) or (31). the pressure over the mean wetted surface of

the ship hull, and can be expressed in terms
2.3 Matching of the added-mass (Aij) and damping (Bjj)

coefficients, in the form
In the analysis described above, the un-

knowns are the 3-D source strength qj(x) in F = - E ((iW) 2Aij + (i)Bij)}j
the outer solution and the coefficient Cj(x) J=3,5
of a homogeneous component in the inner solu- where (1-3,5) (43)
tion. These will be determined by the match- Aij+Bijiw - L[aij(xbij(x)/iw]dx (44)
ing of the inner and outer solutions. Compar-
ing (31) with (39) and equating the factors of (
G2D, the following relation can be found: aij+bij/iw = - PJcNI9jdl

qj(x) = c7j(x)+-W Gj(x)+Cj(x)(0j(X)-3j(X)i + ip 1J(N#^Vj MI'oj)dP. - 4 p( H)JcMIpdt

Equating the remaining terms in (31) and (39) - pCj(X)f (Ni-i.M1 )( (P- )d (45)
gives J i

i2nCj(x)aj(x) = fLqj(0) Here p is the fluid density, and in deriving

d the above, Tuck's theorem [13] has been used.
- [Fo{K(x-t)}+FT(K(x-t)}]dt (41) and bij defined in (44) and (45) denote

the 2-D added-mass and damping coefficients
with the error of order O(K2r2). respectively, involving the 3-D interaction

Eliminating CJ(x) from (40) and (41), we effects and the side-wall effects, and c to
have an integral equation for the 3-D source the integral sign in (45) denotes the submer-
strength qj(x) of the form ged portion of the contour of the transverse

i section.
qj(x) - 2r. [j(x)/aj(x)-1]hqj(4) In order to perform the calculations of

(45), the term H3 defined kv (35) and the
S[Fo{K(x-cij+F 7(K(x- ))d related velocity potential (3 must be known,

UA besides the velocity potential g cgmmonly
a J(x)+j-oj(X) (42) calculated in the strip theory. If 0 and

= are obtained, the remaining velocity poten-tials for pitch (j=5) follow from (35)

Once qj(x) is determined by solving (42) with p p

an appropriate numerical method, the coeffi- x03
cieliL Cj(x) can be readily Uletermined from AP P AP t 46)
(40), and thus the inner solution will be = x 3
completed.

In the case of no side-wall effects, i.e. Sclavounos [10] studied in the open-sea
BT + c, the function F74K(x-t)} becomes zero case the relative importance of the contribu-
as already mentioned, and the integral equa- tions frow the M3-term and related velocity
tion (42) reduces to the corresponding one in potential Og, by comparing the numerical re-
Newman's unified slender-ship theory in the sults with experiments. His results reveal
open-sea case (6]. In the special case of ze j that the inclusion of the H3-term leads to a
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substancial overprediction of the damping co-
efficients. This overprediction may be at- r dv/dk-k/v V dk
tributed to the inaccuracy of the m-terms nearJ s " 2-k
the ship ends, which have been evaluated with 2

slender-body approximation. Therefore the m- K -__ (49
terms should be evaluated from the 3-D precise g 4T /v-k (49)

calculation for the steady perturbation poten-
tial. Fortunately, according to his numerical The resultant non-singular integral is evalu-
study, a better agreement with experiments is ated using Clenshaw & Curtis quadrature with
provided by simply omitting the m-terms in the an absolute convergence requirement of I0-5
unified theory. Thus in the numerical calcu- applied. This quadrature is known to give an
lations with side-wall effects presented here accurate result even for highly oscillating
too, i:: was decided to neglect the M3 term functions with less computing time. Other
and consequently the velocity potential in single integrals, appearing in (29) and in
(45). (27) for the open-sea kernel function, are

It should be noted that the last term in evaluated similarly with Clenshaw & Curtis
(45), multiplied by the coefficient Cj(x), quadrature, with appropriate truncation cor-
plays an important role in accounting for the rections based on asymptotic expansions of the
unified-theory corrections in the open-sea integrand for large values of valuable k.
case and for the effects of side-wall inter- The double integral appearing as the first
ference in the presence of waterway. Without term in (29) is well-behaved, since its integ-
this last term, the remaining expressions in rand rapidly reduces to zero as the radial
(45) are identical to those in the strip distance in the n-k plane increases. Thus the
theory. evaluation of this integral is performed also

by means of Clenshaw & Curtis quadrature for
4. Numerical calculation method the double integral, with an absolute error

less than i0- 5 required.
An improtant task in the present theory is After all these procedures, the integral

to solve the integral equation (42) for the equation (42) is transformed into a linear
3-D source strength q1(x). For this purpose, system of simultaneous equations for the dis-
after dividing the ship's longitudinal axis cretized values of q(x) at NX-1 nodal points.
into NX segments of equal length, the 2-D (The source strengths at end points k=l and k-'
boundary-value problem for heave (J=3) in each NX+1 have been postulated to vanish and thus
divided transverse plane must be solved; which treated as known.) The simultaneous equations
gives a3(x) necessary in calculating the right obtained are solved by the matrix inversion
side of (42). Since we neglect the contribu- with Gauss' elimination method.
tion of steady perturbation potential, 3(x) Once the solution of the 3-D source streng-
becomes zero, and the 2-D effective source th qj(x) is obtained, it is straightforward to
strength for pitch (J=5) can be evaluated calculate from (40) the coefficient Cj(x) of
directly from G3(x), with the result of 05(x) the near-field homogeneous solution and from
=-x03(x) and 85(x)= o3(x). (45) the 2-D added-mass and damping coeffici-

The 3-D source strength qj(x), which is ents. The final results of the 3-D added-mass
to be determined, has been assumed to vary and damping coefficients can be obtained from
linearly in x between adjacent nodal points, (44), using the strip-wise integration along
with the value of q(x) at station x=xk denoted the x-axis.
by qk,

N 5. Numerical results and discussion
q(x) = Z Ak(x)qk (47)

k=2 5.1 Results of forward-speed problem
where

w (x-xk1)/(xk-Xkl) Xk-l<X<xk  Numerical computations are performed for a
( I =_ Xk<XXk prolate spheroid of length-beam ratio L/B=8,

k(.x) =(x-xk+l)(xk-xk+l) xk<x<xk+l moving at the Froude number Fn=O.1 and oscil-
0 elsewhere (48) lating sinusoidally with -Ircular frequency w

in the waterway of width 16 times the ship's
With this approximation, the integral on the breadth, i.e. BTIB=16. These ratios of ship
left-hand side of (42) is analytically evalu- and waterway dimensions are selected to cor-
ated over each segment. The remaining task respond to a typical experiment situation,
after this procedure is the numerical evalua- where a ship model of L=2 m and B=0.25 m is
tion of the integrals associated with the two towed at the velocity U=0.443 m/s in a towing
functions, Fo{K(x-)} and F.(K(x- )). In re- tank of 4 m in width.
lation to the Lhid Ltem in FI7 K(X-Qs given The heave addcd ma 3 )A Nnd damping
by (29), Cauchy's principal-value integral (B33) coefficients are shown respectively in
must be numerically evaluated. In the numeri- Fig.2 and Fig.3, in the nondimensional form
cal implementation of this integral, singular against the nondimensional wavenumber KL. With
contributions are subtracted from the integ- a similar style of representation, the added-
rand and analytically integrated. For this moment of inertia (A55) and damping (355)
manipulation we have used the following integ- coefficients in pitch are presented in Fig.4
ral formula: and Fig.5, respectively. The nondimensional
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form of these coefficients are displayed in range of T>1/4, there exist the short waves
the ordinate of each figure. which originate from the cusp part of the wave

In all of these figures, thick solid lines pattern and propagate in the transverse direc-
indicate the numerical results in the presence tion of the waterway. These waves reflect on
of side-wall effects, computed by the slender- the side walls and may exert a complicated
ship theory described in this paper. In order influence on hydrodynamic forces on a ship. In
to show the magnitude of side-wall effects, the numerical results of the added-mass and
the values in open sea are shown by short- damping coefficients shown from Fig.2 to
dashed lines, which were obtained with the Fig.5, we can observe fast variations in the
side-wall-effect part of the kernel function short range of the wavenumber approximately
FTpK(x- )) set to be zero in the integral between KL=7.3 and 7.8. The parameter T cor-
equation (42), and therefore must be identical responding to these wavenumbers takes the
to the unified-theory solutions [9]. Also values ranging from 0.27 to 0.28. Therefore
shown in the open-sea case are the strip-the- the fast variations in the added-mass and
ory predictions, which are indicated by dash- damping coefficients might be attributed phys-
dotted lines. Comparing the predictions of the ically to a contribution of short waves origi-
strip theory with those of the unified slender nating from the cusp part of the wave pattern.
ship theory, we can understand that the ef- As the motion frequency increases across
fects of three dimensionality are prominent the range where the fast variations occure,
only in the low frequencies, the effects of side walls gradually decrease,

Since the forward velocity is present, with and the added-mass and damping coefficients
the inceasing wavenumber KL, the parameter reduce to the corresponding values in open
T=Uwl/g=Fn/KL increases and takes the critical sea shown by short-dashed lines around the
value T=1/4 at KL=6.25. The position of this nondimensional wavenumber KL=14.0. In this
critical wavenumber is shown by the vertical range, i.e. between KLf8.0 and 14.0, the di-
thin solid line with a downward arrow. In the verging-wave component may be dominant in the
frequencies less than T=1/4, the effects of side-wall effects on hydrodynamic forces on a
side walls are considerable not only in heave ship.
but also in pitch modes. In particular, A55  We have a conventional diagram [1] which
and B55 change drastically in the frequency can be used to judge whether the side-wall
range slightly less than the critical frequen- effects are expected or not, by means of the
cy T=1/4, and A55 takes a negative value. It parameter T and the ratio of tank width to
should be noted, however, that the damping ship length BT/L. In the present calculations
coefficients B3 3 and B55  predicted by the the ratio of BT/L is 2.0 and thus the critical
present theory are definitely positive, al- angle of a sector, Oc, is given as
though they vary greatly in magnitude and
become nearly equal to zero at some frequen- Oc = tan-'(BT/L) = 63.4 deg.,
cies. This non-negative damping force seems
quite reasonable, judging from the considera- where the critical angle Oc is determined
tion on the energy flux radiating in the geometrically such that the wave emitted from
longitudinal direction of the waterway. In the ship bow will strike the afterbody of the
some published results by a heuristic method ship by the reflection from tank walls. This
[5], negative damping-force coefficients are critical sector angle, on the other hand, is
predicted in the low frequencies; this is not estimated from the calculations of the wave
the case. pattern generated by an oscillating and trans-

It is known in the case of zero forward lating source [14], and is depicted in the
velocity that the wavenumbers corresponding to diagram as a function of T. Using this diag-
the tank-resonant mode in the transverse di- ram with the critical angle Oc as the input,
rection can be given by KBT=2um (m=1,2,..) and we get T=0.365 as the predicted critical fre-
thus in the present case by KL=7tm; at which quency. In the frequency range lower than this
the ratio of wavelength to tank width is equal point the side-wall effects iill be expected.
to the inverse of an integer. When the forward For Fn=0.1, the value T= 0.365 gives the crit-
velocity is present, the wavelength of the ical wavenumber of KL= 13.3. Looking at the
wave component radiating in the transverse computed values shown in Figs. 2-5, this crit-
direction is diminished in comparison to the ical wavenumber turns out to be a good approx-
wavelength at U=0, due to the effects of imation.
forward speed. With this knowledge, we can
observe particularly in the range of T<1/4 5.2 Accuracy check and validation,
that the tank-resonant frequency is shifted to
the lower frequency than the zero-speed tank- The items to be checked for the accuracy of
resonant frequency given by KL--rm. the present calculations ate the 2-D solution

The wave pattern generated by a ship with in the transverse plane, numerical evaluation
forward and oscillatory motions in open sea is of the kernel function (25)-(27) and (29), and
known to change drastically, dependent on the the solution of the integral equation (42).
value of T [14]. In particular for *r close to Since the 2-D boundary-value problem is well
but larger than 1/4, the angle of the sector posed, no discussion is needed. Haraguchi &
in which no radiating waves exist increases Ohmatsu's method [15] is utilized in the
rapidly from zero to more than 90 degrees. present work, which easily get rid o: irregu-
This leads to the conjecture that, in the lar frequencies and give an accurate solutien.
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Numerical integrations in (25)-(27) and (29) For T=0.316, the results at NX=60 are
are, as described earlier, performed using slightly different from those at NX=50 or
Clenshaw & Curtis quadrature, with an abso- NX=70 with relative error of approximately
lute convergence requirement of 10-s applied. 1.0 %. This suggests that the solution of the
Therefore the remaining thing to be checked is integral equation (42) tends to be unstable as
the accuracy of the solution of integral equa- the value of T increases beyond 1/4. Sclavou-
tion (42). nos [10] has found this kind of instability

Fig.6 presents the added-mass and damping occurs in the unified theory for large values
coefficients when the number of divisions in of T, and proposed an alternative scheme,
the x-direction NX was changed from 10 to 70, using the Chebyshev-polynomial expansion for
under the same computational conditions as in the unknown source strength. However in the
Figs. 2-5. Computed results are plotted with range of T calculated here the instability
the values of NX=70 set to 1.0. The upper seems not so serious, and Fig.6 reveals that
results in Fig.6 are for KL=5.0 (T=O.224<1/4), 40 segments along the ship's length are suffi-
and the lower ones are for KL=10.0 (T=0.316 cient to give a solution with relative error
>1/4). less than 2.0 %. On this basis, all of the

For T=0.224, all computed coefficients ap- computations shown in this paper have been
pear to converge as the number of division carried out with NX=40.
increases, although the coefficients associ- In the special case of zero forward veloci-
ated with the pitch mode dictate a finer dis- ty, 3-D "exact" calculations based on the
cretization relative to that necessary for the integral-equation method may be available,
heave-mode calculations. (Here we note that with the Green function modified to satisfy
the relative error in B55 might be noticeable the side-wall boundary condition. A 3-D cal-
but its absolute error is not so large, be- culation method of this kind has been develop-
cause the value itself is small at KL=5.0 as ed by Kashiwagi [7], in which almost perfect
seen in Fig.5.) agreement is shown between the calculated and

experimental values for a hemisphere and a
ship model with fore-and-aft symmetry. If we

in waterway Of PT/B.16 compare the zero-speed results computed by the

present theory with the corresponding ones by
-5 the 3-D integral-equation method, the valida-

1.05' BKL.Fn =0.1 tion for less complicated case can be accomp-
' / "T -0.224lih d

> B33%, Fig.7 and Fig.8 present respectively the
_ _ _ _heave added-mass (A33) and damping (B33)

1.0 . """ -.. . ..... coefficients, for a prolate spheroid of L/B=8SA 33  floating at zero forward speed in the waterway

of BT/B=16. Similarly Fig.9 ead Fig.10 show
the pitch added-moment of inertia (A55) and0.95 Values of NX.70 damping (B55) coefficients under the same

Ass are set to 1.0 conditions. In these four figures, the same
scale of the ordinates and the same line sym-

I 1 ' ,,bols are used as those in the corresponding
10 30 50 NX 70 figure for the forward-speed case shown from

Fig.2 to Fig.5. Also included in Figs. 7-10
are the results of 3-D integral-equation

K '8 (panel) method, which are presented by plus
1.05 . Fn-0.1 symbols for the case of open sea and by open

" -0.316 circles fQr the case of side-wall effects
B33 ........ .... .. present. A certain amount of inaccuracy should

1.0- . be expected in the result, of 3-D panel meth-
A3od, too. However numerical acuracy is be-

lieved to be fairly good, because the hull
surface o spheroid and the normal vector or

0.95[ values of Nx.70 it can be mathematically given and some ana-55are set !o1.'A 55  are aet lo 1.0 lytical manipulations are thus used to improve
the numerical accuracy. We sea that very good
agreement exists between the resLlts of the

10 30 50 NX 70 slender-ship theory and of the 3-D panel
method, showing the validity of the present
theory.

Fig.6 Number of division in the x-direction
(NX) vs. added-mass and damping coef- 6. Concluding remarks
ficients of a prolate spheroid, at KL=
5.0 (upper) and KL=10.0 (lower). We proposed a new rational theory for
Results are plotted with the values at predicting the hydrodynamic forces on a ship,
NX=70 set to 1.0. moving at constant forward speed and oscilla-

ting in heave and pitch in a restricted water-
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-1

Fig.7 Heave added mass of a prolate spheroid, Fig.8 Heave dampii~g coefficient of a prolate

the same as Fig. 2 except for Fn=.. spheroid, the same as Fig. 3 except for

Comparison with the 3-D panel-method Fn=O.. Comparison with the 3-D panel-

predictions. method predictions.

Ass/pVL2 Pfolete Spheroid L/8=8 st U=O aBs /p V 00-1-

0.15 In open Sam 0.3-
--- Strip Theory

-------- Slender Ship Theory

with Sd wa Effect (01/6=161
Slnder Ship Theory0.10. ' ' 9+ 3"D Panel Method 0.2-0"
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Fig.9 Pitch added moment of inertia of a Fig.8O Pitch damping coefficient of a prolate
prolate spheroid, the same as Fig. 4 spheroid, the same as Fig. 5 except
except for Fn=O.O. Comparison with the for Fn=O.O . Comparison with the 3-D
3-D panel-method predictions. panel-method predictions.li509



way. Only the slenderness of the ship hull is 9. Newman, J.N. and Sclavounos, P.D., "The
assumed, and thus the proposed theory is valid unified theory of ship motions", Proc. 13th
for all frequencies and forward velocities of Symp. on Nav. Hydrodyn. Vol.4, pp.1-22

practical interest where the side-wall effects (1980).
are prominent. Furthermore the theory is cor- 10. Sclavounos, P.D., "The unified slender-
rect even for the case of a narrow waterway, body theory: ship motions in waves", Proc.
because the side-wall effects are taken into 15th Symp. on Nay. Hydrodyn., pp.177-192
account not only on outgoing waves but also on (1984).
evanescent local waves. 11. Sclavounos, P.D., "The diffraction of free

Validity of the proposed theory is confirm- surface waves by a slender ship", J. S. R.
ed for the special case of zero forward velo- Vol.28, No.1, pp.29-47 (1984).
city by comparison with the numerical results 12. Timman, R. and Newman, J.N., "The coupled
of 3-D panel method. In the case of non-zero damping coefficients of symmetric ships",
forward velocity, however, the present theory J. S. R. Vol.5, No.4, pp.34-55 (1962).
may be the first one which is able to give 13. Ogilvie, T.F. and Tuck, E.O., "A rational
precise predictions of the side-wall effects strip theory for ship motions", Dept. Nay.
on hydrodynamic forces. Therefore with this Arch. Mar. Eng., Univ. Michigan, Rep.No.13,
theory, we are ready to make quantitative pp.l-92 (1969).
discussions on the effects of tank-wall inter- 14. Hanaoka, T., "On the velocity potential in
ference included in the results of experiments Michell's system and the configuration of
for a ship model. the wave ridges due to a moving ship", J.

Computations were performed for the heave Zosen Kiokai, No.93, pp.1-i0 (1953).
and pitch added-mass and damping coefficients 15. Haraguchi, T. and Ohmatsu, S., "On an im-
of a prolate spheroid of length-beam ratio proved solution ot che oscillation problem
8.0, moving at the Froude number 0.1 in the on non-wall-sided floating bodies and a new
waterway of width twice the sphcroid's length. method for eliminating the irregular frequ-
The computed hydrodynamic forces show complex encies", Trans. West-Japan Soc. Nay. Arch.,
valiations as the frequency increases. It is No.66, pp.9-23 (1983).
noted that these valiations correspond to the
appearance of complicated wave pattern, which
starts from the pattern dominated by the ring
wave and changes to the markedly different one
dominated by the diverging wave, as the param-
eter T=wIJ/s increases across the critical val-
ue 1/4.
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DISCUSSION different from those of the open-sea case, the

by C.M. Lee motion results may not show significant
differences, particularly for the tank width

I think that it is che first paper which being twice the ship length as chosen in the

presented a 3-D theory for an oscillating sample calculations in this paper. I would
ship, including the side-wall effects. The like to encourage the authors to compute the
authors should be congratulated for their ship motion to check if my prediction is
excellent work. correct.

Similar to the case of twin-hull ships, Author's Reply

this paper shows negative added mass at
certain frequencies. This kind of phenomenon Thank you for your comment. We are now
does not occur in the open-sen case, and, applying the proposed theory to the
therefore, induces puzzlement to those who diffraction problem with side-wall effects.
cannot accept the motion of "negative added If the calculations of wave-exciting force and
mass". My advice to those people has been moment are completed, thn ship motion in waves
that one should not get too excited by just can be readily computed from them, using the
observing unusual hydrodynamic coefficients added-mass and damping coefficients predicted
alone but should wait until the computed by the present theory. Therefore, I think
results of ship motion in waves are shown, that the computed results of ship motions in

waves can be shown in the foreseeable near
My prediction is that although the future.

hydrodynamic coefficients may look quite
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Interaction between Current, Waves and Marine Structures

R. Zhao and 0. M. Faltinsen
Norwegian Institute of Technology

Trondheim, Norway

field free surface condition. For a general

Abstract body several singularity points are used for
the multipoles inside the body. The coef-

A theoretical method to analyse current wave ficients in the multipole expansion are
interaction on large-volume marine structures determined by matching the local- and far-
is presented. It is shown how to circumvent field solution.
the problems associated with the mj-terms.
Numerical results for mean wave forces on in the main text we will outline the theory
floating vertical cylinders are discussed. in more detail. We will focus our attention
The results are based on using both direct on the m-terms in the body boundary con-
pressure integration and conservation of dition. The mj-terms are due to interaction
momentum. between the current and the oscillatory fluid

motion. The same terms occur when ship
motions at forward speed are analysed (Newman

Introduction [8]. Numerical inaccuracies and unphysical
effects of these terms can cause large errors

Zhao & Faltinsen [9] have presented a two- in the numerical prediction, in particular
dimensional theory that hydrodynamically ana- for a body surface with sharp corners or
lyses the combined effect of waves and local high curvature. It is shown numerically
current on two-dimensional floating struc- and analytically how problems with the mj-
tures. Zhao et al. (10] generalized the terms can be avoided.
theory to three-dimensional flow. A
hemisphere was analysed and satisfactory Numerical results for horizontal and vertical
agreement between numerical and experimental mean wave forces on floating vertical cylin-
prediction of linear and mean wave forces was ders of finite length are presented. Both a
documented, direct pressure integration method and a

method based on conservation of momentum are
The theory is based on matching a local solu- used. Convergence of the results are docu-
tion to a far-field solution. In the far- mented as a function of number of panels
field the waves "ride" on the undisturbed approximating the body surface, the free sur-
current velocity, while in the near-field the face and the control surface. It is
waves "ride" on the local steady flow. The demonstrated that special care has to be
theoretical solution for the velocity poten- shown in modelling the cylinder surface
tial is expressed as a series expansion in around sharp corners. This is particularly
the wave amplitude Ca and the current velo- true when the direct pressure integration
city U. The problem is solved to first order method is used.
in Ca and first order in U. It is assumed
that the wave slopes of different wave Theory
systemn and the Froude number ere sym-
totically small. In the free surface con- Cn'sider a structure in uniform current and
dition and the body boundary condition the regular incident waves with small amplitude
interactions with the steady motion potential in deep water. The structure is restrained
are taken care of. In addition a radiation from drifting, but is free to oscillate har-
condition is specified. In the numerical monically in six degrees of freedom. We
solution a boundary element method based on choose a right-handed coordinate system
Green's second identity is incorporated. The (x,y,z) fixed in space. z = 0 is in the mean
far-field solution is represented by a sum of free surface, positive z-axis is upwards and
multipoles (including sources) with singu- goes through the centre of gravity of the
larities inside the body. The multipoles structure when the body is at rest (see Fig.
satisfy the radiation condition and the far- 1). Surge (11), sway (372) and heave (n3) are
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wjth respect to Ca, #2 is proportional to

13 Ca Far away from the body

S /72 Os - U(x csa+ ysina) (3)

Here a is the angle between the current
X -direction and the x-axis. We assume that the

1 Ilcurrent velocity U is small and solve the
problem correctly to O(U). A consequence of
neglecting terms of O(U2 ) is that we disre-
gard the effects of the steady wave system
generated by the current flow past the body.
In practice this is expected to be a food
approximation. On the free surface, 03
satisfies the rigid free surface condition,
i.e.

FiO. I Coordinate systee and ign coonvention for transolto" and a.
angular displacteentS. - 0 on z = 0 (4)

the translatory displacements of the body in On the mean position of the body surface SB,
the x-, y- and z-direction referred to the On te a o nof eoy cn-
origin of the (x,y,z) coordinate system, when di satisfies a zero-norml velocity con-
the body is at rest. Roll ("4), pitch (n5) dtion, i.e.
and yaw (n6) denote the angular displacements
about the x-,y- and z-axis, respectively. a s

Consider the fluid to be incompressible and in- , 0  onS B  
(5)

the fluid motion irrotational so that there
exists a velocity potential 0 which satisfies n general a numerical method has to be usedLaplace equation, to find *s. In our case we used Hess &

Smith's method [2]. This is based on distri-

V2 * = 0 (1) buting sources over SB.

Due to linearity we can decompose the first-
order velocity potential *1 into separate

In reality the flow is always rotational in a components due to the rigid-body motions Ilk,boundary layer close to the body. In addition the incident waves and a diffraction poten-
the flow may separate from the body and inva- tial #7eit. We can write
lidate a potential flow description also in
parts of the flow outside the boundary layer. 6
This depends for instance on the shape of loiet + iwt +
body, the Reynolds number, the Keulegan- 0 =  e 7 kulk (6)
Carpenter number (KC), a non-dimensionalized
frequency of oscillation, the roughness ratio
and the ratio between the current velocity U The incident wave potential can be written as
and the maximum horizontal oscillatory
ambient fluid velocity UN in the current oe iWt
direction. Obviously the flow will always 0
separate from a body with sharp corners in (7)
any type of ambient flow. This is also true gC t
for the flow around any blunt-sharped marinega et(wt - kx cosA - ky snA) + kz
structures in current without waves. However, 10
when the free stream velocity along the
current changes direction with time, i.e. Here i is the imaginary unit, t the time
U/UM < 1, the flow around bodies with curved variable, A the angle between the wave propa-
surfaces will not separate for small KC- gation direction and the x-axis, w the cir-
numbers (Zhao et al. [0]). cular frequency of oscillation and k the wave

The potential flow solution will be written number. o and k are connected through the

as a series expansion in the wave amplitude relatons

Ca of incident waves. It is assumed that Ca, CIO + kU cos(A-o) (8)
the body motion and the steepness of the dif-
ferent wave systems are asymptotically small. 2
We write k = (0 /g (9)

* = Os + 01 + 02 ...... (2) It is understood that the real part is to be

where *s is independent of Ca, *i is linear taken in expressions involving eiedt.
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By using the dynamic and kinematic free sur- /
face conditions, it follows that *k, k = 1,6 lo
satisfy correctly to 0(U)

2 a 2 a 2t
- W24 + 2iYOs.17 k + i 

2 + -:A] 0
k k ax 2 ay2 k

+ gask= , on z = 0 (10

Also ( 0+07 )ei(t satisfies equation (10). Far
away from the body equation (10) becomes

2 8fk ak

kW4 +2 w (cos a - + sin a s-
(11)/ak  axO

+ g 0 , on z = 0 CO

Equation (10) expresses the fact that the
waves interact with the local steady flow 0s
around the body. Equation (11) resembles the Fig. 2 calculated values of the real part of the green's function on the

classical free-surface condition with forward fee surface. In the upper half part of fI gur equation (11)
Is used. ithe lower half part the classical free surface con-

speed, which for a = 0 can be written as dition (12) is used (T - 0.t, Nfj - 0.6173)
(The calculations In the lower half plane has been provided by
J. Hoff).

2 2 + 2i2U 8-k-+ 2a-k
(12) This simplification can lead to large errors

ask at some distance from the source point. This
+ g- = 0 , on z = 0 is illustrated in Fig. 3. The conditions are

the same as in Fig. 2. The curves in the

The difference between equation (11) and (12) upper half plane correspond to that equation

is that terms of 0(U
2) are neglected. Zhao & (13) has been used, while the curves in the

Faltinsen (9] found for two-dimensional flow lower half plane corresponds to that the free

that it is appropriate to use equation (11) surface conditions (11) has been used.

when T = WU/g < - 0.15. In the three-dimen-
sional flow case we expect a similar limita- V % L
tion. An example on calculations of the real 0
part of the velocity potential due to a har-
monically oscillating source satisfying
either free surface condition (11) or (12)

is shown in Fig. 2. The curves in the upper
half plane correspond to calculations with
equation (11). The T-value is 0.1,
) Vi- /g = 0.6773 where zs is the z-
coordinate of the source point. The calcula-
tions in Fig. 2 are for points on the mean U
free sr-face. We note a small phase dif-
ference between the wave systems when con-
dition (11) or (12) is used. This is more
evident on the upstream side of the source.
The amplitudes are in good agreement. The
consequence of neglecting trms of 0(U2) in
the free surface condition is that fewer wave \' .

systems occur far away from the body.
However, the consequence of this is of no
practical importance for small T-values below P /
0.15. A further simplification of the source .
potential G is sometimes used. One writes

G 0 + T ! .+ (13) Fig. 3 Calculated values of the real part of the green's function on the
u•o ar free surface, In the upper half part of the figure equation (13)U-0-he: been used. In the lower half part free surface eondftion (11)

he, been use (7 - 0.1, kf 2r/g 0,6773).
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The body boundary conditions can be written 4 rbk (XoYoIZO )
as

a inkk (ck an R an ) ds (x,y,z) (16)

an- a0 k 7 (14)
8n n / 22°
an , k = ?where R =v(x-xo)2 + (y-yo)2 + (Z-Zo) 2,c

Equation (14) applies on the mean wetted body is a vertical cylindrical control surface, SF
surface SB. The nk- and mk-components are is the mean free surface between Se and SB ,
defined by So is a bottom surface inside Sc .

We separate the total fluid domain into two
n (n1 n2 'n3) parts. Part I is the fluid domain inside the

boundary S while part II is outside S. In the
outer domain (far-field) the free surfaceFx 4 = (n4 ,n5 n6 ) (15) condition (11) is assumed valid, while in the

inner domain (near-field) the complete free
-r msurface condition expressed by equation (10)

= n* = (m,m2,m3) is used.

We assume that the velocity potential *k in

nV(;xp) (m 4 'M5 M 6) the outer domain can be represented by a sum

of multipoles (including sources) with singu-
where =v and j =x + y3 + zk. larities inside the body (see Fig. 4).
Positive normal direction is into the fluid
domain. k [

0 Ix) - A mG(x;X)
The mk-terms in equation (14) arise because m= m
the steady motion potential does not satisfy
the body boundary condition on the instan- aG(x;x m ) aG(x;x m )

taneous body surface correct to O(Ca). The + A2m ax + A3m ay
derivation is based on a Taylor expansion, m m
which means the formulation is breaks down
at sharp corners. This will lead to dif- aG(X;X) a2G(x x
ficulties which will be further discussed + A -- m
later in the text. 4m az Am ax

m (17)
It is also necessary to specify a radiation
condition. When the free surface condition a2G(X;Xm) a2G(X=X
(11) is used, it means that the waves are + A + A
propagating away from the body. 6m a 2 7m axmaym

A solution to the boundary value problems for 2  2
Ok can be found by applying Green's second a2G(x;X m) a G(X;X )

identity to the functions *k and 1/R, in a + A8m ax azm + A9m ay az + °

fluid domain enclosed by the boundary S i i i
defined by SB U SF U Sc U SO (see Fig. 4).
Then we obtain the following expression where xm = (xm,ym,zm ) is the coordinate of a

singularity point. The Green's function G and
its multipoles satisfy the far-field free

-- J..- surface condition (11) and the radiation con-fSF dition.

-SB In the numerical solution SB , SF So and So
DOMAINI are divided into plane quadrilateral ele-

I-'. .ments. The velocity potential is assumed
constant over each element. At SB the term

DOMAIN! a~k/an is replaced by the body boundary con-
dition (14). At SF the term abk./n is[-50 replaced by the free surface condition (10)
which includes the velocity potential and its
first order derivatives along the free sur-
face as unknowns. The first order derivatives
of Ok are numerically approximated by a

Fig. 4 Definition of surfaces used In the integration of equation (16). Taylor expansion which are only function of
Ok on the free surface. The approximation is
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correct to O(AZ), where A is a characteristic surface condition (11) and the radiation con-
length of the elements. At Sc and So the term dition. The radiation condition is taken care
8#k/an is replaced by equation (17). of by introducing a Rayleigh viscosity p. The

Green's function Geibt can be written as
By letting the point (xO,yOz O) in equation
(16) approach the mid-points of each element G(xyzx y C
on the boundary surface S, we obtain a o'Yo'Zo
Fredholm integral equation of the second 2 2 2].
kind. This results in 14 number of equations. [(x - o) +y - YO) + (z - z0)
The total number of unknowns is N+NII, where (20)
NII is the number of terms used in the multi- (x-Xo)2 (YYo)2 +(Z+Zo)2].4
pole expansion (17). The NII additional - 0  y +
equations are obtained by matching the inner
and outer solutions at the control surfaces eA(z+zo+ircos(u-o+a))
Sc and So . This is done by a least square 1_ _ _ _

condition. It means we require the + du d e
-r7 0 X-'( 22wUcosu-2ip(w+UXcosu))

8Er =0 and aEr

a(Re(A m)) a (Iim(An) = 0 (18) where x = rcosO and y = rsine. Expression
(20) can be simplified similarly as Grekas

where [1] did by using the residue theorem and
N C introducing exponentional integrals. The
N [e I _ 2 derivatives of the Green's function

Er = - kA (Multipoles) Were obtained by numerically
i=1 evaluating the analytic expressions for the

derivatives.
+Em$II - I 12
+ k k Having found the velocity potential by the

method described in the previous text, the

Furthii 6 is the inner domain solution, An added mass, damping and first order excita-
and Ok a~e defined by equation (17) and Nc tion forces can be obtained by integrating
is the number of elements on ScUSO which is the fluid pressure over the mean wetted body
going to match the outer solution. This leads surface correctly to 0((a) and O(U). When we
to the following condition have solved the equations of the first order

motions, we can find the mean wave forces and
Nc moments correctly to O(Ca2) and O(U) either
r {-io I(x) GNI X~x) by directly integrating the pressure or by
j=l k k xj MI using the equations for conservation of

(19) momentum. We will show how this can be doneif the equation for conservation of momentum

K L nNIiusd
+ i [ E r A Gn(xX )  N(xxMM)] is used.

m=1 n=1 We start with expressions given by Newman
(7]. The rate of change of momentum M(t)

where On is defined by writing equation (17) in the fluid volume f? inside S = SBUSFUScUSO
as (see Fig. 5) is

II = A n d_ -p fJ[( + gz) ; + V (VnUn)] ds (21)k E A Gn('x ) ndm
m=1 n=1 nm )dtS

Here is the fluid velocity vector, Un is
NI the normal velocity of surface S, n is theand G (x ;xMI) is the conjugate of normal vector to S (Rositive direction out of

G NI(xj;xMI). In the following equations the the fluid) and Vn = V.n. The total fluid
sign - means the time average, pressure is given by

Equation (19)is satisfied for NI = 1,L and MI !_1
= 1,K. This means a total of NIr = LxK number P = -pgz - p - PV~s.VO 1
of equations, Number of multipo terms have
to be much smaller than number of control 2 2
surface elements. As an example with the - a1 VP (
results presenting in Fig. 10, NI I =10 and 2 I -P 2 - (22)

Nc=56. - PV~ *VO + 0(C + ON 2

The Green's function (source function) that - 2
we need should satisfy the far-field free
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- ' nm + p a a 2 + p a 2 a- )ds
''(-PV4sY2 ampn 8x 'an axSo m

C13 SF CC Sc0  (24)

S+ Cc an g at) dt
c

will partly cancel. Sc. means the control
surface up to the mean free surface and Cc is
the water line between the mean free surface
and the control surface (see Fig. 5). For m a
1,2 expression (24) is zero. For m = 3 it is

equal to pa*s/an . However, this will

be cancelled by a similar term in the last

Fig. s otfInttions used of surfac' in the culculotio of "sft wav integral in equation (23). When we integrate
fores. over SB in equation (23) we follow a similar

procedure as outlined by Ogilvie [6] for

By time averaging equation (21), assuming zero current velocity. The final expressions

that So is a horizontal plane at great depth for mean wave drift forces are

and using boundary condition on S it follows
that the mean wave drift forces can be writ- ao 2
ten Fin 2g 8 + V nmd

F p =-pf (Pn +VV)ds + P 11/l+,12% as
m s c Pm+(23) Sco

0 , m=1,2

I f pgzn3 ds, m=3 p ds -p d
S B+SF 

Sc 0  
CC

The integration is over the instantaneous 
0 2m = 1,2)

surface S. We have to be careful when ana-
lysing the problem and keep all contributions +

which are correctly to second order in the - If pgznO ds +
incident wave amplitude and first order in SB
the current velocity. For the first term of
the first integral in equation (23), we
should first integrate up to the mean free2  ___ . "V-
surface, in which only the terms -p IV+112  -0 s ( 3 )3+1 I V* 1 F]n ds
- pVi5.sV2 in equation (22) have contribu- SF 8 1

tions. In the integration from the mean free F
surface to the instantaneous free surface n,
the first three terms of equation (22) have
contributions. In the second term of the . .a1
first integral, we can write Vm = - pt (!- + V#s*V +a)( x r)
3($s+01+12)/Xm and Vn = b(10s+0 1+ 2)/8n. In C
the integration up to the mean free surface, B a = 3

the terms aos/an.a¢2/8xm, a8*/an.8a0 1/x m and
802/an-a4s/x m have contributions. In the
integral from the mean free surface to the where SFO is the mean free surface. CB is

instantaneous free surface 4, the terms which defined in Fig. s. in the integral ovcr Ca, n

have contributions are ais/an.aq/axm and is the normal vector to CB in the horizontal
80s/3Xm'a0l/an. plane with positive direction out of the body

volume. Further 0 1 (, n , ) and a = (n ,
By using the body boundary conditions and I,). The derivationA iibsed on the bady

Stokes theorem (Ogilvie & Tuck [5]) it can be surfice is wallsided at the intersection bet-

shown that the following terms ween the mean free surface and the body sur-
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face. We note that the second order potential
does not contribute in equation (25).

y
The mean wave forces can also be obtained V
by using direct pressure integration. By
following a similar analysis as outlined by
Ogilvie [6] for zero current velocity we U=E
find that

x

Fm - j { v, 12 +
S 0

Fig. 6m Fixed circular cylinder In infinite fluid end in steady Incident. 8€ 1 flow.

6? + ' x V). (-- + VIs .VO 1 )+V s.V*2 ]nm

+ (a x n)M (a- V )) ds
(26)

2 pg [2- 2YI(n 3 + Yn 4 - xr5)] nmdl X

C 8 , --- 0

- If pgznIds, I = 1,2,3
S 
B

where SB0 is the mean wetted body surface. Fig. 6b Dfinition of paraters in the anelysis of local t"o-dieMnsional

When the body is fixed it is possible to show flOW Around a sharp corner with en Interior angle S.

that the second order potential does not / 2
contribute, where r = Vfx-x ) + y-y and SB is the body

surface. We use plane pinels with constant
One possible source of large inaccuracies in singularity density over each panel.
the procedure outlined above as well in other
procedures is the presence of the mj-terms in We will choose a simple case with uniform
the body boundary conditions (see equation current past a two-dimensional circular
(14)). This will be further discussed in the cylinder (*s = Ux+OsB with radius I and
following section. U = 1 in an infinite fluid domain (see Fig.

6a). The potential due to the body #sB is
Discussion of the mj-terms cos9/r and the normal derivative 8*sB/an is

-cose/r2 at the body boundary. We can then
divide the boundary into line elements and

We will illustrate the difficulties with the for each element assume *sB and asB/an are
mj-terms by giving same simple examples with constant with values which are equal to the
two-dimensional bodies in infinite fluid. We correct values at the mid-point of the ele-
will start with studying the detail of the ment. The potential and its derivatives out-
behaviour of the first and second order deri- side the body boundary can be obtained by eq.
vatives of the velocity potential at the body (27) and derivatives of eq. (27). Fit. 7
boundary. This will be done by a similar shows the result of *sB, a¢sB/an, r-a*5s/ae,
panel method as we used in the three- 32i 8s/8n

2  as a function of the distance
dimensional flow case. We write the velocity along the normal vector to the body boundary
potential as at the mid-point of the element. The results

are for e = 450 (see Fig. 5). The effect of
2 i (x 1,y)= different number of elements NB is investi-

(27) gated. The horizontal axis is the ratio bet-
ween the distance Al from the boundary and!slo a the length As of the elements. The resultsS an l a show that we get convergence and correct

B results of *sb and 8*sB/ar at the boundary.
However, for r-t18isB/aO and a2osB/ar 2 we can-
not obtain correct results at the boundary.
The reason is that we are not integrating
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If mj log r(orl/R)ds (
N804 S 8(28)

++++.- If *sVlog r(or 1/R)nj ds
+ S8

This formula is valid for a body without
sharp corners, wall-sided at the free surface

and when *s satisfies the rigid free surface

8. condition. From a numerical point of view
this formula is more simple to calculate

because it only includes first order deriva-
tives of the steady potential. It is expected

,:.I -to give more accurate numerical results than

by direct integration of the mj-term.

For a body with sharp corners the mj-terms
L are singular. The consequence is that eqs.

, , O. AS (27) and (28) are not integrable. For example
-.oo o,0-Mo 0.M o.7 1.ooo in the case of uniform current past a two

dimensional section with a sharp corner the

I complex potential W(z) in the vicinity of the

+ + T I I edge can be approximated as (see. Fig. 6b).

+ W(z) = C1zl/X + C (29)

61¢ 6 6 6 6 A where X = 2 - 0/n and C1 and C are constants.
For a rectangular section the first order and

second order derivatives of the potential are

O(jz 1-1/3) and O(jz I-4/3). In the vicinity
of the corner it is possible to show m2 =
C2 R

- 4/3 for x = 0 and a2 = 0 for y = 0,

where C2 is a real constant (see Fig. 6b).

This means eqs. (27) and (28) are not

integrable. Actually, this is true for all

. corners with internal angles less than x.

However, if we solve the wave-current-body
interaction problem in the time domain by

using for instance Green's second identity
AL and satisfy the body boundary condition on

. 0.2W o.Soo C:o 1.o0-0 the exact body boundary, the expressions are

integrable. The reasons why the integrals are

fig. 7 Calculated values of velocity Potential end its derivatiuvs for not integrable when the body boundary con-

th, Case presented in Fig. 6. Te stel d incident flow is exclu dition is satisfied on the mean position of
ded). -Analytical solution,
umerical vlue ,, S, A. a+,/ar , r1, ,tr the body boundary is that the formulation of

.2#$/ar2 l.( and s are defined in Fig. 6) NBnueber of the body boundary condition is wrong. The mj.
panels. -terms have been derived by a Taylor

expression. This is not valid at a corner. We

with correct curvature and with correct will show how we can avoid the difficulty

variation of OsB and a sB/ar over the ele- with the m-terms. We divide then the velo-
ments. From Fig.? we can see that r-la8sB/8e, city poteniial #k into two parts
a2psB/0r2 are satisfactorily estimated at a
distance of 0(As) along the normal vector of a + b (30)

the element. That means we may use an extra- k k k
polation method to calculate the velocity where

along the body and the second order derivati-

ves of the velocity potential. After some a b

tests with a circular cylinder and a sphere 
8 k atk

and an ellipsoid in the three-dimensional 8n- '"k ' a- = i.nk (31)

casc ,c found that the v61ocity along the

body, the second order derivatives and the a

mj-terms are in good agreement with the ana- The following solutions of fk satisfy the

lytical solutions. The other way to integrate body boundary conditiuns and Laplace equation

the term mjlogr(or I/R) over the body boun- a.sa
dary is to apply the formula given by Ogilvie a s a a a - s

& Tuck (1969). 1 " ' 2 =  az
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* a* % s
4 - Y !IS 4 Z-IOy SF.

as _ a y (32)

#5 axa ax

S-.Sc

x! a1s + a "s

#5 a - ay a

By using Green's second identity we obtain
the following expression for 4k = k-4k and
0k (see Fig. 8). t So

( - ) I =x1 Fi
=

. 8 oafinition of surfaces used in the interation of equation

(33) the unknowns can be done similarly as in the
(3 previous section. What we have done now is to

a a(4k# k) ] yanalytically isolate the difficulties with
t (k an a) n ds(xyz) the mj-terms. This procedure is also valid

when ship motions at forward speed is eva-
luated. The same procedure can also be used
to solve the second order potential problem

4t a, X where a similar difficulty occur.
1 We also have to be careful when we find the

a(34) added mass and damping coefficient. We will

E4a 1  I illustrate this by a simple example. Fig. 9
'' k an R - ank R1 ds(x,y,z) presents results which shows the effect of
S2  bilge radius r on sway added mass for a two-

dimensional body in infinite fluid. The para-
meters of the body is given in the figure.where xl=(xlYl,Zl) is inside SI= SSUSFUScYSO, From Fig. 9 we can see how the added mass isand C = 0 when x1 is outside )UScUSOUSINF dependent on the bilge radius in the caseswith and without current. The added mass with

T icurrent is going to infinity when the bilge
The integration surface is closed. SF is part radius r - 0. This is an unphysical result.
of the free surface and does not need to The reason to this behaviour can be found by
coincide with SF. By subtracting equation studying the dynamic pressure part used in
(34) from equations (33) we find that finding added mass and damping. Correct to

4n ( * a 1 O(Ca) and O(U
2 ) we can write

k k' (kk k an d

- # I a

+ a -f- a ds d tan~ k k anR anRs AN L.06

F II 2

S F+SIN
F

where C=1 when x1 is outside S2 and C = 0 x1  00 .... 5 10 riD~
is inside S2. ooooW 'o os Io /ez

The last integral is a known quantity. The
unknowns are 4 -#. on the body and *k on SF, Fig. 9 ilustration of calculation of two-diselnsional added atse coe#-

fif.rents for a body in a curren~t carl lead to unphysical re~tults.Sc and S0 . By writing the integral over S8  m.e cluat~ons are done for infinite fluid. (A22 , two-
like it is shown in equation (35) the disesonal edded sas in ,,,y.).
integrand of the integral over S8 isintegrable. The solution procedure to find
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P# P" k + Vg :~ 4OkDk bae anO b

- 8t ~ - er000 I fone(36) +Pgg'2R) 10479 e r t ions

+ V c.0- ~ 00001 dwftt Priture
2 (,,)2)] .o

where

= o( + z 5  - y i6 ) + (0 "

(37)

( 2 Z34 + )o6)3 (N + Y14 - xri5)k

The index k in the last term in equation (36)
means that we only consider displacement in
mode k.

What we have done in the calculations pre-
sented in Fig. 9 is to use the two first oR
terms in equation (36). In this way we have o*500 0.600 0.8000 .200

included singular terms of O(U2 ), which are F . Nogf.ce! results Of ho'tlotel driftforc,¢ g for Uv - 0.000.
cancelled by the last term in equation (36). Uf;OfL * 0.041l wth diret pr.;sure fntegrstioP fethod 0nd 0"tf A baed 

on conservation 

Of ImQntu% 
and energy. 

The 
"od Is

Actually we can write equation (36) as fixed vertical cy1nd.fr kith drugth-reslue rtio 0.25. Eremnt
dstrbton, NNt - 16, 5N2 -12, 103 -14. N4 4, NNS .S,R .1.0- 4It * 3.0, H -1.2A (St Fig. 11). Element length$ on th

ask b ls $ r? (38) body ;re nearly constant.

phat •ip 4(a) h V ) 3

This means that ?V * ,. cancels the last IL
term in equation (56 ). If ke use equation NNS

(38) we will find that the results for added AL

mass at U * 0 is the same as for U =0. H
However, this is not generally true when a
free surface is present. What is true then is .
that the singular corner behaviour when the /.
radius of curvature goes to zero is can- /
celled. Since our theory is currect to O(U) / *0

we can also write

- !0k b~s(~~I~ (39) ToNZiRP = - P (- at k +  V~os* (V )l U= k 139) viw

This discussion illustrates that false
effects can be created due to the singular
corner behaviour if we are not careful in
analysing the results.

Numerical results for mean wave loads
rr . 11 Definition of number of eleents and dimensions of control sur-

Calculations of mean wave loads require in facts used in the numerfcl solution of flow around vertical

general higher accuracy than computations of cYinder of finite length.
linear wave loads. We will therefore con-
centrate our numerical studies on mean wave the cylinder radius. The cylinder bottom is

loads. Both a direct pressure integration impermeable. The current direction coincides
method and the equations for conservation of with the wave propagation direction.
momentum have been used. When the current
effect is incorporated, the procedure is An example on results for horzontal mean wave
correct to O(U). Calculations have been per- loads are presented in Fig. 10 as a function
formed both for horizontal and vertical mean of 0 2Rig where w0 is the circular frcque.cy
wave loads. of oscillation of the waves without current

present. Both for zero and non-zero current
The first case we will discuss is incident speed we note an important difference in the
regular waves on a fixed vertical cylinder calculations based on direct pressure
that is penetrating the free surface. The integration and the results based on the
draught of the cylinder is 0.25 R where R is equations for conservations of momentum in
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the fluid. The panel distribution used in the term in Bernoulli's equation, which is singu-
calculations can be illustrated by means of lar, but integrable at the corner.
Fig. 11. By referring to the nomenclature in
the figure, NN1 = 16, NN2 = 12, NN3 = 14, NN4 In Fig. 13 are shown numerical results for
= 4, NN5 = 8, R = 1.0, R1 = 3.0 and H = 1.2 X vertical drift forces on a vertical cylinder
(X = incident wave-length). The panel dimen- that is free to oscillate in surge and heave
sions on the body were of nearly constant and restrained from oscillating in pitch, The
equal length. The reason to the differences incident wave propagation direction is in the
in the results is that the direct pressure positive x-direction. The draught h of the
integration method is sensitive to the cylinder is equal to the cylinder radius. The
distribution of the element in the vicinity
of the corner at the bottom of the cylinder. F,
This can be illustrated by Fig. 12 where the +pgC,12R)
calculations are presented as a function of
R/AL when wo2 R/g = 0.8. AL means the length
of the element nearest to the corner on the
vertical side (see Fig. 11). NN1, NN2 and NN3
were the same as used in the calculations
presented in Fig. 10 while NN4 varied from 4
to 12 and NN5 from 8-12. This means that the
total number of elements were quite similar --- ec pressure mtegrtonon
in the calculations presented in Fig. 10. It
is the size of the elements that differes 15o0 .-o-o.enrgoelnsn
significantly. The height of the elements on
the vertical side were selected so that
Ln I/Ln is a constant, there n = 1 means the
element closest to the corner, n = 2 the ele-
ment next closest and so furth. The constant
ratio was always below 1.5. On the horizontal
bottom the length of the element in the .__00 R
radial direction was selected in a similar 1°Io00 o  ,0 a ) 1200 I

manner, starting with an element closest to
the corner. The length of the element on the
bottom closest to the corner was the same Fig. 13 Numerical results of vertical mean wave force i3 with direct

pressure integration method and a method baled on conservation oforder of magnitude as the height of an ee- momentum and energy. The body I a vertical cylinder that Is free
ment on the vertical side closest to the to oscillate in surge end heave and restrained from oscillating in

roll. The drought-radius ratio is 1.0. Eleent distributiont
corner. However, the most important parameter N 1, N , 111o, •4, a,. 8, N8. - 0, A • 1.0, RI - 2.5,
in the calculations by the direct pressure H s 1.2A (see Fig. 11). Element length on the body is nearly

integration method was the distribution of constant. Zero current velocity.

the elements on the vertical side close to
the corner. The reason was associated with
the contribution from the velocity square ---- a.71 bosed on

.R US0 _eand enew
,, 0 w62 - relations

u "0 - IR 
: (d,rect+pggjI2R - 4,0000 bosed on 2 W-2 pesrSnmomentumn and O-O- 1_ inessouen

4- * Q.0479 energy reotion%

i0 integration
0-0- 0 _0_ 1_DOD

-tO00

-2000 .

10' 1So - ---------------

Fig. 12 NUifrtcal results of horizontal drift forces f2 with direct Fig. 14 Numerical results of Vertical soon wave forces F3 with direct
pressure integration method and a method based on conservation of pressure integration meithod and a meithod based on conservation of
soment". and energy. cats presented as e function of R/AL momentum and energy. Data presented as a function of RAL (IL

(AL defned In the figure 11) NI - 16, 101 - 12, Hil - 14, NO defined In the figure 11). "!I - 18, N"2 - 10, NN3 - 14, 1014 - 8-12,
4-12, NNS - 8-12, It - 1.0. At - 3.0, H , 1.2A (se" Fig. 11). Ns - 8 - 12, R - 1.0, Rl - 2.6, N - 1.2h (see Fig. 13). High den-
Iligh density of elements close to the cylinder corner. The body Is sity of elements close to the cylinder corner. The body is the
the ese as used in Fig. It. so"d as used in Fig. 13. zero current velocity.
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current velocity is zero. The panel dimen- pressure integration method can lead to large
sions of the body were of nearly equal errors in prediction of mean wave forces when
length. By referring to the nomenclature in the body has sharp carners.
Fig, 11, NH1 = 16, NN2 10, NN3 a 14, NN4
8, NN5 = 8, R x 1.0, RI 2.6, H = 1.2 A. The -0-0- .000
large differences between the two different
methods occur in the vicinity of heave reso- -o- u -*0319
nance. The reason to the differences is again
that the direct pressure integration method * - 7u " (10638
is sensitive to distribution of the elements
in the vicinity of the corner between the f._u .-00319
bottom and the vertical side of the cylinder.
This can be illustrated by Fig. 14 where the _Qpg06zr
calculations are presented as a function of
R/AL when w02R/g = 0.58 and 0.7. AL means in
this case the length in radial direction of * o
the element closest to the corner on the - o
horizontal side (see Fig. 11). The distribu- /
tion of elements were selected similarity as .
in the previous example. Total number of ele- 

/-

ments are nearly the same for all calcula- .

tions presented. When the direct pressure / /
integration method is used to calculate the / X
vertical mean wave force, around heave reso- /

nance, the contribution from the velocity /
square term in equation (26) is large and of ' /
opposite sign to the other contributions in
the integral over S80 . The absolute values
of these terms are nearly equal to the velo-
city square term. This means a high accuracy
is needed in the integration over S8O. R

In Figs. 15 and 16 are presented numerical
results for horisontal drift forces on a ver- Fig. IS 1eerical results for hrfzotal weve drift forces on a fixed ver-
tical cylinder with draught-radius ratio 3.0. tical cylinder with draugth-radius ratio 3.0. Current elocity u

"t in t* Soe d rection at the wove PN*611tion direction. El9*

The method based on conservation of momentum wt distribution, t1 1, 12 - 16, 1013 . 4t, N4 o 1,
ZS . l - 1.0. 91 * 4.0. II - 1.2h Jee Fig. 11).was used. The effect of using higher density Element length on the body is nearly constant.

of elements close to corner between the bot-
tom and the vertical side of the cylinder was
investigated. There was a maximum of 1% dif- - •
ference in drift forces. The influence of
number of singular points inside the body -0-0. uRR 0.031
(see equation (17)) was investigated. Also
the effect of number of multipoles was *-G- U Q0638
studied (see equation (17)). In the calcula- 79- .
tions presented in Figs. 14 and 15 number of up 003R1 9'
singular points is two and number of multipo- u-00638

les for each singular point is 10. If only u --Q0636
one singular point was used there was a maxi-
mum of 1% diffrence in drift forces. If -
number of multipoles was increased to 16
there was a maximum of 0.2% differences in
driftforces. The effect of increasing RI (see / ' ,
Fig. 11) from 3.0 to 5.0 was studied. The
difference in results were less than 2%.

CONCLUSIONS

A theoretical method to analyse current-wave- ,
body interactions is presented. It is demon- -

strated that the mj-terms arising in the body - '
boundary conditions can cause large errors in 'b0 . . f , R
the numerical result. A theoretical way to 1.20
provide stable numerical solutions is pre-
sented.

Fig. 16 Numerical for horizontal wave drift forces on a vertical cylinder
with draught-radius ratio 3.0. The cylinder is free to oscillate inA method to calculate mean wave forces based surge only. Element distribution Is the S a used in Fig. 1$.

on conservation of fluid momentum is pre-
sented. It is demonstrated that a direct
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DISCUSSION panel method. In our another formulation (see
by R. Huijsmans eq.(35)) we can avoid to calculate the second

order derivatives on the body.
I first like to congratulate the authors

on their very concise treatment of the low 3) When one calculates wave drift force
forward speed problem. I have a few questions, based on pressure integration, it is difficult

to predict the contribution from u2 -term,
!) Can the authors elaborate on how to because the velocity will be infinite at

obtain the low frequency drift forces from sharp corners. We did not investigate how
their "far field" expansion of the drift "sharp" these corners must be to get into
force? serious problem. But from our experience we

think the most important thing is due to
2) The authors identify the well known cancellation effect of the contributions from

problem in using double derivatives of the different terms. This will depend on the whole
stationary potential on the body. They used a body configuration the incident wave system as
kind of extrapolation procedure to avoid the well as the local sharpness of the corner. In
problem. Have they now used the potentialOs some cases only a few percent error in
on B, described by d C2 function by using some predicting the contribution from u 2 -term will
linear variation? (results of Fig.7 of their give 100% error in wave drift forces.
paper for AL/AS +0)

4) The usual direct equation solver was
3) The authors experienced some problems used to solve the systems of equation. The CPU

even for the zero speed case in determining time is almost the same for the case with or
the wave drift forces based on the pressure without current velocity.
integration, because of the presence of sharp
corners. Have they some experience on how 5) Our method may apply to high speed
"sharp" these corners must be in order to get problems. In that case one should obviously
into troubles. use another free surface condition And Greens

function.
4) The authors did not mention how they

actually solved the systems of equations [Al] Faltinsen, 0. and Zhao, R.: Slow-Drift

(directly?) and what the computational burden Motion of a Moored Two-Dimensional Body
of their method is with respect to the number in Irregular Waves, J. of Ship
of panels. How much more expensive is the Research, Vol.33, No.2, June 1989,
treatment of the non-zero speed case with pp.93-106.
respect to the zero speed case?

5) And the final question is regarding the DISCUSSION

use of their method without the low forward by A. Hermans
speed restriction. Can the authors give some
idea how to their method can be applied for I only shall make some remarks about
high speeds. Figs.2 and 3 and the text just before those

figures. It looks like the authors are not

Author's Reply aware of a large amount of literatures about

the typical nonuniform behavior of that show
We thank Huijsmans for his comments. The up in "both" figures. The way they think that

replies are as follows: (13) has been applied leads to nonuniformities

at the distance of order TR, while the
1) Our "far" field expression is based on application of (11) leads to a nonuniform

conservation of momentum and energy which can behavior at the distance of order T 2 R.
not be applied to calculate low frequency Already in 1882 Lindstedt noticed and remedied
drift forces. When we study low frequency this kind of nonuniform behavior in the

drift forces one should also include second computation of the trajectories of planets.
order potential. A discussion about this In 1892 Poincare in his book on "Mecanique
problem is given by Faltinsen and Zhao[Al]. Celeste" proved that the remedy that was given

is correct. In 1949 Lighthill extended their
2) We have not applied high order panel theory to problems in fluid dynamics. The

method to predict the second order derivatives approach suggested in (13) is uniformised

of stationary potential on the body. We think quite easily because the exact phase relation
for a body with sharp corners one will also can be used, while the approach according to
get numericil problems even we use high order (11) always will have a phase error in the far
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field. The uniform version of (13) and question which I have had for a long time. It
application of (11) both lead to a correct is a well-known fact that incident waves
approximation of the amplitude, deform significantly in amplitude and

propagation angle, depending on the magnitude
Author's ReUpl and incidence angle of current. As a

result, a considerable amount of radiation
We would like to thank professor Hermans stresses is to be built up in water, which

for his comments. We think one has to have in might contribute to the second-order forces on
mind what one should calculate when we compare marine structures, too. My question is if we
the two different approaches. If one should could discard the effect. If it is not the
calculate the wave drift damping coefficient case, how can you incorporate it into your
that is proportional to the slow drift method?
velocity, the two dpproaches should be equal.

However if one want to study wave current Author's Reply
interaction and in particular the wave
elevations around the structure, the two The effect of radiation stresses is
different approaches are different. The included when "ie calculate mean wave forces. A
approach that we are using, is then a better discussion of this is given by Longuet-
approximation. HigginsfAl1).

(All Longuet-Higgins, M.S.: The Mean Force
DISCUSSION Exerted by Waves on Floating or
by 1.J. Choi Submerged Bodies with Applications to

Sand Bars and Power Machines, Proc.
On this occasion, I would like to ask a R. Soc. Lond. A.352, pp.463-480.
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The Numerical Solution of the Motiois
of a Ship Advancing in Waves

G. X. Wu and 11. Eatock Taylor
University College London

London, UK

Abstract arises from the complicated free surfacecondition. Further difficult1  is

The hydrodynamic problem of a surface associated with the fact that for a
ship advancing in regular waves at practical ship its shape is usually
constant forward speed is analysed using described by coordinates of discrete
a three dimensional theory based on the points rather than by a simple
linearized velocity potential. The mathematical function. As a result, the
potential is represented by a solution can be only obtained
distribution of sources over the surface numerically.
of the ship and its waterline. Various
numerical schemes are introduced to Attempts to predict ship motions in
overcome some of the major difficulties waves can be traced much earlier, but a
in this problem. Calculation is made for significant breakthrough was the work by
a submerged sphere. Results are compared Korvin-Kroukovsky end Jacobs (1957).
with the analytical solution and very Based on physical intuition rather than
good agreement is found. Some preliminary rigorous mathematics, they provided the
calculations have also been made for a early version of strip theory. Even
series 60 ship with block coefficient though their theory was later found to be
0.7. mathematically inconsistent, (in

1. Introduction particular it does not satisfy the

Timman-Newman relation(1962)),
The wave induced motions of a ship have experimental data have shown that it

several implications for ship nevertheless provides very good results
performance, increased resistance, deck in many cases. A number of modified
wetting, slamming, vertical acceleration versions of this strip theory have since
and propeller emergence, etc. While all been developed, of which, that proposed
of these aspects are important subjects by Salvesen, Tuck and Faltinsen (1970) is
in ship hydrodynamics, the fundamental widely used in ship design. Another very
problem remains that of estimating the significant step was the work of Newman
overall motion of the ship in waves. (1978). He overcame the limitation of the

conventional theory to the region of high
In order to predict ship motions in frequency, and proposed a "unified strip

waves, the ship is usually regarded as a theory" which is valid throughout the
rigid floating body having six degrees of whole frequency region. In particular
freedom, and the fluid loading is this theory takes some account of wave
estimated from linearized potential flow interactions between different cross
theory. This theory assumes that the sections of the ship. Numerical results
fluid is inviscid and imcompressible, the for heave and pitch (Sclavounos 1985) in
flow is irrotaticnal, and both incoming infinite water depth have shown that the
wave elevation and body oscillation are unified theory is superior to the
small. The velocity potential therefore conventional strip theory in such a case.
satisfies the Laplace equation, and the
corresponding boundary condition is Even though the strip theory can
imposed on the mean position of the fluid provide satisfactory results in many
boundary. cases, and has had a very important role

Even after such drastic assumptions in ship design, it has its inherent

have been indroduced, the solution of the limitations. It requires the ship to be

resulting equation is still not easy to slender, and the magnitudes of forward

obtain. One of the major difficulties speed and encounter frequency to be in
appropriate ranges. Furthermore, while it
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may provide good results for the total 1987b). Extensive tests have been carried
force on the ship, it usually gives a oub Ettnsive est rhae evnlcaied
very poor prediction for the detailed out to ty to achieve accurate evaluation
hydrodynamic pressure distribution around of the Green function, and a technique

the hull. Thus attempts to remove some of has been introduced to remove the

the limitations of strip theory, by using singularity in its integrand. We use a

a three dimensional approach have been similar technique to that of Noblesse

initiated by Chang (1977) and others (1983) to reduc2 the order of the dipole

(Inglis & Price 1981, Kobayashi 1981, singularity 1r (where r is the distance

Guevel & Bougis 1982). These between the source and the field points).

investigations have all adopted the We do not however need to evaluate the
constant by integrating the Green

constant panel method (Hess & Smith function over the waterplane of the ship.
1964): the ship hull i, represented by Finally, to remove the singularity due to
small panels on which the sources or the source l/r, we adopt triangular
dipoles are assumed to be constant. It polar coordinates when calculating the
has been found that these frequency contribution of an element to itself (Li,
domain three dimensional theories in Han & Hang 1985). An alternative method
general improve the results and provide for achieving this, by subdivision of the
better agreement with experimental data. element, has also been investigated.
However, it has been observed that the
numerical solution is sensiti-e to the These numerical procedures are found to
size of the panels, and high accuracy is be very effective for a submerged sphere.
not easy to obtain. This was also Compared with the analytical solution (Wu
noticed in recent work by King, Beck & & Eatock Taylor 1988), the numerical
Magee (1988) using a three dimensional method provides very accurate results
method in the time domain, when 12 elements for half of the sphere

are used. Calculation are also made for a
The present work is part of an .eries 60 hull of block coefficient 0.7

investigation which aims to obtain a at Froude number Fn-0.2.
stable and accurate solution of the
linearized three dimensional problem, 2. Mathematical Formulation
using the source distribution approach.
Attention is focused her,i on certain We define the right-handed coordinate
numerical aspects. Firstly, we use system O-xyz so that x points in the
quadratic isoparametric boundary elements direction of steady forward speed U of
instead of plane constant panels. As the the ship and z upwards; the origin of the
associated wave resistance is known to be system is located on the undisturbed free
sensitive to the shape of the ship, it surface and the middle section of the
seems likely that isoparametric elements ship. The whole system is moving with the
should enable us to model the ship hull ship at the same forward speed. For a
with a higher degree of accuracy. They time-periodic incoming wave at a
also provide a more convenient means of frequency w0, the total potential can be
calculating the velocity of the fluid on written as
the ship surface. Secondly, we impose the 0 --Ux+U (x,y,z)
body surface condition by averaging overz iwt
the body surface using the Galerkin +Re j 0 n (xyz)e 1 (1)
method, rather than at discrete nodes.
Experience has shown that this method where is the steady potential due to
usually gives more accurate results. In unit forward speed, (J-l,...,6) are
this particular problem, as the body radiation potentials corlesponding to the
surface condition on the waterline is six dagree of freedom oscillations of the
averaged over the body surface, we can body and j7 (j-1,...,6) are corresponding
avoid the difficulty of both the source motion amplItudes; 0 and are the
and field points being on the free potentials of the incident and diffracted
surface when solving the integral waves respectively; and q -n7 is the

equation. The use of the Galerkin method incoming wave amplitude. qhe encounter
also avoids another serious numerical frequency w is given by
difficulty: the second order derivatives 2
of the steady potential due to forward ( -0 (w0/g)U cosp (2)

speed (which appear in the body surface i
condition on the unsteady potential due where g he gravitational a
to the ship oscillation) can be reduced and P is the incident angle of the

to first order derivatives, as in the incoming wave and P-0 indicates a

coupled finite element method (Wu & following sea.

Eatock Taylor 1987a) Based on the assumptions of the

In the integral equation, we express linearized theory, we have for the steady

the Green function in terms of the potential
exponential integral (Wu & Eatock Taylor V2 -0 (3)
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in the whole fluid domain R; where G is the Green function for a
pulsating translating source, which is

p + x -0 (4) taken in the form derived by Wu & Eatock
Taylor (1987b). From the above equation,

on th2 undisturbed free surface SF, where we obtain
p-g/U ; 84(p) -a(P)J aGPL[ (Q)dS

W/an -n (5) an(P) 4s 4w Soan(P)

on the body surface S2, where n is the 12g Lan() x)

inward normal of the body surface and n
is its component in the x direction; and on So, where a(P) is the inner subtended

angle of the ship surface at point P and
8a/an -0 (6) the integration excludes the point Q-P.

on the bottom SB of the fluid or z4-- in Substituting equation (9) into the above

the present case of infinite water depth. equation, we can obtain the corresponding

To complete the boundary-value problem, boundary-integral equation for the source

we also need to include the radiation distribution.
condition at infinity: it is usually
assumed that there is no wave due to 0 One difficulty in dealing with

far in front of the ship but there are equation (12) is caused by the normal

waves far behind the ship. derivative of the Green function. It
contains a second order singularity of

The components of the radiation and the dipole when Q-P. To avoid that we
diffraction potentials are assumed to define
satisfy the following equations (Newman F(P,Q) - I + 1 (13)
1978) r r.

V2 0 -0 in R; (7) where r is the distance between P and Q,

2 and rI is that between P and the mirror
0 +(,r /) -21ro V0 -0 on S. (8) image of Q about the undisturbed free
z jxx jx J_ surface. Applying Green's second identity

2 in the domain enclosed by the ship and

where r-cU/g and P-w /g; and its water plane where 8F/an-0, we have

a#i/an -icn +Umj (j-I ... ,6) (9a) a(P) -- [ O F(PQ) dS (14)

ai /8n --a#o/an J-7 (9b)

on where By substitution of equation (14) into
onS ,0 h r (12), the latter becomes

(nln 2 ,n3) - (nx,ny,nZ) (lOa) () t ater becomesX ~'8~() 1r raG(P,Q) ,OF(P,~( [[an( F) 44 0 (Q), a(P)]dS.
(n4,,n6) - X n (lOb) an(P) S an(P) an(Q)
U(mlIm2,m3) - -(n.V)W (10c) 1 2
U(m4 ,m5,m6) - -(n.V)(X W) (lOd) 1 4x fL an(P) -(Q)nx(Q)dy (15)

W - UV(O-x) (10e) It is easy to confirm that the order of

the singularity in this equation has been
X is the position vector of a point on So  reduced.
relative to the origir, of the
coordinates. The potentiald aLd'o 3. Numerical Discretisation
satisfy the same condition on thebottem
of the fluid as 0. The radiatiow We now discretise equation (15) using
condition on . states that the outgoing the shape function N We write
wave with its group velocity larger than
forward speed travels far in front of the jl oN (16)

body; otherwise the waves propagate
behind. where n is the number of nodes. By use of

the Galerkin method, equation (15) can be

Following the derivation of Brard written as

(1972), the unknown potential can be [A)tG]1[B1 (17)

represented by a source distribution a where (A] i thesquare -tatri:c wth the
over the body surface So and water line coefficients
L. We have 1Q

4(P) - 1 [ J SG(PQ)o(Q)dS 
aij 4 {J SO L a (P)

U 2[ (Ii)Q N N(P)]Ni(P)dS dSp
, fG(PQ)a(Q)n(Q)dy] (11) n(Q) N QdP

"JSLJ L an(P) J (Q)n (Q)dy]N (P)dSp) "
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and (B] contains the body surface Q+P, we have investigated two methods:

boundary condition and has the that proposed by Li, Han & Mang (1985)

coefficients using a triangular polar local coordinate

b is 
system; and a method based on subdividing

i" 2On( N (P) dSp (18b) the element when the integraticn is
S n(P) Ni P performed. We have found that both

To obtain an accurate solution of tbg schemes give very similar results and the

above equation, careful consideration latter has been chosen in the main

must be given to several factors which computer program. Tc improve efficiency,

have most significant effects. Firstly, we have also used the fact that

the Green fucntion is expressed in an components of G(P,Q) are either symmetric

integral form with a complicated and
highly oscillatory integrand. The or antisymmetric. This reduces the

numerical evaluation of such an integral computer time by almost a half.

requires a very small step and takes most
of the computer time. In our analysis, we Finally, to avoid the difficulty of

have perfomed certain transformations of calculating the second order derivatives

variable to reduce the oscillation. To in equations (10c) and (10d), we can

deal with the following singularity in perform the integration in equation (18b)

the Green function (Wu & Eatock Taylor by parts. This reduces the derivatives to

1987b) first order (Wu & Eatock Taylor 1987a).

I f(o) After the solution has been found, the

f- J(4o os8-l) dO added masses pi" and damping coefficients

at -- acos(/4r) when r>0.25, we Aij can be obtalned from (Newman 1978)

introduce the following scheme 2

i sin-if(e)-sinef(J
) dO

sin '0 (4rcos#-I) -- P Sis 0 + W.VO )n dS

+ f(7Y) L ./(47-1) (19)_sin 2- 49--PJ So(iwnUmi) jdS+pujLj0znidL(20 )
A similar scheme is adopted in the range
(7,r/2) and is found to be effective. where the second term has been

The second important factor which transformed using the relation derived

significantly affects the accuracy is by Ogilvie and Tuck (1969). In general,

the method of discretisation of the ship. the second form of this equation has no

Initially, a coarse mesh can be refined apparent advantage over the first. In

by using more of the coordinates of the fact the second order derivative in mi

ship hull provided by the offsets; but makes the calculation even more

this process is limited by the number of difficult. However, when the steady

coordinates available. When a still finer potential 0 can be neglected, such as for

mesh is needed, the commonly adopted sufficiently slender ships, the latter

procedure is to interpolate using the form has the advantage of not requiring

shape functions. Consequently this may calculation of the derivatives of the

refine the representation of the source unsteady potential. Thus for a slender

distribution but it does not improve the ship we have

representation of the ship hull. This 2 -i A

leads to the problem that different shape ii ij

fuDnctions will give different hulls. It --P S (iwn- Umi)Zi [ SG( F Q) ( Q) d s

may not be important when these ship j 0

hulls are close to each other; but a 2

problem can arise when even then the - K:JG(P,Q)a(Q)nx(Q)dy]dS
results do not converge. Ultimately, g J c

different shape functions may lead to 1 k-l k k (21)
different converged solutions when the

above subdivision procedure is adopted. where a corresponds to q0 and

When this happens, subdivision of r

elements must be based on measuring the ckjs(ion C is0

nodal coordinates on the lines drawing of
the ship. f(PQ)N(Q)n(Q)dy]dS (22)

The third factor is the integration c can of course be calculated when

over the body surface in equation (18). ckan of cousembe cate hen
After numerous tests and careful matrix [A] is assembled rather than after

consideration of accuracy and efficiency, the solution has been found; otherwise

we have chosen the four point Gaussian the computer time would almost be

scheme. To avoid the singularity wheft doubled.
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4. Numerical Results F4/pgwa 
3 vV0 . In the tables, Pc and Y

crrespond to the values of W and w
In the following calculated examplds, the critical point r-0.25. We Rave

we have taken 4-0. This is in fadt omitted T3  from table 1, since it is
consistent with the linearized free 9bserved 1hat the Timman-Newman (1962)
surface condition given in equation (8). relation is very well satisfied at this
The presence of the steady disturbance forward speed. The results from the
potential in the body surface condition numerical method (designated N in the
alone does not appear to provide a tables) are based on an idealisation
consistent improvement to the accuracy of using only 12 elements (45 nodes) on one
the boundary-value problem for a surface half of the surface of the sphere. These
piercing body. In general, when can not are seen to agree reasonably with results
be regarded as a small quantity, its from the analytical solution (Wu & Eatock
contribution should be included in the Taylor 1988), designated A in the tables.
free surface condition (Newman 1978) as It should be noted, however, that these
well as in the body surface condition. If results are not the same as those in Wu &
the incoming wave is of large amplitude, Eatock Taylor (1988), since the latter
a fully nonlinear mathematical model included the effect of the steady
should be used. disturbance potential on the body surface

boundary condition. We have observed that
Tables la and lb give the added mass excluding this term has one marked

and damping coefficients for a sphere of effect: namely it leads to a non-zero
radius a undergoing forced oscillations, rotational moment about the centre of the
Table 2 gives the exciting force on the sphere. This should not occur, and it
sphere in an incoming wave with incident highlights the importance of including
angle P-0.75r. The sphere is submerged at in this case. Nevertheless, the
h-2a (h being distance between the centre comparisons shown in the tabl.e provide
of the sphere and the mean free surface) evidtnce of the reliability of the
and translates at a Froude number numerical procedures adopted to solve the
Fn-U/J(ga)-0.4. The hydrodynamic ooundary value problem by equatinns (7)
coefficlents are nondimensionalized as and (9).
rij/pxa w and the exciting forcees as

Pll p22 '33  "13
Pa A N A N A N A N

0.1 0.7009 0.6948 0.6939 0.6996 0.7291 0.7251 -0.0028 -0.0029
0.2 0.7200 0.7141 0.7055 0.7116 0.7607 0.7577 -0.0259 -0.0264
0.3 0.7128 0.7064 0.7075 0.7137 0.7529 0.7501 -0.0758 -0.0773
0.4 0.6077 0.5987 0.6936 0.6996 0.6259 0.6153 -0.0799 -0.0828
0.5 0.6290 0.6224 0.6722 0.6779 0.6315 0.6244 -0.0198 -0.0211
0.6 0.6374 0.6311 0.6579 0.6629 0.6271 0.6201 -0.0007 -0.0011
0.7 0.6420 0.6356 0.6482 0.6532 0.6226 0.6156 0.0102 0.0103
0.8 0.6443 0.6379 0.6416 0.6465 0.6186 0.6115 0.0170 0.0174
0.9 0.6452 0.6387 0.6371 0.6423 0.6153 0.6081 0.0212 0.0215
1.0 0.6452 0.6388 0.6341 0.6388 0.6125 0.6051 0.0236 0.0240

Table la. Comparison of added mass coefficients for a submerged
sphere (h-2a, Fn-U/J(ga)-0.4, v a-0.3906)c

A1 1  A2 2  A33  A13

va A N A N A N A N

0.1 0.0035 0.0035 0.0025 0.0023 0.0062 0.0063 0.0181 0.0184
0.2 0.0275 0.0279 0.0155 0.0153 0.0450 0.0460 0.0360 0.0367
0.3 0.0722 0.0781 0.0376 0.0380 0.1205 0.1237 0.0249 0.0253
0.4 0.0871 0.0884 0.0595 0.0605 0.1454 0.1513 -0.0891 -0.0937
0.5 0.0371 0.0380 0.0631 0.0644 0.0975 0.1013 -0.0695 -0.0712
0.6 0.0275 0.0280 0.0599 0.0609 0.0850 0.0879 -0.0592 -0.0604
0.7 0.0242 0.0245 0.0548 0.0557 0.0769 0.0793 -0.0502'-0.0511
0.8 0.0230 0.0233 0.0492 0.5000 0.0703 0.0725 -0.0420 -0.0428
0.9 0.0225 0.0228 0.0438 0.0444 0.0645 0.0665 -0.0348 -0.0355
1.0 0.0222 0.0225 0.0388 0.0393 0.0593 0.0612 -0.0285 -0.0291

Table lb. Comparison of damping coefficients for a submerged
sphere (h-2a, Fn-U/(ga)-0.4,v ca-0.3906)
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IFll IF21 1F31
v0a A N A N A N

0.1 1.0669 1.0633 1.0789 1.0859 1.5441 1.5411
0.2 0.8434 0.8402 0.8601 0.8626 1.2345 1.2342
0.3 0.6957 0.6950 0.6828 0.6846 0.9640 0.9610
0.4 0.5560 0.5548 0.5395 0.5407 0.7678 0.7661
0.5 0.4449 0.4437 0.4299 0.4306 0.6119 0.6107
0.6 0.3559 0.3548 0.3444 0.3449 0.4889 0.4881
0.7 0.2851 0.2840 0.2768 0.2772 0.3916 0.3911
0.8 0.2286 0.2278 0.2232 0.2233 0.3145 0.3143
0.9 0.1837 0.1828 0.1801 0.1802 0.2530 0.2530
1.0 0.1478 0.1470 0.1457 0.1456 0.2039 0.2042

Table 2. Comparison of exciting forces on a submerged sphere
(h-2a, Fn-U/(ga)-0.4,voca0.2937,O.75x)

As an application of this analysis to a respectively, while these two meshes give
surface ship, we have calculated results virtually identical area and volume fqr
for a series 60 hull with block the ship. Next we calculated the
coefficient 0.7. We first investigated hydrodynamic coefficients by using the
convergenece by assuming a rigid freesuracecoditonandusng womesestranslating pulsating source Green'ssurface condtion,and usni,, two meshes function in equation (22), with the
on one half of the ship hull: with 168 fuction in equation (2) with thelements and 567 nodes and with 280 source strength in equation (21) based on

the rigid free surface calculation. This
elements and 935 nodes, as shown in has the advantage of providing a much
figure 1. The second of these meshes is more rapid calculation of source
substantially finer than those used by strength, and is related to the
others in earlier published work. We approximate method used by Newman (1961)
found that the former provides results for a submerged ellipsoid. The results
within 3.1% and 5.3% of the finer mesh fom t sees el sown Tn res
results for added mass in heave and pitch from the coarse mesh are shown in figures2 and 3.

(a) Coarse mesh (567 nodes) (b) Fine mesh (935 nodes)

Figure 1. Mesh for Series 60 hull
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DISCUSSION results given in Figs.2 and 3, they range from

by R. Huijsmans about 2000 to 7000 seconds per frequency on a
CRY 1, with the longer runs corresponding to

The authors are to be congratulated on results at higher frequencies. We also run

their treatment of the full forward speed these programs on a Microvax II, and have to

diffraction problem. We at MARIN have the wait a few days for results at one frequency

experience that using the exact Green's

function for the translating oscillating We have not evaluated pressures and local

source as was studied by eg Bougis, Inglis kinematics for the case of the body with

needs a very careful treatment of the panel forward speed. But we would expect to draw

sizes. In the above mentioned studies only similar conclusions to those given in Eatock

very coarse grids were used. In recent Taylor and Sincock(A2.

calculations at our Institute, we calculated
added mass and damping of a series 60 ship [Al] Wu, G.X. and Eatock Taylor, R.: The

with the number of panels increasing up to Hydrodynamic Force on an Oscillatory ship

856. Apart from the very large computational with Low Forward Speed, j. of Fluid

burden the results for the added mass and Mech. to appear 1990).

damping did not seem to converge really with [A2] Eatock Taylor, R. and Sincock, P.: Wave

increasing panel sizes. This was especially Upwelling Effects in TLP andSemi-

the case when the pressure distribution was submersibleStructures,Ocean Engineering

examined. Our opinion is that there is 16, pp. 2 8 1 - 3 0 6 (1989).

conflicting requirement regarding the
stationary and the oscillating part of the
Green's function with respect to the panel DISCUSSION

sizes, especially when the forward speed is by G. Jensen
not very large.

Isoparametric elements are associated with
1) Does the authors have the some numerical integration. Could you please give

experience regarding the statement made above? some more details about the computation of the
2) Can the authors give some indication of velocities and may be higher derivatives on

the type of computer they used and computer the body?
time they have used for the non-zero speed

case? Especially when comparing with the zero Author's Reply
speed case.

The first order derivatives of the
3) Does the authors have some velocity potential on the body surface (and

idea/indication how the local hydrodynamic hence the fluid velocities at any point on the
quantities, like pressure and velocities surface) can be obtained from the nodal
behave when increasing the number of panels? solutions, using the shape functions, together

with the known normal derivatives. Thus uses
Author's Reply

-- + Lxy + gz
We thank Dr. Huijsmans for his interesting X. DyB- a+ Zy

comments. From our experience using quadratic
boundary elements for the problem, we are 3 _0X + Day + 903

certainly not surprised that using 850 or so an -Xl aYafn aZa~l

constant elements to represent the series 60 a4
hull did not always provide satisfactory - x + Tny + 2-n
results. Our own coarse mesh used 1085 

nodes

for the submerged hull (the numbers in Fig.l
referring to one half of the hull), and the to solve for the derivatives of 0 in the x,y
finer mesh 1789 nodes. Like Dr. Huijsmans we and z directions.
have been looking at various ways of
overcoming the conflicting requirements at This approach can not be used directly to

small torward speed, and some ol our thoughts obtain the higher order derivatives. As
on this are to be published elsewhere[Al). discussed in the paper, however, it may only

be the integrated rLfvct of such derivatives
We do not yet have an efficient algorithm that is required on the body surface, and in

for the Green function, and the computing time some circumstances this can be obtained by
therefore still quite long. For the series 60 alternative means.
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On the Numerical Solution of the Turbulent Flow-Field past
Double Ship Hulls at Low and High Reynolds Numbers

G. D. Tzabiras and T. A. Loukakis
National Technical University of Athens

Athens, Greece

ABSTRACT flow solution. The purpose of these exercises Is to
provide some insight with regard to the applicabilityTurbulent flow calculations have been catried out of the method to the actual problem of ship design,

for SSPA 720 double model at a low (Sx10O) and a for which no experimental input data is available.
high (5x105) Reynolds number. The partially parabolic
algorithm was adopted to solve the complete The high Re No numerical experiment is obviouslymomentum equations and k-e model was used for the the more important from the practical point of view.
Reynolds stress modelling. At the low Reynolds Although experiments at such high Re Nos. do notnumber, results for a whole field solution are exist, comparisons of the velocity profiles, skin
compared to those obtained by experimental input friction and pressure coefficients to those predicted at
amidships. Comparisons are also made between low the low Reynolds number can illustrate the trends of
and high Reynolds calculations and conclusions the differences between the two solutions. In thisconcerning scaling laws are derived, respect It is important to see if some flow

phenomena(such as the strong cross flow reversal or
the rapid changes in the velocity profiles around a
stem frame) which occur at low Reynolds numbers
are substantially lessintense at a high Reynolds
number. Moreover comparisons can be made between
the resistance components (viscous pressure and skin1. Introduction friction) In order to test various assumptions
concerning the scale effect, when extrapolating modeltest data

Advanced numerical methods, developed during the
last few years [1] have been applied with encouraging The method applied in the present work is
results for the calculation of the turbulent flow-field basically the fully elliptic algorithm reported In (4],past the stern of double ship models. Most of them which solves the complete Reynolds equations on the
are based on the simultaneous solution of the velocity physical 3-D space using a sequence of locally
and the pressure field (the latter being essential at orthogonal curvilinear coordinate systems. The
the thick boundary layer region) and use zero, one or Reynolds stresses are modelled in this code by the
two-equation turbulence models. Although the next standard two-equation k-e turbulence model.
step seems to be the development of methods which
take into account the free surface effect and the
presence of a propeller, there is still a lot of useful
numerical investigation to be made on double hulls.
Two of the most important problems in this 2. The Numerical Method
investigation are the simultaneous solution of the
whole flow-field past a ship hull as well as the 2.1 Governing Euations
behaviour of the numerical solution at high Reynolds
numbers, which is the case with real practical interest. For the numerical solution of the transport

equations around the ship hull the computationalIn the present work both of the above problems domain is covered by a sequence of 2D orthogonal
have been worked out for the case of the SSPA 720 curvilinear grids as described in [5]. The latter aremodel, for which extended experimental information is generated on transverse sections by the conformalavailable [2], [3].The model has been numerically mapping method [6] taking into acount the localtested at a low Reynolds number of 5x10, which non-orthogonality at the intersection of the section
corresponds to the test conditions and at a high contour and the waterplane [7]. Interpolated
Reynolds number of 5x105, which corresponds to a sections, needed for grid refinement along the ship,full size ship. At the low Re No numerical results at can be easily generated by cubic interpolation between
the stem region, obtained by either using Input the transformation coefficients of adjacent sections.
conditions amidships from experimental data or Representative 2D grids used in the presentsolving the complete flow field around the ship hull, calculations are shown in Fig.1 for some sections
have been compared to experimental results. along the model. In this figure the origin X=O of the
Moreover, the pressure coefficients at the bow region longitudinal axis coincides with the midship section.
predicted by the viscous solver have been compared
to measurements and to predictions from a potential
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A local 3D orthogonal curvilinear coordinate
system corresponds to each 2D grid generated as dlv[ p0e- -tgrad0 I = S (6)
above, whose two co-ordinate lines coincide with the
grid lines and the third one is normal to the section
plane. In a general orthogonal cirvilinear system where 0 = k or e, ok = I, o = 1.3, Sk = G - e,
(xi,xjxl) with metrics (hiphjl), where the indices I. J,
1 are in cyclic permutation, the complete ul S, = 1.44 G1- 1.92pi-
momentum (Reynolds) equation Is written as k -

and the generation term G Is expressed asQu~~ ~~~ 1)+U2 +2k-
i 2 e +eI +I /2(e + 2 2

-u 1ujIKui +(o -o.)KX +(aU -ol)Ku G =e I +lCj
+ a+K The complete equations (1) and (6) are solved

+(2K + K,) + Ou(2K + K ) + ""' numerically for all tranverse sections following the0 0 A h I - finite volume approximation. A staggered grid is

1 a)ll 1J employed and the differential transport equations are
+ - + -- (1) integrated in the corresponding control volume of eachhi axi h axi variable Op, resulting In an algebraic equation of the

general form
where C(ul) shows the convection terms of the uj
velocity component, that Is

.. hU 2 ) a(hlhuu) (hh u u AP (p=A N S+Ass +A E W+Aw w+

I hh + h + h ] +ADOD +AuOu +Sv (8)

The stress tensor components appearing on the
right hand side of equation (1) are defined as

a 1 3u, U h!a uat auh where the notation P, N, S, E, W, D, U corresponds+  to grid points shown in Flg.2. Coefficients Ap, AN....-Nii 1hih xI take into account the combined effect of convection

and diffusion terms modelled according to the hybrid
h h scheme of Spalding [9]. Equations (8) form a system

h a ,u, hI a ,u)] (2) of algebraic equations which is solved by succesivea=e e. [1h, -1-T')+ --- h (2) applications of the tridlagonal matrix algorithm.

where the effective viscosity k is modelled according
to the isotropic eddy viscosity concept, i.e.

Ree = tt + k (3)

where it Is the fluid viscosity and p the eddy (or
turbulent) viscosity. N

The curvature terms Kij are expressed as /

~ X 2//Xi D
h hx ax /

If the x1 axis of the adopted co-ordinate system Is lA_.E
parallel to the ship symmetry axis (i.e. normal to the / 3ship sections) the following simpllfcations are valid /

h1 =1 , K12 
= K21 = K3 1 = K13 

= 0  (4) "

As already mentioned, in the present investigation S
the standard k-E turbulence model [8] Is employed for
the modelling of the Reynolds stresses, that is the
turbulent viscosity lit is calculated as

k2 Fig.2 Specification of grid points
t = pCD  - (5)

where k is the turbulence kinetic energy, e its
dissipation rate and CD a constant equal to 0.09.
Two more differential equations have to be solved in
order to determine k and e. These equations can be
cast in the following common form : 541



Z ,2Boundary ConditionsN

The calculation domain around the ship can be N
divided in two sub-domains surrounding, respectively, q

the front and the rear part as shown in Fig. 3. In
the front part domain (1), corresponding to the thin
boundary layer region, relatively coarse grids can be X,
used to model the viscous flow. Besides, high
convergence rates of the numerical solution can be
achieved due to the strong upstream convective Fig.3 Definition of sub-domains
influence and the existence of favorable pressure
gradients over the major part of the body surface.
The aft part calculation domain (U) covers the thick
boundary layer region around the stem of the ship following conditions are valid:
and extends in the near wake. The flow there is
characterized by complex phenomena such as vortex waterplene
formation, interaction between the boundary layer and
the wake or adverse pressure gradients and finer
grids must be applied in order to obtain reliable u3 = 0 A = , ,=vu2 ,P,ke
numerical results. 3

The solution of the elliptic-type algebraic equations
(8) requires specification of boundary conditions at ship symmetry plane:
each boundary of the two sub-domains, that is at theInlet planes U, the external boundaries N, the exit u =004, - --=0planes D, the solid surface S and the symmetry2 X2

planes of the ship (Fig. 3).

The input boundary values for the velocity
components at the inlet plane UI of the front part 2.3 The Solutior.Algrlln
domain, located upstream the ship's bow, are
calculated from the potential flow solution. The latter The existence of a dominant flow direction along
is obtained by the application of the classical Hess the co-ordinate axis xl, which is parallel to the
and Smith method [10] around the actual shape of the symmetry axis of the ship allows for a marching
ship. The values of k and e at the same boundary solution of the governing trausport equations, known
are assumed to be equal to zero. The corresponding as the partially parabolic algorithm [12]. The method
input boundary conditions for the velocity components has been originally developed to solve the parabolized
and turbulence quantities at the inlet plane UII of the Navier-Stokes equations [13] but it can also be
second calculation domain are determined from the applied to the solution of the complete form of
front part flow solution by linear interpolation. At equations (1) and (6).
the same plane, input conditions can also be
calculated by empirical formulae, whenever According to the partially parabolic algorithm, a
experimental data are available, local numerical solution is performed in each

transverse section of the calculation domain. Firstly
At the exit planes D of the domains the flow is the u3, u2 and ul momentum equations are solved

assumed to be fully developed, corresponding to the and then the pressure field and the velocity
application of Neummann conditions for each variable, components are corrected to satisfy the continuity
except the pressure. The latter is calculated by linear euation. Then the k-e equations are solved and the
extrapolation from the computed values at the eddy viscosities are updated using relation (5). In this
previous sections. local solution two-dimensional in-core storage is

essentially needed for various geometrical and flow
The velocity components and the pressure at the parameters, permitting the use of fine grids even with

external boundaries N are calculated from the conventional computers. After solution for every
potential flow solution, whereas for k and E the section of the domain is performed, a sweep is
normal to the boundary derivatives vanish completed and calculations start again. Several sweeps
(Neummann condition). are needed until both the velocity and pressure fields

The turbulent flow near the solid boundary is converge.
modelled according to the standard wall function The most crucial point in the application of the
method [11] assuming that the velocity in the adjacent partially parabolic method is the treatment of the
to the wall cells follows the logaritlmic law pressure field. In the present work the SIMPLE [14]

algorithm has been adopted for the local correction
u+ = i/x in (Ey+) (9) of the pressure and the velocities. The application of

this algorithm requires underrelaxation of variableswhere x=0.42, E=9.79, y+ the non.imensional during the Iterative solution procedure, that is the
distance from the wall and u+ the non-dimensional updated value 0 of a variable is calculated as linear
velocity parallel to it. Relation (9) is implicitly combination of Its previous value 0o and the solution
introduced in the momentum and k-r equations On of system (8), through relation
leading to a simplified set of boundary conditions for
the corresponding variables. 0 = r On + (1-r) • (o

where r is the underrelaxation factor which is
Finally at the two flow symmetry planes the constant for every grid node of a transverse section.
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Although SIMPLE and partially parabolic algorithms 3, The Numerical Tests
form the basis of the convergence procedure, It has
been found that at the front part calculation domain As already mentioned In the introduction,
(Fig.3) they can be combined in a different way than calculations with the described methods were carried
at the rear part domain. While at the stem region out for SSPA-720 double model.
several iteration SIMPLE steps are needed to achieve
local convergence, the existence of a thin boundary
layer over the bow and the middle body of the ship 3.1 Low Reyolds NuMber Computations
allow a single step local solution at the front part
domain. The latter results in a decrease of the For the front part calculations, a 32x20x61 grid was
computational cost by a factor of 30. used where 32 is the number of grid nodes along the

girth, 20 the number of nodes along the normal
direction to the section contour and 61 the number of

A new approach has also been applied for the transverse sections. The inlet plane of the calculation
numerical solution at high Reynolds numbers. The domain was placed at 2XIL=-l.2 and the exit plane
high grid densities, required to model the turbulent at 2X/L=0.30. Convergence of the numerical solution
flow near the wall at the above numbers, lead to the was achieved in 80 single-step sweeps of the domain
generation of computational cells having their normal and constant underrelaxation factors equal to 0.4
to the wall dimension substantially lower that the were used for each variable. The values of y+ in the
other two dimensions. This geometrical property is adjacent to the wall cells ranged between 30 and 50,
quite unfavorable for the pressure correction methods that is within the suggested region for the application
applied in this case, especially at the stern region of wall functions (30+150). In Fig. 6 results for the
where steep longitudinal and transverse pressure predicted Cp coefficient are compared to experiments
gradients occur. Moreover, at the same region, it is
difficult to obtain the necessary grid clustering near as well as to potential flow calculations. The latter
the wall by global grid generation methods. were obtained using 673 quadrilateral elements on the

model surface.
To overcome the aforementioned problems a special

near wall treatment has been developed, as shown in For the rear part calculation domain a 32x30x44 grid
Fig.4. The near wall computational cells, was used starting at 2XL=0.1 and extending up to
corresponding to the initial mesh generation, can be !X/L-l.4. Both types of input boundary conditions
automatically subdivided to any desired number of were tested, the first one corresponding to a whole
sub-cells and a second computational domain is field solution and the second to an experimental
created. Two different solutions are applied in the input. In the second case the velocities within the
resulting internal and external domains. For the boundary layer were calculated according to the 1/n
internal solution the pressure values within the normal power law using the experimental data of Larsson [2],
to the wall generated cells is assumed to be equal while the initial values for k and e were estimated by
to the "external" value at node N. This assumption, empirical formulae [5]. A total number of 35 sweeps
valid near the solid boundary, Is quite beneficial for was needed to obtain convergence in either case. An
the solution procedure followed: the u3 and u1  initial number of 15 iterative steps was required for

local convergence in a transverse section, which
momentum and k-e equations are solved in the reduced to one up to 5 steps during the last sweeps.
sub-domain as In the external domain, while the u2  The values of the underrelaxation factors at the rear
component (normal to the wall) is calculated explicitly part were constant and equal to 0.5 for every
from the integrated continuity equation. For the veriable. The values of y+ ranged between 30 and
external solution the SIMPLE procedure is followed. 170.
At the common boundary (B) of the two domains the
boundary conditions for various variables are updated In Fg.7 computational results for the streamwtse
according to the adopted finite difference formulation (UJe) and crosswise (W/Ue) velocity components are
for the convection and diffusion terms. Convergence compared to experiments for points 11 to17 of
in a transverse section is achieved after several station 2X/L=0.9 shown in Fig.5. In this Figure the
successive internal and external solutions, vertical axis refers to the non-dimensionalized normal

distance from the body surface with respect to the
experimental [2] boundary thickness ge and the
horizontal axis to the non-dimenslonalized velocities
with respect to the velocity at the edge of the
boundary layer. A special output program has been
developed to compute the necessary variables along
normak to the body surface by linear interpolation
among the stored values. It should be noted here

N that the experimental results were subject to
- • blockage effects while no such effect has been

accounted for in the calculations.

1 sIn Fig. 8 the calculated, non-dimensionaized by the

--- the experimental data around the girth of the
previous section. Results for the pressure distribution

Fig.4 Near wall treatment are also presented.

3.2 High Reyolds Number Calculations

The same transverse sections and ,Irthwise points
as in the case of the low Reynolds number
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calculations, have been used for the high Reynolds
number tests. The grid density was different only
along the normal direction, as shown in Fig. 1. A
32x30x61 grid was employed for the front part C
calculations and convergence of both the velocity and
pressure fields was obtained in 150 sweeps. Constant- ---
underrelaxation factors equal to 0.3 were used for
each variable. The values of y+ ranged between 100 lo
and 300.

A 32x30x44 grid was used for the stern part
calculations. The underrelaxation factors were equal to
0.5 for all variables and convergence was achieved .1 /- pot. caic.
after 25 sweeps. Two grid types have been tested,
that is a coarse near the wall grid with y+ varying viscous calc.
from 100 to 1400 and a fine grid according to the )K experiments
method previously described. The latter was created
by dividing the initial near wall cells in 10 sub-cells, a
that is a total of 40 grid nodes along the normal
direction was used. Starting with the coarse grid
solution, 15 more sweeps were needed to obtain
convergence with the fine grid. The corresponding
values of y+ ranged between 15 and 150.
Comparisons between the calculated results by the
two grids as well as with the results for the low - .1L=-.7
Reynolds number are presented in Figs. 9 to 12.

b

15* * *

13

12

9
19 2X L:--

11 C

Fig.5 Distribution of calculation points

at 2X/L=0.9
-.1

4. Discussion of the Results

4.1 Low Reynolds Number 2X/L= 0

The calculated pressures along the girth of various
sections of the fron part of the ship compare well d
with the experiment values, Figs. 6 a to 6 d, when
corrected for blockage effects as proposed by Larsson
(151. le agreement is good both for the viscous ,GIRTH%
and the potential flow pressure calculations, with the 0 100exception of the lo ter part of the stem section with 100
2X/L=-0.93. In this case it is believed that the Fig.6 Comparisons of pressure coefficients at
discrepancy is due to the nsufflent accuracy of
classical Hess and Smith method near the extremetles the fron part for Re=5.0 s
of the body.
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Therefore it may be concluded that the proposed
viscous flow calculations for the front part of the ship
can be conveniently used in conjuction with the same - - - - - -
calctaation mtthod, which is widely used for the aft .1...-----
end of the ship. The advantages of such calculations .
are that they do not require any assumptions with
regard to the upstream input boundary conditions,
while they automatically generate input conditions for G
the aft part solution. Needless to say that the method /
is more expensive to run than simpler approaches.

The calculated velocity profiles, usinjt both the whole
field solution and the aft part soiution based on
experimental input, are compared to measured values
along the girth of section with 2X/L=0.9, Fig.7. R=51oG6

The calculated results agree in general well with the -.1 e

measurement for both velocity components. The
results based on experimental input are somewhat whole tield
better but, as it will be pointed out later, the overall ..... exp. input
difference in the total resistance prediction between
the two methods is very small. The overprediction of . experiments
the streamwise velocities near the surface at points
19 and 9 can be explained by observing from fig.7
that in this region the geometry of the hull surface is
rapidly changing, a situation for which the k-E 4
turbulence model is known to overpredict [1), (16],
[17]. It should be noted here that the comparison
between measured and calculated velocity profiles is
somewhat indirect because the measured results are
affected by blockage effects. However numerical
calculations for the same hull [4], taking into account
blockage effects, have shown that the non-dimensional 2
velaocity profiles remain practically the same. 1,

The predicted by both aforementioned methods Cf*10
values for CF along the girth of the same as above
.ection are compared to experimental values in fig.8.
The agreement is particularly good for both methods. GIETH, %
The corresponding values for Cp, predicted by boath 100
methods shown in the same Figure, are in close Fig.8 Comparisons of pressure and friction
agreement. No experimental pressure values exist for
this section. coefficients at 2X/L=0.9

Finally, although there exist no measured values for 4 Comoarison of the Low and High Reynolds
the total resistance of the ship to be used for Number Cases
comparison purposes, it is interesting to note that
the predicted by the whole field solution total The profiles of the streamwise and crosswise velocit
resistance is 2.5% higher than the one predicted using Yompo nes ore so w in and or swh e stton it
experimental input for the stern part solution. components are shown in Fig. 11 for the station wit

2XIL=0.9. All calculations were performed using the
whole field solution. The streamwise component is
higher for the high Re. No., as expected, with larger
differences near the keel. A more interesting

4.2 Hih Reynolds Number conclusion is reached by observing the crosswise
velocity profiles. At the high Re.No. the S shape of

The results for the velocity profiles at station this profile, which exist at the low Re. No., is lost or
2XTL=O.9 shown in fig. 9, allow us to conclude that is reduced. Consequently, the hull form Is less prone
the local grid refinement produces no noticable effect, to vortex formation at the high Re. No., a fact which
although it requires approximately 30% more has also been experimentally verified.
computer time. The same conclusion is reached by
observing Fig.10, where the girthwise results for Cp Finally the girthwise distribution of the Cp and CF
and CF at the same station are shown. Tis is a distribution for the same station are shown in Fig. 12

for both Re. Nos. In the same Figure the calculatedremarkable result showing that at high Reynolds values for pressure using potential flow are plotted.
numbers the wall function method is valid for a wide As expected the potential flow solution yields larger
range of y+. However more numerical experiments values than the viscous flow solutions, with the
should be made for various hull forms to establish differences diminishing with increasing Re.No.
this behaviour.

The overall difference in the prediction of the total The girthwise values of CF are more constant for
ship resistance using both methods is of the order of the high Re.No., whereas CF has very high values
1%. near the keel for the low Re.No.
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C p [18], for which grid independancy of the numerical
solution was achieved.

As it is well known, ship resistance predictions are
based on model experiments, on a flat plate friction
line and on appropriate scaling laws. We now
consider that the examined low Re.No case represents
model tests with results shown In Table 1, which also

GIRTH . contains the results of a corresponding full scale
I I Iexperiment. Since the free surface effect has been

neglected, this pair of experiments Is thought to be
conducted at a Froude No equal to, say, 0.15.

If we now use both the form factor (K) method
and Froude's method, each In combination with both
the I.T.T.C. and the A.T.T.C. friction lines, we can

Rr5108 derive Table 2.
Then, it can be concluded that none of the above

combinations predicts the ship resistance adequatly and
that the form factor method underpredicts, but It is
closer to the calculated ship resistance than the
Froude method, which overpredicts.

Needless to say that the numerical methods
presented herein can be easily used for the direct
prediction of the ship resistance, a fact which
necessitates full scale experiments to validate their

y + 100 .... 1400 accuracy.

2 - ---- y+ 15... 150 Finally, it should be mentioned that a complete set
of calculations for a hull form require approximately
60 hours of computer time on a MicroVAX H
machine, ammount which can be reduced to about 2Cf*1000 -- ----- hours on a modem RISC technology workstation.
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Table 1: Calculated resistance coefficients

Re = 5x10 6  Re = 5x108

CT 4.754x10
3  2.560 10

-3

Cp 1.024x103 0.77x10-3

CF 3.73)40-3 1.79x10-3

Table 2: Calculation of ship total resistance coefficient by the form factor and Froude method

CTMX 103 CFMXlO3 K CRXI03 CFSxIO3 CTSXIOJ CTSxlO3 % Diff.

computed

Form factor
plus 4.754 3.397 0.399 1.671 2.21 2.56 -13.6
ITTC

friction line

form factor
plus
ATTC

friction line 4.754 3.294 0.443 1.671 2.32 2.56 - 9.4

Froude~s
nethod 4.754 3.397 1.357 1.671 3.028 2.56 + 17
plus
ITTC f.l.

Froude's
nethod 4.754 3.294 1.460 1.671 3.13 2.56 + 22
plus

ATTC f.1
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Computation of Viscous Flow around a Propeller-Shaft
Configuration with Infinite-Pitch Rectangular Blades

F. Stern and H. T. Kim
The University of Iowa

Iowa, USA

Abstract Presently, only potential-flow methods are
available for calculating practical marine-

A viscous-solution method is set forth for propeller flow fields (for a recent review
calculating marine-propeller flow fields. An see Kerwin [1]). Lifting-surface methods are
overview of the computational method is giv- available for both steady and unsteady flows
en, and some example results for both laminar (e.g., Kerwin and Lee [2]). Also, surface-
and turbulent flow are presented and dis- panel methods have been developed for steady
cussed with regard to the flow physics, for flow (e.g., Hess and Valarezo [31). These
the idealized geometry of a propeller-shaft methods suffer from two major problems:
configuration with infinite-pitch rectangular first, they rely on the incorrect assumption
blades. It is shown that the flow exhibits that the propeller operates in an infinite
many of the distinctive features of interest, ideal fluid, but with a specified spatially
including the development and evolution of varying inflow which represents the hull
the shaft and blade boundary layers and boundary layer and wake; and second, the
wakes, and tip, passage, and hub vortices, results, including the propeller thrust and
Comparisons are made with results from a torque, are very sensitive to the specifica-
lifting-surface propeller-performance pro- tion of the geometry of the trailing-vortex
gram, to aid in evaluating the present wake sheet which requires a viscous-flow
method, which show that the present method analysis for its prediction. Consistent with
accurately predicts the blade loading, the first problem, the agreement with exper-
including viscous effects, and clearly dis- imental thrust and torque data for nonuniform
plays the ability to resolve the viscous inflow has not been satisfactory. Also, the
regions in distinction from the inviscid-flow predicted pressure distributions, even for
approach. uniform inflow, do not show overall good

agreement with experimental data (ITTC
Introduction [4]). A complete evaluation of the theory

has been hampered by the lack of knowledge of
Propeller-type flow fields are encountered the effective inflow which is usually assumed

in a wide variety of engineering problems, to be the nominal wake of the bare hull.
e.g., in the propulsion of marine vehicles,
airplanes, and helicopters, in turbomachine- Relatively little work has been done con-
ry, and in inert and reacting swirl-flow sys- cerning viscous effects for rotating propel-
tems. The present study concerns the de- ler blades. Most of the studies pertain to
velopment of a viscous-solution method for boundary-layer development and are restricted
the analysis of incompressible propeller to laminar flow and idealized geometries
flows. Of particular interest are marine (Morris [5]). Only one study has considered
propellers -h!ch are un!que becaucc thcy ptucLlcai geometries and flow conditions
operate in the thick stern boundary layer and (Groves and Chang [6]). In general, these
wake such that the flow field is interactive, methods suffer due to the inaccuracy of the
i.e., the propeller-induced flow is dependent pressure distributions predicted by inviscid-
on the hull flow which is itself altered by flow methods and are not easily extendable
the presence of the propeller. More specifi- into the wake. Similar difficulties with
cally, here we are primarily concerned with this approach have been encountered in turbo-
the propeller-induced flow; however, the pre- machinery applications. Viscous effects have
sent study is an outgrowth of a larger pro- also been studied with regard to the tip-
ject concerning propeller-hull interaction vortex generation process utilizing the par-
and, upon extension, is expected ultimately abolized Navier-Stokes equations (most
to handle entire configurations. recently, de Jong et al. [7]).
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Most work on propeller-hull interaction In the following, propeller-flow phenomena

assumes that the interaction is inviscid in are described to aid in understanding the

nature and has focused separately on either nature of the flow as well as the differences

propeller influence on hull resistance between the present and interactive

(thrust deduction) or on hull boundary layer approaches. Also, the rationale for select-

and wake (effective wake). Recently, Stern ing the present geometry, i.e., a propeller-

et al. [8,91 have developed a comprehensive shaft configuration with infinite-pitch rec-

viscous-flow approach to propeller-hull tangular blades (figure 1) is discussed,

interaction in which a viscous-flow method including its advantages and shortcomings.

for calculating ship stern flow (Chen and Next, an overview of the computational method

Patel [101) is coupled with a propeller- is provided. Then, some example results are

performance program in an interactive and presented and discussed with regard to the

iterative manner to predict the combined flow flow physics, including the computational

field; hereafter referred to as the interac- grid and conditions and calculations for both

tive approach. A body-force distribution is laminar and turbulent flow. Subsequently,

used to represent the propeller in the vis- comparisons are made with results from a

cous-flow method. The steady-flow results lifting-surface propeller-performance pro-

show good agreement with experimental data gram, to aid in evaluating the present me-

and indicate that such an approach can accur- thod. Finally, some concluding remarks are

ately simulate the steady part of the com- made. The details of the computational

bined ;ropeller-hull flow field. Although method and the complete results, including

the unsteady-flow results generally follow additional calculations to study the influ-

the trends of available data, these indicate ences of a thick-inlet boundary layert the

the limitations of this approach for simulat- propeller angular velocity, and the blade

ing the complex blade-to-blade flow. The number, as well as comparisons with some

work of Stern et al. (8,9] is precursory to additional relevant experimental apd computa-

the present work. tional studies are provided by Kim [11].

Most of the relevant work from related ap- Propeller-Flow Phenomena

plications is for high-speed flow in which

shock waves have a dominating influence; Figure 2 displays sketches of both the

therefore, the focus of these studies is, in circumferential-average and blade-to-blade

general, quite different from that of the flow for the relatively simple case of a pro-

marine-propeller application. The most peller-shaft configuration. The circumferen-

closely related work is that done to develop tial-average flow (figure 2a) clearly dis-

energy efficient turboprops and for turbo- plays the expected features based on physical

machinery applications (see Kim [111 for a considerations, i.e., axial-velocity U

more complete discussion, including refer- increase (overshoot) and negative radial-

ences). Although advanced inviscid- and via- velocity V (contraction) associated with the

cous-flow methods are under development, in propeller thrust, and propeller-induced swirl

most cases, incompressible-flow calculations W, including hub vortex, associated with the

are either not possible without major modifi- propeller torque. Also, there is a jump in

cations or require the use of the pseudo- pressure p across the propeller plane and a

compressibility concept. In its usual form, large decrease in pressure along the wake

the latter precludes time-accurate unsteady- centerline due to the propeller thrust and

flow calculations, although some recent stud- -induced swirl, respectively, and a large

ies have shown promising results for such increase in turbulent kinetic energy k,

extensions through the use of subiter- including two peaks, one near the wake cen-

ations. Lastly, concerning related applica- terline and one corresponding to the tip of

tions, the helicopter and swirl-flow calcula- the propeller blades. As discussed above,

tions are helpful with regard to tip vortices the interactive approach is able to predict

and swirling jets and wakes, respectively; accurately many details of the circumferen-

but, here again, involve large differences in tial-average (steady) flow; however, in order

both flow conditions and geometry. to predict the complex blade-to-blade flow a
more detailed representation of the propeller

It is apparent from the foregoing that than the body force is required.

present methods for calculating marine-pro-
peller flow fields are inadequate for analyz- In comparison with the situation for the

ing the detailed flow structures such as the circumferential-average flow, relatively lit-

development and evolution of the unsteady tle is known concerning the complex blade-to-

b-adc jayers and uakes, blade-to- blade l.u. due, no doubt, to d offcu'ies in

blade flow, hub and tip vortices, and overall performing such experiments and calculations

propeller wake. Furthermore, even the most for this type of geometry. Figure 2b dis-

advanced computational fluid dynamics methods plays some of the expected flow structures,

from related applications are either inap- including the leading-edge horseshoe, pas-

plicable or require -jor modifications to sage, tip, and hub vortices and the blade

handle marine propellers. This overall situ- boundary layers and wakes. It should be

ation motivated the present study. emphasized that figure 2b is speculative. It
is based on the results from the present
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study to be discussed later as well as on As mentioned earlier, the present overall
information from other studies both for mar- computational method is based on that used
ine propellers and turboprops and for rele- previously for calculating propeller-hull
vant geometries such as turbomachinery and interaction (Stern et al. [8,9]) in which a
simple tip and juncture flows. Here it is viscous-flow method for calculating ship-
sufficient to point out that there are numer- stern flow (Chen and Patel [10]) is coupled
ous fundamental issues associated with these with a propeller-performance program in an
flow structures which have yet to be expli- interactive and iterative manner to predict
cated (see Kim (111 for a partial list), the combined flow field. This is expected to
Although some of these issues are in common facilitate future extensions for entire con-
with other flows and applications, some are figurations.
unique, and, therefore, must be addressed
within the context of the marine-propeller In order to extend this approach for the
problem. present purpose, a number of major modifica-

tions were required, including the following:
As mentioned earlier, the goal of the pre- use of a noninertial coordinate system, which

sent work is to develop a viscous-flow method rotates with the propeller, and solution of
for marine propellers, which can analyze the the corresponding equations; implementation
detailed flow structures described above. It of boundary conditions, including periodic
is appropriate to initiate such an effort boundary conditions for the blade-co-blade
with as simplified a geometry as possible region; adoptation of an ADI scheme at each
without sacrificing the essential physics of crossplane; and a complete restructuring of
the flow under consideration. The geometry the program for propeller geometries, includ-
chosen for this purpose is a propeller-shaft ing calculations for both laminar and turbu-
configuration with infinite-pitch rectangular lent flow. Also, during the time period that
blades (figure 1). This geometry has the the present work was in progress, the basic
following important advantages: the grid gen- viscous-flow method of Chen and Patel [10]
eration is relatively simple so that the fo- was upgraded for fully-elliptic calculations
cus of attention can be given to the more of the complete Reynolds-averaged Navier-
basic aspects of the numerics, which is im- Stokes equations (Patel et al. [121). Sim-
portant for the initial development; fine- ilar modifications were made for the present
grid solutions are possible with the avail- work. Lastly, modifications were required to
able supercomputer resources; the laminar- execute the program efficiently on a super-
and turbulent-flow solutions exhibit similar computer.
flow patterns such that meaningful compariso-
ns can be made between the two flows; and its Below, an overview of the computational
simplicity facilitates the diagnosis of the method is given. A complete description is
important features of the blade-to-blade provided by Kim [111. Also, further details
flow. Also, as will be shown below, the flow of the basic viscous-flow method are provided
f'eld exhibits most of the distinctive fea- by Chen and Patel [10] and Patel et al. (12].
tures of interest. However, it should be
recognized that this geometry also has short- Equations and Coordinate System
comings, such as the lack of blade section
geometry and, most importantly, thrust. The Reynolds-averaged Navier-Stokes equa-
Issues related to these aspects will be ad- tions are written in the physical domain
dvessed in future extensions for practical (figure 3a) using noninertial cylindrical
geometries. coordinates (x,r,e) rotating with constant

angular velocity A (w,0,0) as follows:
Overview of the Computational Method aU 1 a i aw

- + - (rV) + - 0(1
Consider the viscous flow around a propel- ax rr r a 0

ler-shaft configuration rotating at constant DU a -

angular velocity w in an infinite uniform Dt - -x 
(P + uu) + fx - rv)

stream with velocity Uo (figure 1). It is 1 -

assumed that the Mach and cavitation numbers (uw) -v + e U (2)
are, respectively, sufficiently small and r 3 r+Re

large such that the fluid is incompressible W2
and noncavitating. Under these conditions, DV r 2aW r a -

the flow is cyclic in both space and time.
Moreover, the flow is steady and spatially a - a - - 1 -

__noin (p + vv) + f - v) -(vvcyclic at blade-to-hl~do- Intervals in nonln- r r r ;0 r
ertial coordinates, which rotate with the I(V 2 aW V
propeller. The situation is similar fc.: - ww) + R-e 2 ae 3 - (3)
propeller-driven axisymmetric bodies; how- r r

ever, for the more general circumstance of
propeller-driven three-dimensional bodies the - + uw+ 2-V w
flow is unsteady, even in noninertial coor- Dt r x (vw)

dinates. For straight-ahead performance it I - -
is cyclic with angular velocity w, whereas r a (P + ww) + f0 - (vw)
for maneuvering,it is noncyclic. 555



+ (V2  2 V L (4) + U +_V2 + I aU BW 2
Re r a e r2 +(.-.ax +(7--+-+r r

with Iav W 2 (9)

t at ax ar r Ore 3
The effective Reynolds number R is defined

an . a2 +2 + a I a2 as
an =V ,.L+ --. +r.L+L.2 .. 1 1 t2 2 rar 2 2 (10)

t is the time; U, V, W are, respectively, the R Re a

longitudinal, radial, and circumferential
components__ of mean velocity; p is the pres- in which k for ehe oequation (8). The) model

sure; uu, uv, etc. are the Reynolds stress- constants are:
es; f , f - f ^ are, respectively, the longi-
tudinA, radial, and circumferential cots- C . .09, C 1.44, C 2 1.92,
ponents of the body force; and Re = U L/v is P C 1
the Reynolds number defined in terms of a O -U = 1, a - 1.3
characteristic velocity U and length L, T
which are used along with the density p to The governing equations (1) through (10)
nondimensionalize all variables, and molecu- are transformed into nonorthogonal curvilin-

lar kinematic viscosity v. For laminar flow, ear coordinates such that the computational

equations (1) through (4) reduce to the domain (figure 3b) forms a simple rectangular

Navier-Stokes equations by simply deleting parallelepiped with equal grid spacing. The

the Reynolds-stress terms and interpreting transformation is a partial one since it

(UVW) and p as instantaneous values. involves the coordinates only and not the
velocity components (U,V,W). The transforma-

Closure of the Reynolds equacions is at- tion is accomplished through the use of the

tained through the use of the standard k-z expression for the divergence and "chain-

turbulence model. Each Reynolds stress is rule" definitions of the gradient and Lapla-

related to the corresponding mean rate of clan operators, which rexate the orthogonal
strain by the isotropic eddy viscosity v t as curvilinear coordinates x - xrO) toithe

follows: nonorthogonal curvilinear coordinates C -
f sn, 0. In this manner, the governing

- equations (1) through (10) can be rewritten
t r ax' in the following form of the continuity and

I =  au aw convective-transport equations
- W Vt r770+7, a I i a 2U 2V 2W

- V W -V (i a0 +  a Wr -(b U + b V + b W) + - (b U + b V + bW)

-- 3U 2 + (bU + bV + b W) - 0 (11)
- uu -v2 (23) -/k

-- 2 V 2 2 22 ar 3 at an
-! 2) - k (5)

" 2Ar a r 32 + 2B "' +2C ' + R- 1-+ S (12)
v is defined in terms of the turbulent kine- * an at at

tic energy k and its rate of dissipation c by where 4, (U,V,W,k,e).

Vt  C k2 (6) Discretization and VelocitX-Pressure Coupling

where C is a model constant and k and c are The convective transport equations (12)
are reduced to algebraic form through the use

governed by the modeled transport equations of a revised and simplified version of the
finite-analytic method (Patel et al. [12]).

Dk , D k In this method, equations (12) are linearizedD x (R +Tx) - ( r 3r)  in each local rectangular numerical element

kAt w A - AC - 1, by evaluating the coef-

+ a ( k + G ficients and source functions at the interior
2 Be Rk B (7) node P and transformed again into a normal-
r k ized form by a simple coordinate stretch-

ing. An analytic eol.tion is derived by

Dc a 1 a) a a 1 at decomposing the normalized equation into one-
.L ;( + - _- r -L) And two-d inens!onal par-4 l.A4 @e:, *-aDt ox F ax r ar R ;r .........o equations. The solution to the former is

2 readily obtained. The solution to the latter
+ 2 ( 1 ) + C CG -C L- (8) is obtained by the method of separation of

ae R %e k e2 k variables with specified boundary func-
r e tions. As a result, a twelve-point finite-,

G is the turbulence generation term analytic formula for unsteady, three-

-U 2 av.2 1 3W V 2 dimensional, elliptic equations is obtained
G = vt {2 [ (L) + (r) + (T-T + r) in the form

r a55
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8 for 0 are specified from simple flat-plate
O 1 solutions, initial conditions for p and p'

+CC+ C + I Cnb nb are not required; on the shaft S and blade
P U D T surfaces 5bs and Sb , for laminas flow, the

+ n-l _ S)) solution is carried out up to the actual
+ (Cu o o C P (13) surface where the no-slip condition is ap-

plied, for turbulent flow, a two-point wall-
where the subscript nb denotes neighboring function approach is used; on the exit plane
nodes (NE:northeast, NW:northwest, etc.). It Set axial diffusion is negjigibje so that the
is seen that * depends on all eight neigh- exit conditions used are D 4/83 - 0, a zero-
boring nodal values in the crosaplane as well gradient condition is used for p; on the
as the values at the upstream and downstream periodic symmetry planes S and S , an
nodes n and fn, anO the values at the pre- explicit periodicity condition is igosed,
vious time step *p . For large values of ise., S C( *(,n, + 4 ), p(, n,)
the cell Reynolds number, equation (13) re- p(Q*,ir + p), where 4 correlponds to the
duces to the partially-parabolic formulation blade-to-bladepinterval; Sn the symmetry axis
used previously (Stern et al. (8,9]). Since L , the conditions imposed are V - W - 0,
equations (13) are implicit, both in space V(U,k,c,p)/an x 0; on the outer boundary Sot
and time, at the current crossplane of calcu- the uniform-flow condition is applied, I.e.,
lation, their assembly for all elements re- U = 1, W (driS , p - a(k,c)/83 - 0.
sults in a set of simultaneous algebraic o
equations. If the pressure field is known, Grid Generation
these equations can be solved by the method
of lines. However, since the pressure field The computational grid is obtained using
is unknown, it must be determined such that the technique of generating body-fitted coor-
the continuity equation is also satisfied. dinates through the solution of elliptic

partial differential equaq ons, i.e., the
The coupling of the velocity and pressure nonorthogonal coordinates - are related to

fields is accomplished through the use of a the orthogonal coordinates xi by the set of
two-step iterative procedure involving the equations
continuity equation based on the SIMPLER h h h
algorithm. In the first step, the solution vx i  . ( (14)
to the momentum equations for a guessed pres- hh 2 h3 x I  h

sure field is corrected at each crossplane where i
such that continuity is satisfied. However, V 2  I a
in general, the corrected velocities are no = gJ 1 + f
longer a consistent solution to the momentum a aai

equations for the guessed p. Thus, the pres- a i
sure field must also be corrected. In the and f -- (jgi) i = 1,2,3 (15)
second step, the pressure field is updated J (

again through the use of the continuity equa- In the present context, fi are called control
tion. This is done after a complete solution functions since their specification controls
to the velocity field has been obtained for the concentration of coordinate surfaces.
all crossplanes. Repeated global iterations For specified boundary conditions and control
are thus required in order to obtain a con- functions, equations (14) can be solved nu-
verged solution. The procedure is facili- merically to obtain the coordinates of each
tated through the use of a staggered grid. grid point in the physical domain.
Both the pressure-correction and pressure
equations are derived in a similar manner by Because of the simplicity of the present
substituting equation (13) for (U,V,W) into propeller geometry (figure 1), it is possible
the the discretized form of the continuity to specify the transverse and longitudinal
equation (11) and representing the pressure- sections of the computational domain as sur-
gradient terms by finite differences, faces of constant C and 4, respectively, and

moreover, the three-dimensional grid is ob-
Solution Domain and Boundary Conditions tamned by simply rotating the two-dimensional

grid for the longitudinal plane. Under these
The physical and computational solution conditions, equations (14) reduce substanti-

domains are shown in figure 3. It is seen ally and can be readily solved once the con-
that the solution domain is bounded by the trol functifns are specified. The control
inlet plane S1 ; the shaft surface S.; the functions ff ere determined by the speci.fed
suction and pressure sides of the blacre sur- grid distributions of axial stations, radial
face S, and Sb , respectively; the exit distributions at the inlet and exit, and
plane ; the pe iodic symmetry planes S girthwise distributions at the inlet and one Cs

and S ; the symmetry axis Ls; and the out r the outer boundary, respectively. These
boundipy S control functions were derived under the

conlitions fl - f (W), f - f (g,n), and f
The boundary conditions on each of the - f (;) only, which are of sufficient gener-

aforementioned boundaries are as follows: on ality for the present application.
the inlet plane Si, the initial conditions
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Results peller angular velocity w - .3n (- 9 rpm)
(the blade section angle of attack varies

In the following, first, the computational from 1.2 deg at the root to 4 deg at the
grid and conditions are described. Then, tip); for laminar flow, on the inlet plane,
some example results for laminar flow are 6/R - .111 (where 6 is the boundary layer
discussed to point out the essential features thic ness and Rh the hub radius) and there is
of the solutions. These are followed by a no inviscid-flow overshoot; and for turbulent
brief presentation of the results for turbu- flow, on the inlet plane, 6/Rh - .489, U -
lent flow to highlight the differences. This .04, and the inviscid-flow overshoot is
order and emphasis of discussion is selected 1.01. The 6 values are based on simple flat-
since the former represent solutions to the plate solutions and the selected Re. For
exact governing equations, whereas the latter laminar flow, the Re value was selected based
are dependent on the choice of turbulence on the fact that many investigators have
model. performed two-dimensional flat-plate bound-

ary-layer and wake calculations for this same
Computational Grids and Conditions value. For turbulent flow, a reasonable

value of Re was selected for which fully tur-
The geometry of the propeller-shaft con- bulent flow over the shaft and blades is

figuration (figure 1; see Tables I and 2 of probable. The propeller angular velocity was
Kim [il) was specified based on a config- taken to be sufficiently low such that no
uration for which calculations had been pre- separation occurs over the blades.
viously performed, i.e., P4660 (Stern et al.
[91). For the nonrotating condition, the calcu-

lations were begun with a zero-pressure ini-
Partial views of the grid used in the tial condition for the pressure field. For

calculations are shown in figures 4a,b for a the rotating condition, the complete nonro-
longitudinal plane and a typical body cross- tating solution was used as the initial con-
plane, respectively. The shaft and blade dition. The values of the time at and pres-
surface grid is shown in figure 1. Similar sure a underrelaxation factors and total
grids are used for both the laminar and tur- numberPof global iterations used in obtaining
bulent calculations, but, in thT latter case, the solutions are .02-.1, .03-.1, and 70-100,
the near-wall grid lines (y < 30) are respectively. The calculations were per-
deleted in order to implement the two-point formed on a CRAY X-MP/48 supercomputer. The
wall-function approach. central processor unit (CPU) and storage

(words) that were required for each of the
The inlet, exit, and outer boundaries are solutions are about 30mn. and l-1.7M words,

located at x - (.54,6) and r - .9, respec- respectively. Note that the computer codes
tively; for laminar flow, the first grid were 23% vectorized and optimized to achieve
points off the body and blade vurfvces arT a 65% reduction in CPU, and that the maximum
located at .4 < y < 8 and I < x , y , or z normal system storage limit is 2H words.
< 14, respectively; for turbulent flow, the
first grid points off the b~dy and blade Laminar Flow
sur~ace$ are lcated at 30 < y < 230 and 40
< x , y , or z < 190, respectively; 62 axial The laminar-flow results for both the
grid points were used, with 18 over the up- nonrotating and rotating conditions are shown
stream portion of the shaft up to the blade in figures 5 through 13. Figures 5, 6, and 7
leading edge, 11 over the blade, 14 over the show the variation of some properties in the
remaindec of the shaft from the blade trail- longitudinal direction, i.e., the shaft and
ing edge to the hub apex, and 19 over the blade surfaces and wake pressure, the wall-
wake; for laminar flow, 40 radial grid points shear (magnitude and angle for inertial coor-
were used with 22 over the blade span and 18 dinates), and the wake centerline and maximum
from the tip to the outer boundary; for tur- swirl velocities, respectively. Figures 8
bulent flow, 36 radial grid points were used through 11 show the detailed results for some
with 19 over the blade span and 17 from the representative axial stations in the form of
tip to the outer boundary; 30 and 26 angular velocity and pressure profiles (i.e., * vs. Y
grid points were used for laminar and turbu- = r/Rp, where Rp is the propeller radius),
lent flow, respectively. In summary, the axial-velocity contours, crossplane-velocity
total number of grid points for the laminar vectors, and axial-vorticity w contours,
and turbulent calculations are 74,400 and respectively. Lastly, figures 12 and 13 show
58,032, respectively. close-up views of the tip vortex and the tip-

vortex trajectory, Lespectively. Note that,
The conditions for the calculations are as in figure 8, the ordinate is Y such that the

follows: characteristic (shaft) length L - 1; distance from the plate is larger near the
characteristic (uniform-stream) vel ocity Uo = tip than near the root. Also, the labeling
1; for laminar flow, Re0 % 2.02 x 10 and Re of each of the curves corresponds to the

I x 10 , where ReL and Re are the shaft- angular grid lines shown in figure 4b.
(U L/v) and chord-length (iU 0oC/v) Reynolds
numbers, respecgively; for turbtent flow, First, consideration is given to the
ReL = 6.08 x 10 and Re. - 3 x 10 ; the pro- results for the nonrotating condition. The
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shaft and blade surfaces and wake pressure ure 8. At the near-inlet station, the solu-

variations (figure 5) for the mid-blade plane tion display the characteristics of the inlet

indicate a minimal influence of the blades conditions, i.e., an axisymmetric, thin,

and are typical of trailing-edge flow in the laminar boundary layer. At the leading-edge

presence of a thin boundary layer; however, and mid-chord stations, the solution shows

at this relatdvely low Re (laminar flow), the the initiation of the blade boundary layer,

adverse axial-pressure gradient associated including leading-edge (stagnation-point) and

with the closing of the body is sufficient to displacement effects. Also, the juncture

cause a small separation region in the vicin- flow indicates a weak leading-edge horseshoe

P./ of the hub apex, .96 < x < 1.01. Note vortex. At the trailing-edge station, the

the rapid rate of recovery of pressure in the trailing-edge effects of both the blade and

radial direction. The pressure variations the shaft are predominate, including a rever-

for the blade plane are similar, but clearly sal of the juncture flow. At the near blade

show the effects of the blade leading and wake station and hub apex the solution shows

trailing edges as well as a small displace- the initial development of the blade wake.

ment effect of the blade boundary layer. Here again, the effects of the shaft trailing
edge are quite large. Two corner vortices

The wall-shear velocity magnitude U var- are apparent near the shaft axis which are an

iations (figure 6a) are consistent witi those indication of the nature of the flow within

just described for the pressure. For the the separation region. At the near. interme-

blade plane, there is a largq reduction of diate, and far shaft-blade wake stations, the

U in the juncture region due to the flow solution shows the recovery of shaft and

retardation and also in conjunction with the blade wakes. The crossplane flow and pres-

relatively large boundary-layer thickness sure recover more rapidly than the axial

there, and a downstream shift of the region velocity component.

of low U associated with the flow separ-

ation as compared to the mid-blade plane. Next, consideration is given to the

The latter is consistent with the differences results for the rotating condition. Referr-

in separation patterns for the blade and mid- ing to figure 5, in the vicinity of the hub

blade planes. On the blade, initially U is apex and in the near wake there is a decrease

larger at the mid-span than at the tip in in pressure due to the propeller-induced

response to the larger leading-edge pressure swirl. The lifting effects due to the angle

peak at mid-span (i.e., more favorable pres- of attack of the blade section are clearly

sure gradient), then the trend reverses. The evident. Note that the pressure peak is at

wall-shear velocity vector (figure 6c) is the blade leading edge such that just up-

generally aligned with the axial direction stream of the leading edge very large adverse

except near the blade leading edge where the and favorable pressure gradients occur for

blade displacement effects are evident and in the pressure and suction sides of the blade,

the separation region where the complex topo- respectively, whereas just downstream of the

logical nature of three-dimensional separ- leading edge the reverse holds true.
ation is displayed. The wall-shear velocity magnitude U (fig-

The wake centerline velocity Uc (figure ure 6b) shows slightly increased values over

7a) displays the extent of the separation the spinning portion of the shaft and greater

region and the recovery of the wake. The uniformity between the blade and mid-blade

maximum swirl velocity Wmax is, of course, planes in the separation region as compared
nearly zero for the nonrotating condition and to the nonrotating condition. For the pre-

not shown in figure 7b. The asymptotic forms sent conditions, the rotation parameter R

(figure not shown) display the details of the - u Rh/U is quite small, i.e., R - .02,

recovery of the wake. Although the exit which explains the only slight increase in

plane is 34 diameters downstream of the pro- U as compared to the previous calculations

peller plane (equivalently 5 shaft lengths of Stern et al. [9]. On the blades, U is

downstream of the hub apex), the slope of the smaller on the suction than on the pressure

velocity defect of the shaft wake has not yet side, in conjunction with the relatively

reached its asymptotic value. This is con- thicker boundary layer on the suction as

sistent with our previous turbulent-flow compared to the pressure side. Consistent

calculations. In contrast, the slope of the with the results for the nonrotating condi-

blade wake velocity defect is close to the tion, U is larger at the tip than at mid-

asymptotic value. The exit plane is 103 span except near the leading edge. On the

chord lengths downstream from the blade rotating section, the wall-shear velocity
to, gure 6d) shows large effects due totrailing eige, vector I.. 4

rotation, i.e., the flow is turned towards

Lastly, for the nonrotating condition, the the direction of rotation. In the blade

detailed results are discussed. The discus- region, the passage vortex is evident,

sion to follow is based on the complete including its helical nature. In the sep-

results, which include the solution profiles aration region, the flow is completely turned

at all the 'tations designated in figure 4a; in the direction of rotation which results in

however, fo, brevity of presentation, only the aforementioned greater uniformity in the

the near blade wake station is shown in fig- separation patterns between the blade and
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mid-blade planes. Over the blade, the wall- apex, the solution showa the development of
shear velocity vector is in the axial direc- the blade wakes, which indicate the charac-
tion, except near the tip, where the flow is teristics of the complex mixing of the suc-
outward, especially on the pressure side. tion and pressure side three-dimensional

boundary layers, including significant ef-
Figure 7a shows that the recovery of the fects of the tip, passage, and hub vortices

wake centerline velocity Uc is slower for the and the hub-induced pressure gradients. The
rotating than the nonrotating condition. minimum velocity in the wake migrates towards
This is due to the adverse axial-pressure the suction side. There is a rapid recovery
gradient induced by the hub vortex. Also of the pressure-side wake such that the ve-
shown is the decay of the maximum swirl ve- locity-defect region is mainly behind the
locity W m in the wake (figure 7b), which is shaft and off the suction side of the
associatexwith the intensity and decay rate blade. The blade wake becomes quite thick as
of the hub vortex. Finally, the asymptotic it merges with the wake of the shaft and the
forms (figure not shown) indicate that the tip vortex. There is a region of backward
shaft wake is unaffected, the blade-wake flow near the wake axis associated with the
slope is increased, and the swirl decay is flow separation. The tip vortex reduces in
relatively faster than that of the axial- intensity and the passage vortex merges into
velocity defect. a large asymmetric hub vortex. Finally, at

the near, intermediate, and far shaft-blade
The detailed results vividly display the wake stations, the nature of the recovery of

complexity of the flow for the rotating con- the wake is displayed. It is clear that the
dition. Here again, the discussion to follow circumferential mixing is faster for the
is based on the complete results, although rotating than the nonrotating condition which
only representative stations are displayed in is also the case for swirling jets.
figures 8 through 11. At the near-inlet
station, the solution is similar to that for The close-up views of the tip vortex shown
the nonrotating condition, except for the W in figure 12 clearly display its initiation
velocity component which shows a linear in- at the blade leading edge, subsequent migra-
crease due to the use of noninertial coor- tion off the surface along the blade chord,
dinates. At the leading edge, the solution and decay as it is convected and diffuses
shows the initiation of the blade boundary into the wake. Also, they reveal the mechan-
layer, in this case, with significant differ- ism of the tip-vortex formation. At the
ences between the suction and pressure sides leading edge, nearly all of the fluid forming
of the blade due to the influences of the the tip vortex originates from the pressure
aforementioned abrupt changes in the pressure side, whereas further downstream the suction
gradients. Interestingly, the boundary lay- side fluid is "pumped" into the tip vortex.
ers on both sides of the blade are thicker This indicates a "braiding" process, which is
for the rotating than the nonrotating condi- often referred to as the tip-vortex roll-
tion. The tip-vortex formation initiates up. The tip-vortex trajectory is shown in
with flow around the tip from the pressure to figure 13.
the suction side. The vortical flow is asym-
metric such that the tangential velocity Turbulent Flow
component is larger on the suction than the
pressure side, whereas the situation is re- Some limited turbulent-flow results are
versed for the radial velocity component. shown in figures 14 and 15. The turbulent-
The passage-vortex formation also initiates flow results are consistent with and very
and dominates the juncture flow. At the mid- similar to those for laminar flow. In gen-
chord station and trailing edge, the effects eral, the differences are as expected based
of the pressure gradient changes are clearly on physical reasoning, i.e., viscous effects
displayed, i.e., on the suction and pressure are confined to narrower regions and the
sides, the flow is decelerated and acceler- three-dimensionality of the flow is consider-
ated, respectively. On the suction side, the ably reduced for turbulent as compared to
boundary-layer thickness varies considerably laminar flow. Also, quite apparent for tur-
across the span. The tip vortex has lifted bulent flow is the reduced resolution near
off the suction-side surface such that the solid surfaces and the wake centerplane due
radial velocity component is positive on both to the present wall-function approach.
sides. Braiding of the fluid from both the
suction and pressure sides is apparent, but The overall trends described above with
particle trajectories were not traced to regard to the shaft and blade surfaces and
display this phenomenon. The pressure is wake pressure, wall-shear velocity, and wake
surprisingly uniform in view of the cross- centerline and maximum swirl velocities are
plane flow, however, very low values are quite similar; however, the pressure peak at
observed in the tip-vortex core. The passage the hub apex is considerably larger and there
vortex increases in size and its core moves are some differences in the wall-shear veloc-
towards the suction side. The axial-velocity ity behavior due to the absence of separ-
and -vorticity contours are hook shaped near ation. The detailed results are also quite
the tip due to the influences of the tip vor- similar. However, for the nonrotating condi-
tex. At the near blade wake station and hub tion the juncture effects are minimal and the
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crossplane flow and pressure variations are the leading edge. Differences are also seen
reduced, whereas, for the rotating condition, in the section-lift coefficient. The viscous
the tip and passage vortices are larger and results show considerably larger values near
persist longer, the latter merges into a the root and the tip, but smaller values for
larger hub vortex, lower pressures are the mid-span region, The higher root loading
observed in the tip-vortex core, and the for the viscous flow is, no doubt, a result
recovery of the wake is considerably of the increased effective angle of attack
faster. The turbulent kinetic-energy pro- due to the oncoming shaft boundary layer.
files show two peaks, one near the wake cen- However, a part of the difference may be due
terline and one corresponding to the tips of to the lack of hub effects in PUF-2. The
the blades. lower mid-span loading is consistent with the

aforementioned differences in chordwise load-
Comparison With Results from a Lifting- ing near the leading edge. The higher tip
Surface Propeller-Performance Program loading may be due to the reduced pressure on

the suction side due to the tip vortex.
Unfortunately, no experimental information Interestingly, in spite of these differences

is available for the present geometry. in the loading distributions, the total for-
Therefore, to aid in evaluating the present ces and moments show remarkably close agree-
work, comparisons have been made with some ment.
relevant experimental and computational stud-
ies, including the following topics: juncture Figures 16c,d show a comparison of the
flow which is related to the present flow in propeller-induced velocities just upstream
the blade-hub juncture region for the nonro- and downstream of the propeller at the mid-
tating condition; tip flow which is related span radius. For the viscous-flow solution,
to the present flow in the tip region for the the propeller-induced velocity (u,v,w) is
rotating condition; turbomachinery flow which defined as the total velocity, (U,VW) minus
is related to the present blade boundary- the freestream (Uo,0,O) value. Results are
layer and wake development and blade-to-blade shown using the blade angle coordinate
flow; and propeller flow which is, of course, 6 - (& as the abscissa for the entire blade-
the topic and goal of the present study. to-blade region from the suction (8 - 0 deg)
Although in most cases, the comparisons are to the pressure side (e - 90 deg).
only qualitative due to the large differences
between the topic and present geometries, The velocity components just upstream of
they support the -resent results in that the the propeller (figure 16c) clearly show the
predicted flow structures are similar and effects of the leading-edge stagnation
consistent with the results from these stud- point. The u velocity components show sim-
ies. The complete comparisons are lengthy ilar trends, i.e., the point of the minimum
and beyond the scope of the present paper velocity shifts to the pressure side which
(see Kim (111). Herein, only the direct suggests that the stagnation point also
comparisons between the present turbulent- shifts to the pressure side. The increased
flow results and those from a lifting-surface magnitude for the viscous solution may be due
propeller-performance program, i.e., PUF-2 to the prescribed overshoot for the oncoming
(Kerwin and Lee [21) will be presented. shaft boundary layer. The v velocity compon-

ent is nearly zero for both results. The w
Special modifications of PUF-2 for the velocity components also show similar trends;

present idealized geometry were not deemed however, the inviscid solution indicates a
necessary, and, therefore, not done. A con- stronger local effect of the leading-edge
stant pitch ratio P/Dp - 10 was used to stagnation point than the viscous solution

represent the infinite pitch of the present such that the circumferential-average is zero
geometry. All other geometry input data was for the Inviscid but not the viscous solu-
given the same values as those for the pre- tion, i.e., the viscous solution indicates
sent turbulent-flow calculations. Also, the small negative preswirl.
open-water condition value was used for the
advance coefficient J - 44.44, i.e., the The velocity components just downstream of
effective wake due to the interaction between the propeller (figure 16d) highlight the
the propeller and the shaft boundary layer differences between the viscous and inviscid
was neglected. For the wake-model param- solutions. The inviscid u velocity component
eters, the standard values for the wake pitch shows very small positive values from the
and zero contraction were used. A value of suction to the pressure side, whereas the
.005 was used for the section-drag coeffici- viscous u velocity component shows a large
ent Wh-lcI Is based on the present calcula- change from the suction to the pressure side,
tions. i.e., the viscous blade wake appears as a

sharp drop on both the suction and pressure
Figures 16a,b show a comparison of the sides and the effects of the retarded suc-

chordwise and spanwise distributions of the tion- and accelerated pressure-side boundary
blade loading in terms of the pressure jump layers are clearly evident. The v velocity
(figure 16a) and section-lift coefficient components show similar trends, but with
(figure 16b), respectively. A large differ- somewhat larger variations for the viscous
ence in the pressure jump is observed near solution. The w velocity components also
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show similar trends, but with larger swirl
for the viscous solution in spite of the 2. Kerwin, J.E. and Lee, C.S., (1978), "Pre-
smaller loading. diction of Steady and Unsteady Marine

Propeller Performance by Numerical Lift-
Concluding Remarks ing-Surface Theory," Trans. SNAME, Vol.

86, pp. 218-253.
The present work was motivated by the

limitations of the interactive approach for 3. Hess, J.L. and Valarezo, W.O., (1985),
simulating the complex blade-to-blade flow. "Calculation of Steady Flow about Propel-
This has certainly been accomplished by the lers using Surface Panel Method," J.
present viscous-solution method, albeit for Propulsion, Vol. 1, pp. 470-476.
an idealized geometry. In fact, the present
work provides, for the first time, a very 4. ITTC, (1984), "Report of the Propeller
detailed documentation of the viscous flow Committee," Proc. 17th Int. Towing Tank
around a propeller for both laminar and tur- Conf., pp. 139-194.
bulent flow. It is concluded that the pre-
sent approach is capable of simulating 5. Morris, P.J., (1981), "The Three-Dimen-
marine-propeller flow fields, including both sional Boundary Layer on a Rotating Heli-
the propeller loading and the complex blade- cal Blade," J. of Fluid Mech., Vol. 112,
to-blade flow, and should be extended for pp. 283-296.
practical geometries. It is also concluded,
based on the comparison of the laminar and 6. Groves, N.C. and Chang, M., (1984), "A
turbulent results, that, although most Differential Prediction Method for Three-
aspects of the flow are governed by pressure- Dimensional Laminar and Turbulent Bound-
gradient effects, improvements in turbulence- ary Layers of Rotating Propeller Blades,"
modeling procedures, especially near-wall Proc. 15th ONR Symp. on Naval Hydro., pp.
treatment, are important to resolve certain 429-444.
flow features, including transition, separ-
ation, and small-scale vortical structures 7. deJong, F.J., Govindan, T.R., Levy, R.
such as leading-edge horseshoe and secondary and Shamroth, S.J., (1988), "Validation
vortices. of a Forward Marching Procedure to Com-

pute the Tip Vortex Generation Process
Of course, much more work needs to be done for Ship Propeller Blades," Proc. 17th

to extend the method to realistic propeller ONR Symp. on Naval Hydro., Hague, The
and body geometries. Some of the issues that Netherlands.
need to be addressed are as follows. Optimum
coordinates, including investigations of 8. Stern, F., Kim, H.T., Patel, V.C. and
inertial and helical systems. Optimum grid- Chen, H.C., (1988), "A Viscous-Flow Ap-
generation techniques for complex, three- proach to the Computation of Propeller-
dimensional, propeller-driven bodies, includ- Hull Interaction," J. Ship Research, Vol.
ing investigations of moving, adaptive, and 32, No. 4, pp.2 46 -2 62 .
multi-block grids. As already mentioned,
improved turbulence-modeling procedures are 9. Stern, F., Kim, H.T., Patel, V.C. and
essential and possibly a pacesetting issue. Chen, H.C., (1988), "Computation of Vis-
Also, further development of solution algor- cous Flow Around Propeller-Shaft Config-
ithms is a necessity in order to perform the urations," J. Ship Research, Vol. 32, No.
required large-scale computations even on the 4, pp. 263-284.
most advanced available supercomputers. It
should be recognized, that none of these 10. Chen, H.C. and Patel, V.C., (1985), "Cal-
issues are trivial, on the contrary, all culation of Trailing-Edge, Stern and Wake
require substantial effort so that it is Flows by a Time-Marching Solution of the
expected that the present problem will remain Partially-Parabolic Equations," Iowa
a challenge for many years to come. Institute of Hydraulic Research, The

University of Iowa, IIHR Report No. 285.
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Figure 1. Propeller-shaft configuration witlh (a) circumferential-average flow
infinite-pitch rectangular blades.
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Figure 2. Propeller-flow phenomena.
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DISCUSSION respectively, including validation studies

by K. Mori through grid-dependency and convergence check
as well as comparisons with experimental data

Although an explicit description about a and other analytic and numerical solutions.
systematic accuracy analysis is requested by Some limited grid dependency and convergence
the paper committee, no descriptions are found check were also done for the present
in the paper. Because the accuracy analysis is application to test the extensions and
primarily important for the computational modifications for calculating marine-propeller
fluid dynamics, it should have been mentioned, flow fields. That is, some preliminary
although the procedures are not definite yet. turbulent-flow calculations were performed

using a coarse grid, i.e. 36x22x16 (16,672).
The coarse-grid solutions converged more

DISCUSSION rapidly (i.e. in about 40 global iterations)
by S. Kinnas than the fine-grid solutions. Qualitatively

the coarse-grid solutions were very similar to
I would like to congratulate the authors the fine-grid solutions, but with considerably

ior their interesting paper. I have however reduced resolution. Also, as stated in the
two questions to raise, paper, unfortunately, no experimental

information is available for the present
1) Concerning the circulation distribution geometry; therefore, to aid in evaluating the

that they show in Fig.16(b) as predicted by present work, comparisons were made with some
the presented method: is it a convergent relevant experimental and computational
result with respect the chordwise and spanwise studies, including the direct comparisons
grid discretization on the propeller blade? between the present turbulent-flow results and

those from a lifting-surface propeller-
2) In the case of a realistic propeller, performance program which are provided in

with blade thickness included, what would they Fig.16 (see [11] for the complete
expect to be a reasonable grid on the comparisons).
propeller in order to capture the detailed

flow at the propeller leading edge and tip? With regard to Dr. Kinnas's comments, the
solutions presented are fully converged for

Author's Reply the present grid. As discussed in the
Concluding Remarks, grid-generation for

We thank both the oral and written complex geometries is an important issue which

discussers of our paper for their pertinent must be considered in extending the present
remarks, method to realistic propeller and body

geometries. Presently, calculations are in
With regard to Prof. Mori's comments, we progress for the SR-7 turboprop using a

apologize for not including an explicit single-block, H-grid of somewhat higher
statement of accuracy in the paper, and, at density than the present one (i.e.
this time, offer the following. As stated in 64x46x36=105,984),but with x1 =x l ( F,,n,. ) in
the paper, the present overall computational order to have the grid conform to the three-
method is based on that used previously for dimensional curved boundaries of the skewed
calculating propeller-hull interaction (8,91 and twisted blades and the nacelle. The
in which a viscous-flow method for calculating results are very encouraging: however, it is
ship-stern flow [10,121 is coupled with a anticipated that in order to completely
propeller-performance program in an resolve all the details of the flow field,
interactive and iterative manner to predict especially for marine propellers, multi-block
the combined flow field. References (8,9) and grids will be necessary, including H-, C, and
[10,121 provide numerous applications for O-types.
propeller-hull interaction and bare bodies,
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Computation of a Nonlinear Rotational Inviscid Flow through a
Heavily-Loaded Actuator Disk with a Large Hub

B. Yim
David Taylor Research Center

Bethesda, USA

Abstract performance prediction of propellers. The theory of hull-
propeller interaction has also made progress as in the

A heavily-loaded actuator disk with a large hub in an consideration of effective wake in predicting propeller
open rotational inviscid flow is considered. With an performance. However, present practice still employs
assumption of axisymmetry for the flow, the governing rather crude approximations in some areas of propeller
equation is the well known Helmholtz equation for the theory. In particular, the hub effect on propeller blade
stream function. Similar problems have been dealt with design in a shear flow has not been fully considered. The
by many authors, but with no hub or for an annulus load distribution of a propeller blade produces bound
with constant hub and tip radii. The additional freedom and trailing vortices. Trailing vorticity in a shear flow is
in the boundary geometry makes the problem much more different from that in uniform flow, producing
difficult but is required to allow extensive applications to additional trailing vorticity which can be called the
ship propulsor hydrodynamics. secondary vorticity. The effect of the secondary vorticity

field on blade design and propeller performance is not
For the general solution, a nonlinear integral equation well understood. In particular the effect of onset shear

for the stream function is formulated by use of the and swirl flow on the hub vortex has not been fully
Green function. The boundary conditions require both investigated. For some designs, when the propeller shaft
the stream function and its normal derivative on the is of small diameter and the inflow is fairly uniform,
boundary. However, although the former is known, the there is less necessity to handle such things. But in the
latter has to be derived at each iteration. The solution is case of a controllable pitch propeller where the shaft is
obtained by successive iterative approximations of relatively large diameter, or a submarine propeller
substituting the first approximation into the nonlinear where the hub is part of the stern, hub effects can be
integral equation at each mesh point of the flow field, very important.
Convergence of the solution has been shown but the
computation is quite slow. Therefore the computational Since the boundary layer thickness of a ship at the
method can only be applied using high speed computer station where a propeller is located is sometimes the
of large memory. same order of mgnitude as the propeller radius, several

types of interactions have received serious attention by
For the solution at distances far down stream of the previous investigators [2,3]. In the design of wake

propulsor, the Helmholtz equation can be approximated adapted propellers, the effective wake is used for
by an ordinary differential equation, and the numerical estimating the thrust and torque of propellers. To
solution can be obtained without too much difficulty. estimate the effective wake from the nominal wake
The velocity components and the pressure are obtained velocities measured in the propeller plane in absence of
far downstream of an actuator disk with a given set of the propeller, several methods have been used. It was
circulation and shear swirl distributions, either estimated empirically by multiplying the measured

circumferential mean nominal wake by a constant factor
The flow near the disk is computed by an iteration or determined theoretically. One of the theoretical

method. Any physical quantities can be obtained from effective wake computations for a propeller in an
the stream functions. As an example of the applications axisymmetric flow field was provided by Huang and
of this program, the effects of shear swirl flow oehind a Groves [2]. Here, the computed propeller-induced
heavily-loaded actuator disk, where the external forces velocities had to be used in solving the vorticity
act on the flow, are computed. equations. The propeller-inducid velocities were

computed from potential flow theory using conventional
Introduction loading and thickness singularities. Also a combination

of this program with the conventional lifting surface
Both design and performance prediction procedures theory was considered. Experiments showed that the total

for propellers [1) have made continuous progress. Lifting velocity profiles calculated by Huang & Groves theory
line theory is now only used in preliminary design, and immediately upstream of the propeller were in good
lifting surface theory is used for the final design and agreement with measured values. However, Huang and
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Groves only considered the region upstream of the The problem is how these vortex lines will be rearranged
propeller assuming that the energy was not influenced in or roll up amongst each other while they are transported
that region by the propeller. They do not consider the downstream where the propeller hub tapers to a point
flow downstream of the leading edge of the propeller, and disappears.
where external forces act on the fluid. Several
axisymmetric approximations [4,5] draw attention to the In experiments, the vortices around the hub roll up
importance of the shear flow effect on the propeller and vortex cavities are often formed In the hub wake. To
when treated as an actuator disk. Full investigation of understand this phenomenon, a simple model of
the shear swirl flow interaction with the blade-induced axisymmetric swirl flow may be useful. In general, the
velocity field and the secondary flow has not been common dynamic equation of incompressible inviscid
undertaken so far in propeller theory. In the present steady vortex flow can be [61 represented by
paper, the shear swirl flow coming into the heavily-
loaded propeller with a large hub is treated as a single qx = VH (1)
problem rather than as the combination of separate
problems. To make this manageable, we consider it as where
axisymmetric and the propeller as an actuator disk. In
addition the behavior of swirl ir the wake of a propeller 1 q2 P
in shear flow as a function of hub shape is investigated H- + (2)
here in an axisymmetric flow analysis. For turbomachine
design, similar problems have been considered extensively is the total head in the assumed axisymmetric flow with
[6]. Thus the governing equation is well known and even cylindrical polar coordinates (x,r,O) and the
exact solutions for special cases have been found. corresponding velocity components - (u,v,w), and
However, the equation with a general boundary vorticity components " (xcq)'
condition has only been dealt with numerically for the
purpose of turbomachinery design. For an open propeller Considering the stream function Y (x,r), the
without duct, the boundary conditions are different than governing equation for 41 is
for turbo-machines. Wu [7] considered a similar
formulation of the problem for an actuator disk but no a2t a 821 1 a r dH dC
one seems to have considered the wake flow field, - + -- - - C -L (3)

aX2 2  r 8r dtP dtP
A simpler method of computation of the swirl flow is where

first studied here and computations are performed for an
example of a useful general boundary condition which C(QV) = rw (4)
can be used in propeller design, especially for the hub
vortex cavity analysis. is the circulation distribution in the wake. H is constant

along a streamline with %P constant and H = H(tP). The
Then a full axisymmetric nonlinear numerical nominal wake is assumed to be known, i.e. the flow field

problem is tackled using an iteration method. Even without propeller is known. Accordingly, H without the

though this problem is for an axisymmetric actuator propeller is known and designated by H. Using an

disk, this is in the shear swirl flow with a large hub of axisymmetric approximation, H can be written as [7]

an arbitrary shape and heavy loading. With an

application of the Green theorem and the Green function H Ho + QC, (5)
a full treatment of the boundary conditions is attempted.
Both the boundary condition on the hub and the where Q is the angular speed of the propeller located at
discontinuity of the velocity in the slipstream behind the x = 0 and the circulation C1 is proportional to the blade
propeller are properly treated. This analysis is a number times the blade load distribution except for
continuation of a previous investigation [8] with secondary vorticity. If there is no preswirl upstream of
considerable improvements in accuracy and completeness. the propeller, the total circulation C will be equal to C1.

Now both H and C immediately behind the propeller are
Shear Swirl Flow Analysis both known functions of r and Y1. Thus,

Although there have been many investigations of
propeller performance and propeller design, very little is dH dH dtP
known of the flow in the propeller wake. The swirl that dj= T/ r (6)
is closely related to hub vortex cavitation should be
considered in the wake of a propeller whose hub length dC dC / dtP€:-"- -(7)......... d dr T r

The image vortices inside an infinite hub are well The boundary conditions at downstream infinity may be
known. These image vortices cannot be placed on the written as follows
outside surface of the hub, or in the flow. This is
because the trailing vortices and the secondary vortices 1 au/ 8y
formed near the propeller blades would not disappear u .-- u, - 0 as r - G (8)
behind the propeller unless viscosity were coasidered, and r r x
no other vortex can be considered in addition t' them.
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I atp where,v .. .. 0 as x" (9) wrdH dC
r 8x fff,r) = r2 T-i - C 3-

On the hub,
r = h(x), Y = 0 (10) with a given boundary condition at the slip stream edge

r = rs(X)
On the outer edge of the propeller and on the slip stream

11(rs) = 41(ru) (14)
tP (r,x) = Y (1,0) (11)

p = o where rs(o) . ru
Many problems with similar governing equations have
been solved for special cases, mostly for turbomachinery. From Equations (5) and (12)
For a propeller, there are some investigations for a
simple case [61. No investigation seems to exist for a d%1(r s) = Is2
propeller wake with shear swirl in the presence of a finite dr ru=rs[2{H0(Q+ T C(ru)- C2(ru)r 5

2}]" 2 (15)

hub. We use non-dimensional quantities

Because we assumed C(ru) = 0,
r' =rig, x' =x/R, ' =' /U, C' =C/(UR)

dtP(rs)
' =t/(UR2), H' =H/U 2 and A=U/(QR) - - = r, V2H0 (ru)

where U is the speed at upstream infinity, R is the propeller However, since r, is not known, these equations may be
radius. After this substitution the prime will be omitted solved for a range of r, values and the final value
as understood. Then we obtain the nondimensional selected such that
governing Equation (3).

Although the problem could be solved numerically, it 41(r = 0) = 0 (16)

would be very complicated in the present form to obtain either graphically or by an iteration method. Note here
an accurate solution. At first, for the purpose of that dH/d4f, dC/dtP, %P, 441/dr at x=0 are all known as
investigating hub vortex cavitation, the solution far functions of r(x=0). Thus, at each step of the solution
downstream of the hub may be very useful. Since of the above simultaneous equations, from the known

841 8241 value of 41 at r(x--o), r(x 0) can be calculated to
X O, aX2 - 0 as x -. c determine both dH/d'P and dC/dtP at r(x = 0) and

therefore, at r(x--o).

tP may be considered as a function of r only in Equation Such solutions are exact at x-00, under the assumed
(3), and the governing equation becomes an ordinary conditions. However, the solution with 41(r = h) = 0 can
differential equation. For special functional forms of H also be considered to be an approximate solution at any
and C, a closed form solution is possible. With the appropriate strip of a slender hub, i.e., the hub slope is
general functional form of H and C, if 41(a) and small with respect to x.
8tP/8r(a) are known the solution can be obtained as an
initial value problem by a method such as the Runge In the present study, a sample calculgtion of 41 and
Kutta Technique. When Y1 is obtained, u and C will be pressure are wade with the following form of the
known and the pressure can be obtained by boundary conditions. At x=0, for Ho

"=H() - -Lu2 + L2 (,P (12) u = (r-h)l/n/D at r < r0
Q 2 ( r2D (r -h)l/n

or byI 
p C

Q dr r3  u = 1 at r ro

Here we consider C(r)=0 outside the slipstream. Since v = 0 in rH < r < 1 (17)
outside the slipstream at x-- the flow is uniform and
the pressure should be continuous, the location of the and
slipstream and the pressure distribution can be uniquely
determined. The schution of the diffe.. ntial Equation (3) C a0 + alr + a,0
with conditions (8) through (12) is obtained by solving
two simultaneous ordinary differential equations with constant coefficients a0 , a1, a2 and n. Using the

above representations, the incoming velocity profile is
dF1 _ I similar to the flow in a turbulent boundary layer, and

dFr F, + f(ff,r) the circulation distribution has a radially parabolic shape
which can take on zero values at thu blade hub and tip.

dtP Then, at x=0

dCr 
F  (13)
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1r _1rrh)/n+2  h(r -h)n+ r 098 \kl(r) u(r)rdr +-I r 095
DLF- l/ n+2 S/+ 091 -*O at x=0

0.8

at rH <r < ro  atx=0 / U

0.6 p
r2  r0

2  0.6 > rtl/(r) = (ro) + at r > 0.4R
2 2 0.4-

d'l' I
- {(r-h)l/n+ I + h(r-h)l/n} at rH <  r0  at

dr D 0.<2r x- at x-0 -at x-00

T= {(r°-h)"/nr} at r> r0  (18) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

- P , W, U
Also assumed at x=0, from Equation (12) o e

Fig. 1. Shear swirl flow field at UI(OR) = 0.44.

dr = _2 dr u2 C2( + 1C 2  where
dH 1 d r2 "r" dH C dC a 2tY 1 ay) + 2W

or -g = r T + r -+-
d H 1 d(r d/n'rax 2  r r ar2

dr D n On the hub 'I is constant, say 0. Then

a0 + air + a2r
2  r

+ r2 (aI + 2a2r) tp = - on the hub.
r2 2

at rH < r < r0  (19) At the upstream station x=XL, p is assumed to be
known. At X=XN at far downstream wp will be obtained

ao+ air + a2r
2  as a solution but ix will be safely considered to be zero.

r2  (aI + 2a2r) at r > r0  At r-,o, P is considered to be the stream function for
uniform flow and ip and pn are known. At r=0 behind

The pressure distribution induced by the particular shear the hub ip and Wn are both zero. Then this is mixed
swirl flow considered here through Equation (17) is given boundary value problem for a nonlinear elliptic equation.
in Figure 1. Even if the circulation near the hub is zero, V2t = f(x,r,W) (22)
the pressure rapidly decreases near the axis at x--. If
the pressure is lower than the vapor pressure pv, a cavity The existence and the uniqueness of the Dirichlet
may be forn. I and will behave like a solid boundary. If problem for this equation has been considered by
a streamline has Y = 0 and p = p, this will be a cavity Courant [9]. However, he contends that the uniqueness is
boundary. In Figure 1, the axial and the tangential guaranteed only in a suficiently small domain or if
velocity components, u, w and the pressure p/Q are given af/OW>0. In the present boundary value problem W is
at each radial position for three assumed slip stream known on x=xL and at x--, tWx is known. Thus the
radii at x--, r, = 0.98, r, = 0.95 and rs = 0.915. P = 0 at application of Green's theorem may be most appropriate.
r=0 is achieved only in one case r,=0.915. In the other Therefore, at x=x L wp and np, cannot be given
two cases, W =0 for r>0 when the hub is infinitely long. arbitrarily. Besides,
Even when the radius of an infinitely long hub decreases,
the quantities u, w and -p/Q increase near the hub. f= g p dH C dC
These quantities downstream of the actuator disk near 2 g r2 + r - rd T
r=0 increase very rapidly to -. The boundary values of
u and w at x=0 are shown as broken lines, where H and C are both given functions at the boundary

and
Full Axisymmetric Solution df 1 d2H d (dC)

Now we try to solve Equation (3) in its full ' r2 + dP 2  dP C tP
axisymmetric form. We consider

rnay be another condition to guarantee a uninse solution.

2 + rp (20) Application of the Green Function

in Equation (3). Then it changes to We consider the Green Function G(r,x;Q,J) that is
related to two points P(r,x) and Q(Q,4) and that has the

V2tP (21) following properties:2 r2 - -g(1

V2G-G/r2 = -d(r -Q) (x-t)/r (24)
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where d is the delta function From Equation (21)

G(r,x; ,4) = G(Qj; r,x) Oap 1 a04 1 Or (27)
On = 7 n 2 On

and
-rom Equations (26) and (27)G(r,x; Q,4) - 0 as PQ""o

8Ot_ 1 0(f Or 8x rOx I OrG,(r,x; 0,J) - 0 as PQ - -o an 7 r kan n aT "" 2 -jn(8

Such a function has been obtained by Wu [7] and is OrIOx
represented by the 2nd order Legendre function which where -/-L is the slope of the hub with respect to x and
has a logarithmic singularity at TQ-0. From Equations at at

(21) and (24) Or Ox

GV2ip-tpV2G = -Gg+ wd(r-Q)(x-tU/r -d£= dx, -dQ= -dr (29)

Integrating this equation in the space bounded by the Besides, at I=XL
hub boundary and planes at X=XL and xN we obtain

f' (GV2tp-tV2G) QdQd = f fGgdQdc+t(rx) e,= t - 2 L XL (30)

V D where

Using the Green theoremn ( )

f( ,o) ff (GLP-a )e= gQjQ jXt.
w(r,x) = - Go n jn w) QdQ + g(,)Qdfdf When we insert Equations (28)-(30) into Equation (25)

£ D we obtain

fGV-"gidQ (25) W= Ggpe Qdj - OtI+' -2 dt. n JJ f OQ I .djI
D £

where 2 is along the contour at X = XL and XN and the hub f GA (d I21 d_ -Gjtpde + f(r,x)  (31)
boundary, n is the inward normal to the fluid, 2s is along - GA - 1 + d f ) (
the slip stream where O'P/On is discontinuous as much as 2s XN
A WOP/n while tp and OG/On are continuous. Along the
contour 2, the boundary conditions are given as where

t' = 0 on the hub r = rH ( G GQ d + G Q2 d
f(r,x) Q )- - Q dj -- d'

or Q=rH Q=rH

ip rH +f oaG f o
2+ -I'l- - de- G- d (32)

The normal velocity on the hub is zero, or J= L  4= xL

Since w--0 as J--, the line integral at I-- disappears.
alp = 0 Note the effect of slipstream is first included here among
t solutions solved by the similar technique. Although 4' is

continuous throughout the flow including the slipstream,
where 7'is the unit vector along the tangent to the hub. we know that the velocity or the derivatives of 4' may
That is, not be continuous across the slipstream especially when

the circulation distribution is not continuous. This may
04' 04' Or + t 0Ox - cause the line integral along the slipstream to be non-
-t Or Ot + Ox Ot (2 negligible. Numerically this gives a considerable

complexity because neither the shape of the slipstream
However, nor the velocity discontinuity is known a priori.

However, in each iteration this could be known
04' 04' Or 04' Ox approximately. Equation (31) is a complicated nonlinear
n = r -n + x- an integro-differential equation for W because g is a

complicated nonlinear function of W, and Y. is not

kr -in on the boundary. Wu formulated thenroblem for
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a simple case of no shear and no hub without slipstream, is first calculated at each vertical line by Simpson's rule.
only with the heavily-loaded actuator disk. He obtained The logarithmic singularity of 0 in the numerical
the Green function and suggested solving the nonlinear integration of Equation (35) and in the slipstream line
integral equation by an iteration technique, showing as integral is treated as follows:
an example the case with a given load distribution on the
propeller disk but did not obtain numerical results. Later when x = 4, and Q-r(#0)
Greenberg [10] performed the numerical computations
for the same problem in a somewhat different manner 1 1 (r-
with a uniform loading and a nonuniform loading, and G log
demonstrated the convergence of the iteration with the
same Green function obtained by Wu [7]. Though the integration of the log function does not

produce any singular behavior, the numerical treatmentThe present problem includes a large hub and requires care.
incoming shear flow with pre-swirl in addition to the r c
heavily-loaded propeller disk. Because of this complexity, rf
there exists a line integral term, in addition to the area GgQdQ f GgQ + - log Ir-QI dQ
integral that was handled by Wu and Greenberg et al. rH rH2

The line integral includes the normal derivative of the
unknown which changes the integral equation to an
integro-differential equation. + go [(rH - r){logjrH- rj - 1} - (r,,- r){logjr u - rj - 1 }]

When an approximate solution p is assumed where go is the value of gQ at Q = r, the singular point.
everywhere, al/a n on the boundary will be known Then the values of Equation (35) at I= ± nx are
accordingly, and H, C and their derivatives along the integrated by Simpson's rule to produce the area integral.
streamlines can also be determined. Therefore when these
quanitities are inserted in Equations (31) and (32) the Since 'V on the boundary is given from the boundary
iterated solution can be obtained. if the continuation of condition, the function f(r,x) in Equation (32) is
this process converges to a solution, it will be the desired determined and it does not change by iteration. However
one if the solution exists. a'viaP/8 on the hub r=rH, atV/8 on x=xL and tp at

x = xN are not known a priori. The line integral termsComputation of 'V have to be iterated by calculating f'f/aQ and 3V/4al
from the first approximated 'V distibution.

The first order solution may be considered with a

straight slipstream through the blade tip (r= 1). As a first When the mesh (33) is set from the beginning, the
approximation the streamlines are assumed to be iterated solution W will change at the given mesh points
constant along at each iteration and will converge to a solution if the

solution exists. There, H, C and the derivatives which
r -- {rT - rH(x)} m = 1, 2, ... m O  (33) are only functions of V have to be interpolated

mo numerically at each point from the given values of H(V),
C(V), etc. at x=xL. Since the values of 'V on the

The stream functions at x = XL is given as 'V(r) from boundary are already known from the boundary
which we obtain the shear distribution conditions, they do not have to be calculated on the

boundary. This fact is very convenient because the1 O'V
Iar , or vice versa, boundary integral/the line integral is more singular than

the area integral. However the values of the line integral
at the points other than at the boundary have to be

At x = XL, g can be calculated from the given %P, H calculated and need special care.
and C at x=xL. Then along each streamline t{, H, C,
dH/dtP and dC/dtV are constant. Therefore when 'V is Iteration and Convergence
known at any field point H, C, dH/dtP, and dC/dtP will
be known automatically. Thus g will be known and we Iteration techniques for nonlinear equations are
can evaluate the area integial of Equation (31). The familiar to those who use high speed computers.
mesh is created with lines (33) and the vertical lines However, since the present problem may be considered

to involve simultaneots equations with an extremely large
x = + nAx (34) number of variables, it is rather impractical to use the

cn, da .... ,,,,,.,,,, Raphson method. Because it ,night
with Ax intervals, be rather simpler and more economic to consider a naive

first order iteration without modification of values, this
At each mesh poitt, the value of G is precalculated approach was tested first. However in this case

by a good approximation [10]. Then sometimes the solution seemed to oscillate after a certain
course of convergence, so that a simple modified quasi

G dQ (35) Newton Raphson method was considered [8].

rH The convergence using the simple modified quasi

Ne%ton Raphson method was found to be very sensitive
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to the computational error. Whenever any error exists in set of data obtained in a water tunnel experiment. The
the computation the solution does not converge. This has first example has already been used for an approximate
been studied in detail in a previous paper [8). However, analysis as shown in Figure 1. The full axisymmetric
even though it just converges it is not necessarily the analysis with the boundary conditions given in Equation
right solution. Besides the question of uniqueness, the (17) are now tested for the hub geometry shown in
solution has to satisfy all of the boundary conditions. In Figure 2. The efficiency changes corresponding to the
fact it converged without line integrals along the lines inflow velocity distributions shown in Figure 3 are shown
x = xL and the slipstream, giving a wrong solution. It in Figure 4. These changes are compared with the results
also converged to an unreasonable solution when calculated by simple momentum theory without
unreasonable values were given as the boundary considering the thrust deduction. It is obvious Trom the
condition. Therefore not only the convergence but also CQ equation that CQ will decrease when u deceases, thus
satisfaction of boundary conditions must be checked. increasing the efficiency. However, the reduction in u

may be as the result of increment in the friction and/or
Propeller Characteristics form drag of the ship. The second example corresponds

to one of the sets of test data of Huang and Groves as
Now the axisymmetric stream function is obtained shown in Table I with the hub geometry shown in Figure

everywhere, all the physical quantities can be computed. 5. The velocity distribution is taken from the measured
These are used for the characteristics of an infinite longitudinal velocity component at the station
bladed propeller. x = xL = -0.482 as shown in Figure 6.

Well known formulae for propeller characteristics are X = XL
given as follows: The thrust coefficient

CT ' g- = 4A2f wi(r,0+) -- w2(r,0+) rdr
rH

where 2w1r equals the circulation distribution r. -1.0
corresponding to the propeller blade circulation r with a
Z bladed propeller such that

-0.8

lim zr = r-/K = 2wfrZ-0o

0.6
where K is the Goldstein factor and w2 is the 0
component of the velocity at the actuator disk. The 0.4
torque coefficient

CQ Q - 4k2  u(r,0) w1 (r,0) r2 dr 0.2
rH  x,

The efficiency -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

= CT/CQ Fig. 2. Hub geometry I.

The pitch angle The head distribution from Equations (2) and (5) is
approximated from the nominal wake values because not

= cot -I (rrqc(r)/A) enough information is available for the head. The blade
circulation given in the Table is converted by the relation

where tqc(r) is the radial distribution of the propeller
efficiency Zr ,,.. 2wlr

A taking the Goldstein factor K = I because for the
tlc(r) = I - r w2(r,0+) u(r,0) 7-bladed propeller k is very close to 1. With thisr approximation, the thrust coefficient CTs, using the r

The uther conveitionai thrust coefficients CTs = va!,les of Table !, ;s ,-ey clse to #h. mcasred valuc

T/(Q/2 U2nR2) has the relation with CT, CT=0.5A2CTS. and the value from the lifting surface computation.

The velocity components at the propeller plane (x = 0)and a little downstream of the plane (x=0.192) are
For checking the numerical accuracy and solution shown in Figure 6. These values are taken at the iteration
Feavior checkirametrchangthenumeria acc y eanlsowhere the average relative error is less than 0.0050 with

behavior for parameter changes, two examples were 20 iterations. A simple approximation assuming that
numerically tested. One example uses the boundary u = nominal wake + r"/(2rtan+) from actuator disk
conditions 3iven in Equation (17) and the other uses a theory is also plotted in Figure 6. The three c.'lculated
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I X= XL

1.0

1.0
0.8

0.9

0.6
0.8

0.7 - 0.4

0.6 - 0.2

0.5 - n=2 3/4 0.0
-0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7

0.4
Fig. 5. Hub geometry II.

0.3 1I I I
0.4 0.6 0.8 1.0

u 1.2 -

Fig. 3. Shear distribution at x= -0.8.

1.0

1.0 PRESENT THEORY
0.8 n=2 0.8.

0.8 -:OM NU n=2EORY

n 0.6 THEORY n=4 MEASURED AT x=0

0.6 x= -0.48 x=0.192
WITH PROPELLER

0.2 NOMINAL WAKE

0.2 0- + r.j(2rtan )

A2

CT 1 0- 2  0.2 - I
2 0.2 0.4 0.6 0.8 1.0

Fig. 4. Efficiency-thrust coefficient relation. Fig. 6. Axial velocity components near the propeller disk.

Table 1. Tested propeller data.
CTs = 0.356, n = 1.268 curves are very close to each other. The efficiency

computed with the boundary condition given by the
measured longitudinal velocity at x= -0.480 is 1.15

r/R Nomial r which is close to the value 1.17 from actuator disk
Waketheory.

0.211 0.387 0.0000
0.250 0.417 0.0023 If uniform inflow is assumed, the propeller efficiency
0.300 0.454 0.0051 with the same value of r., in open water is 0.82 this
0.400 0.520 0.0107 means the approximate corresponding wake fraction wf is
0.500 0.579 0.0150 0.287 from 1.15 (1 -wf)= 0.82. It is well known that the
0.600 0.631 0.0172
0.700 0.677 0.0169 overall propulsive efficiency also depends upon the thrust
0.800 0.720 0.0140 deduction which reduces the efficiency. The numerical
0.900 0.763 0.0089 results show that when r. = 0 at the blade tip, the effect
0.950 0.785 0.0055 of the slipstream line integral is negligible. This is
1.000 0.806 0.0000 reasonable because it has been analytically proven [Il]
1.050 0.826 0.0000 that both u and w are proportional to r. on the
1.100 0.845 0.0000
1.200 0.880 0.0000 propeller plane when hub is absent.
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Since the governing equation (31) holds in a shear Numerical Lifting Surface Theory," Trans. SNAME,
swirl flow and no explicit vortex distribution is used for Vol. 86, 1978.
the solution, it is not clear here how the conventional
bound and trailing vortices plus secondary vortices [12] 2. Huang, T.T. and N.C. Groves, "Effective Wake
are involved. However, this could be interpreted using Theory and Experiment," Proceedings of 13th
the vortex ring method [13]. Symposium of Naval Hydrodynamics, ONR, 1980.

The numerical program with iterations adopted in the 3. Nagamatsu, T. and T. Sasajima, "Effect of
present paper is mainly for the purpose of checking the Propeller Suction on Wake," Jour. of SNJE, Vol.
feasibility of the application of the iteration method to a 137, pp. 58-63.
nonlinear problem with the reasonable convergent results.
The convergence is quite stable with the change of mesh 4. Dyne, Gilbert, "A Note on the Design of Wake-
size and the degree of interpolation (when a Lagrangian Adapted Propellers," J.S.R., Vol. 24, No. 4, Dec.
interpolation is used). 1980, pp. 227-231.

Because the present problem neglects viscosity, the 5. Goodman, Theodore R., "Momentum Theory of a
effect of viscosity on the shear flow cannot be computed. Propeller in a Shear Flow," J.S.R., Vol. 23, No. 4,
The effect of shear on the propeller can be computed Dec. 1979, pp. 242-252.
from the measured velocities or the computed velocities
by the method of reference [2]. Therefore the present 6. Horlock, J.H., "Actuator Disk Theory,
program could be most effectively used to find the Discontinuities in Thermo-Fluid Dynamics,"
propeller shear interference at or behind the propeller McGraw-Hill, Inc., 1978.
plane with the measured upstream velocities or the
effective wake computed by the Huang and Groves 7. Wu, T.Y., "Flow Through a Heavily Loaded
method. Since experiments show that the propeller does Actuator Disk," Schiffstechnik, Bd. 9, Heft 47,
not affect the flow beyond about two propeller diameters 1962, pp. 134-138.
upstream [2] of the propeller the nominal wake at a
station two propeller diameters upstream of the propeller 8. Yim, B., "An Iteration Method for a Nonlinear
plane may be effectively used to compute total flow Shear Flow Through a Heavily-Loaded Actuator
using Equations (2), (5) and (3). If there is no shear or Disk With a Large Hub," Proceedings of the
swirl upstream of the propeller, the problem becomes International Conference on Numerical Methods in
much simpler because the area integral outside the Engineering; Theory and Application, Edited by
domain bounded by the slipstream, the propeller plane, G.N. Pande & J. Middleton, Martinus Nijhoff
and the hub disappears. However, the line integrals along Publishers, 1987.
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in addition to the area integral. 9. Courant, R., "Method of Mathematical Physics,"

Vol. II, Interscience Pub. New York, 1862.
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Computations of 3D Transom Stern Flows

Bill H. Cheng
David Taylor Research Center

Bethesda, USA

Abstract Early numerical studies encountered

A practical computational method for 3D problems in modeling transom stern flows.

transom stern flows is presented. The theory and Rankine source and Havelock source methods were

numerics of computing transom stern flows are hampered by the difficulty of treating the

described in detail. The special treatment of the intersection curve between the transom and the

linearized free surface boundary condition is free surface. Many investigators replaced the fluid

included. In particular, the boundary condition for domain behind the transom with solid surfaces.

a dry transom is derived within the framework of a For example, Gadd [21 and Chang [31 simulated

free surface potential flow. The transom is treated the surface depression by adding a tapering

as an inflow boundary and the transom boundary extension to close the body behind the stern.

condition is then used to specify the starting values Realistic flow patterns cannot be obtained in this

of a linearized free surface calculation. This way and more accurate computations of transom

computational method has been incorporated into a stern flows are needed.

Rankine source panel method, the XYZ Free
Surface (XYZPS) program version 2.0. The This paper describes an improved method
XYZFS program has been used to predict the wave for computing transom stern flows. The theory and

resistance for a large number of transom stern numerical method for computing 3D transom stern

ships. The computed wave resistance has compared flows are presented step by step. The special

favorably with measured wave pattern resistance, treatment of the linearized frec surface boundary

correctly predicting the relative merit of competing condition is given in detail. The boundary

hulls. The agreement with experimental condition for a dry transom is derived within the

measurements is remarkably good for Froude framework of a free surface potential flow. The

numbers between 0.35 and 0.50, corresponding to physical constraints imposed by this transom

the normal speed range of high-speed transom boundary condition require that the static .pressure

stern ships. be atmospheric and that the flow leave tangentially
at the transom. This computational technique has

1. Introduction been successfully incorporated into a Rankine
source panel method originally developed by

A practical computational method for Dawson [4,5] and further developed as the XYZ
transom stern flows is of special interest to ship Free 03urface (XYZFS) program Version 2.0.
hydrodynamicists. Such interest is intensified by
the peculiar property of the flow pattern. If the The XYZFS program has been 'used to
ship speed is high enough, the transom clears the analyze the .iave resistance and local flowfield for a
surrounding wate!r and the entire transom area is large number of transor,. stern ships. Comparisons
exposed to the air. The transom flow detaches of wave resistance prediction and experimental
smoothly from the underside of the transom, and a meas'.rements have been made and have shown
depression is created on the free surface behind the general agreement. Cheng et al. [6] described the
transom. Saunders [1] described this flow pattern hydrodynamic analyses of DTRC Model 5403 and
in his book on hydrodynamics and his description Model 504, which represent typical transom stern
of a dr- transom is reproduced in Fig. 1. This flow ships with bow. domes. A parametric study on
pattern has been credited with the reduced wave stern wedges, as an example, of transom stern
resistance for high-speed transom stern ships, t. variations, was described by Cheng et al. [7]. An

compared to their cruiser stern equivalents. FFG-7 hull with a 15-degree stern wedge was
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TRANSOM

KEEL LIE
-4- UOOoERE~ssoM IN WATR W1

BEHIND STERN Fig. 2. Schematic of transom stern flow for the
centerplane shown in a sideview.

~z1
UNRSURFE influence of gravity. Such ascending and

WATER SI:ffACE descending motion is repeated further downstream.

Fig. 1. Flow pattern behind a transom stern The wave motion described here can be seen in the

(sketch from Saunders (11). wave pattern computed, by Coleman [13] using a
finite difference method.

analyzed by Hoyle et al. [8]. Cheng et al. [91 3. Numerical method
presented a comparison of the computed propeller
inflow with the corresponding data from wake 3.1 Panel method for cruiser ster flows
survey experiments for a variant of the research
vessel, R/V Athena hull. Before the computational method for 3D

transom stern flows is introduced, a panel method
Transom stern studies prior to 1083 were for cruiser stern flows is described. The usual

summarized by Cheng et al. [6] Subsequently, treatment of cruiser sterns is presented since the

Wilson and Thomason [101 published a parametric special treatment for transom sterns is similar and

study on transom sterns. The effects of transom iscal eten t o transom stern mod.

depth and transom width variations were identified is an extension of the cruiser stern method.

using a combined numerical and experimental In the Rankine source panel method, a hull
approach. More recent studies on transom sterns surface is mathematically subdivided into hundreds
included residual resistance computations for Series of small source panels. Each panel is characterized
64 by Tulin and Hsu [11]. These computations used by its centroid, normal unit vector, and area. The
a strip theory which is applicable in the limit of an velocity at the control point (i.e., centroid) of a
infinite Froude number. given panel i induced by another panel j is a

In this paper, the computed flow pattern function of the geometry of panel j and of the
beind ths pented compa fl w tn distance between panel i and panel j . For

behind the transom is presented and compared with example, the x-component of the velocity induced
experimental measurements by Jenkins [12) for the by panel j on panel i is equal to the induced
R/V Athena hull. In addition, a comparison of velocity (per unit source strength), denoted as the
wave resistance prediction and experimental influence coefficient OXi,, multiplied by the source
measurements is presented for DTRC Model 5416. strength Sj , which is a constant for each panel.

The sum of the free stream velocity U. and the
2. Physical problem velocity induced by all other panels j gives the

Consider a steady flow directed from bow to velocity at panel i:

stern of a ship. Attention is focused on the region N

just forward and aft of the stern as shown in Fig. 1. u, + + OXw Si . (1)
Figure 2 is a schematic diagram representing a
sideview of a transom stern flow in a centerplane.
The keel line typically slnpes ,ipward rolative to the In Eq. 1, thp snmmption is carried out for A! the
mean water level, which is designated by a panels on the hull surface, and the quantity N
horizontal dashed line in Fig. 2. The wavy solid denotes the total number of panels. The unknowns
line represents a streamline which passes under the on each panel are the source strength to be
transom, detaches from the stern, and forms part determined fiom a solution of the boundary value
of the free surface. Immediately downstream of - ,blem subject to the Neumann boundary
the transom, the water rises rapidly toward the indition on the hull surface. This panel method
mean water level, overshoots, and then reaches a scheme was developed by Hess and Smith [14) for
maximum elevation before descending under the the flow of an infinite fluid past a ship-like body.
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Another way of modeling a ship is to finite differencing scheme is used to eliminate
combine the submerged ship hull with its mirror upbtream propagating disturbances as recommended
image above a plane of symmetry at the mean by Dawson [4]. For the foremost upstream point,
water level. This combination is referred to as the a two-point upstream finite difference operator is
double model in the literature. The flow past a used. The starting values are specified by a uniform
double model is obtained by a numerical solution flow and a corresponding wave elevation of zero.
of the boundary value problem subject to the
Neumann boundary condition on the double model In the panel method for free surface flows,
hull. This double model solution is the the source strength distribution must satisfy
approximate solution to the free surface problem in simultaneously the linearized free surface boundary
the limiting case of zero Froude number when the condition and the Neumann boundary condition on
free surface is approximated by a rigid wall. the hull. For a case with N panels representing

the total number of the hull panels and free surface

After the double model solution is obtained, panels combined, the resulting system of N by N
the double model streamlines are traced on the equations is full, nonsymmetrical, and not
mean water level. These streamlines will not diagonally dominant. A Gaussian elimination
penetrate the hull surface and are used to set up a scheme is used to solve this system of equations.
free surface grid. Constant source panels are placed
on this free surface grid. Then, the free surface For the case of a transom stern, the main
boundary condition is linearized using the double section of the free surface (as shown in Fig. 3) can

model solution as the basic solution in the sense be handled in the same way as for cruiser sterns.
that the deviation from the double model flow is The double model linearization and the upstream

considered small: finite difference operator are also used. However,
the flow domain behind the transom presents a new

problem and needs special treatment. In particular,
S= 4) + €, (2) a new section of free surface panels is introduced,

the transom is treated as an inflow boundary, and
where 0 denotes the velocity potential for the free the starting values of a free surface calculation
surface flow, 4, the velocity potential for the must be specified at the transom. This problem is
double model, and o' the perturbation velocity addressed in the remainder of this paper.
potential. Dawson 141 gave the resulting free
surface boundary condition with the double model ,ON OF. SURFACE

linearization as

(4) 2,) + g , 24),24,, (3) SPEA.SCTION

at the mean water level z 0 O. The free surface
boundary condition involves the gradient of the
velocity potential along a streamwise direction
designated by I , and differentiation is carried out
along the corresponding double model streamlines. Fig. 3. An aerial view of the free surface paneling
For example, the streamwise velocity on the free
surface is computed by

__ _ ___ 3.2 Theory of the transom boundary conditiono, x + - 0,. (4)
\/4.' + 4Y2. + T., As for a cruiser stern case, a transom stern

solution begins with a double model computation.
Note that this differentiation scheme approximates The geometric model for a transom stern hull is
the free surface flow direction by the double model shown in Fig. 4. Note that the transom is
flow direction. This approximation is a crucial step intentionally left open and there are no panels on
to be used later in the derivation of the transom the transom. The hull surface for the double
boundary condition. model serves as a stream surface separating the

external flow about the hull from a fictitious
In the numerical calculation of the internal flow. The double model flow computed in

convective term, finite differencing is used to this way is appropriate for a dry transom with the
calculate derivjives between adjacent panels along exit flow detaching at the transom tangential to the
a double mod, : streamline. A four-point upstream hull surface.
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energy and potential energy:

where (Ox , y, 0,) denotes the gradient of the
velocity potential in ( x , y , z ) directions. Eq. 7
may be rearranged as

02+ 0S,2 + .2gZ (8
__ _ _ = 1 - zT (8)

Tnus, the kinetic energy for the water at the
transom can be determined by the right hand side
of Eq. 8, where ZT lies below the mean water level
and takes on a negative value. This equation is the
first constraint for transom stern flows.

Since a flow cannot penetrate an
impermeable surface, another constraint to be

Fig. 4. Perspective view for the numerical model satisfied at the transom is that the exit flow must be
of a transom stern hull. Note the open transom. tangential to the hull surface. The magnitude of

the velocity at this point is given by the square root

For the free surface solution, the free of the right hand side in Eq. 8. The flow direction
surface boundary conditions must be adapted to the is part of the free surface solution and is
transom stern geometry. To simplify the analysis determined by the transom geometry, which can be
of transom flows in practical applications, several specified by a (local) tangential unit vector:
assumptions are made in the theory for transom
stern flows. It is assumed that the transom is left 0.
open as in the double model flow computations and t% \. + 2 + (g)
that the potential flow detaches from the transom at +
well defined locations. These locations are identified
as the points on a curve which has the same shape Y (10)
as the transom bottom. The shape of the transum ty \ 0_2_+2_+_.

bottom may be described by specifying the transom VX/ + Y + (10
depth ZT as a function of the transveirse coordinate

tz -- (11)

ZT = f ( Y) x =x , (5) \/# + #Y2 + 0.2

A first approximation of the tangential unit
where the subscript T denotes the transom and vector is obtained by replacing the potential in Eqs.

XT the longitudinal coordinate of the transom. 9 through 11 by the double model potential to give
Along the intersection curve between the transom the tangential unit vector in the direction of the
and the free surface, the static pressure is equated double model flow
to the atmospheric pressure p., since the transom
clears the surrounding water and is exposed to the
air: "I V . 2 (12)

PT = po, a X = XT and z = ZT foragiven y (6)

In Eq. 6, the effect of an air wake behind the _4 + + 1. 2

transom is neglected and the atmospheric pressure
is considered a global constant. With the
dependence on pressure removed, Bernoulli's = , (14)
equation describes a steady-state balance of kinetic ' + 't,$ + 4,.
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FREE SURFACE ( x, y, z ) by 1/2 L . Equations 15 throulgh 17
BOUNDARY CONDITION can then be rewritten as follows:

N+ 2 1 + 12 T , ( 1 8 )

NEUMANN BOUNDARY 
IT T,- r(

CONDITION n

Fig. 5. Description of boundary conditions for Wr = - - T, (20)

transom, free surface, and hull.

where Fn2 =U,/gL and ZT= 2ZT/L. Equations
where the vector ( t),, f'y,, (P, ) represents the 18, 19, and 20 are applied as th transom boundary
velocity of the double model flow for a hull panel conditions for the free surface calculations in the
whose centroid lies just forward of the sharp corner case of a dry transom. In so doing, the static
at the transom. This hull panel has the same y- pressure is forced to be atmospheric and the free
value as the transom and is denoted by the index surface flow is forced to leave the transom
NQ as shown in Fig. 5. The approximation of the tangentially in a direction specified by the double

free surface flow direction by the double model model flow. The transom boundary conditions
flow direction is consistent with applying the free show that the velocity at the transom is directly
surface boundary condition along double model related to transom depth and the Fioude number
streamlines on the main section of the free surface, and is indirectly related tc other transom
as specified by Eq. 4. The validity of this characteristics (i.e., the buttock angle, the deadrise
approximation has been verified by comparing angle, and the run angle) through the direction of
computed and measured wave profiles behind the the doub!e model flow.
transom. 3.3 Implementation of the free surface boundary

When the velocity magnitude from Eq. 8 is condition

combined with the flow direction from Eqs. 12 In this section, the special tratment for the
through 14, the three velocity components at the free surface boundary condition hiade a transom
transom arc approximated by stern is described. The free surface boundary

condition in this region uses the conventional

UT = Tx- Z (15) iinearization about a uniform flow:

2Fn2u + W = 0, (21)

VT i - '2ZT T, (16) where the length is nondimensionalized by 1/2 L

and the vector ( u, v, w ) represents the
perturbation velocity in a dimensionless form. The

" TT (17) free surface boundary condition is applied at the
T U . (17) mean water level, on which flat panels are placed.

Computations are performed for the centroid of a
panel, as indicated by "bullets" in Fig. 5. In the

where the vector ( UT, IT, WT) has been discretization of the convective term in Eq. 21, an
nondiinensionalized by I UjI and denotes the upstream finite difference operator is used to
velocity at the transom in the ( x, y, z ) eliminate upstream propagating waves. In
directions, respectively. The sign of the vector particular, a two-point upstream finite difference
( UT, IT, WT) is dcee'inined by the tangential unit operator must be used to start the computations for

vector. The quantity - represents the square of transom stern flows:
gZT

the Froude number based on the transom depth. = CAiUi + C11, , (22)
In us,,al numerical calculations, it is more common
to uso the Froude number based on the waterline
length L . This convention is achieved by scaling where CB, CA. (23)

X, - Xi
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In Eqs. 22 and 23, the index i denotes the The index N denotes the total number of panels
foremost point behind the transom and the index for the hull surface, the main section of free
t the upstream point at the transom. The quantity -urface, and the bpucial ze',iivn behind the taiisom.
u, is an unknown to be determined and u,, the The influence coefficient CXij denotes the x-
velocity at the upstream point, must be bpccified. component of velocity induced on panel i by panel
The value u, is taken from the transom boundary j per unit source strength. In the computations of
condition Eq. 18. However, a minor modification is influence coefficient for each hull panel, the
required here since UT represents the total velocity contribution from its mirror image must be added.
and u, represents the perturbation velocity The source strengths S, are the unknowns to be
superimposed on the uniform flow. Thus deteimined through the solution of a boundary

value problem, and a Gaussian elimination scheme
Ut- + UT  (24) is used in the numerical solution. The distribution

of source strength must satisfy simultaneously the
free surface boundary condition and the Neumann

Substituting Eqs. 22 and 24 into Eq. 21 and boundary condition on the hull, as represented in
rearranging gives, Fig. 5.

UT] A two-point upstream finite difference
2Fn2 GA, u, + wi = - 2Fn i 0[1 +" UT • (25) operator has been used in the special section

behlind the transom for wave resistance

This equation is the discretized form of the free computations. These calculations are applied to a
suaface boundary condition at a particular y-value short computational domain covering one half of a

for ti e foremost free surface panel with index i ship length downstream from the transom. The
next to the transom. The unknowns reside on the four-point operator will be introduced for future
left hand side and the knowns on the right hand calculations, which extend farther downstream, to
-ide. For the the downstream panel at the same improve the numerical accuracy of transom stern
y -value with index i + 1 , the following equation computations.

is used: 4. Comparison with experiments

2Fn5 
2 + ui+, + C+ 1+ u1 + Wi = 0 , (261 This section presents a comparison of

numerical predictions with the corresponding

experimental measurements for high-speed transom
w = - CA,+, (27) stern ships. Such a comparison shows the extent to

where Oi +, xi - xi+2 which the numerical model of transom stern flows
can predict the hydrodynamics of the physical
model. Another objective is to identifyEquations 26 and 27 are applied to succeeding opportunities for future research in transom stern

downstream boundary is reached. Equations 22 flows. Two examples are presented here: the local
dhonst2are ba is foreahedy Eluastons 2r flow field around a ship and the force on a ship.
through 27 are applied for other y -values tocover The local flow field is represented by the wave
the special section of free surface (Fig. 3) pattern behind the transom for R/V Athena. The
downstream from the transom. force on a ship is represented by the wave

The resulting system of difference equations resistance for DTRC Model 5416.
is then solved using the Rankine source panel
method. Substituting Eq. 1 into Eqs. 25 and 26 4.1 Wave profiles
gives

Figure 6 gives a sideview of the computed
N r ] wave profile behind the transom for R/V Athena.

2Fn2  CAi CXi,, S, - 2rSi =- 2Fn2 CB,[ I + UT The vertical and horizontal axes are
nondimensionalized by 1/2 L and are plotted to

(28) the same scale. The numerical model of the
an 61 t.rnotp qtern is shown ,nn !h? right. The dohed

line represents the mean water le,,el and thL solid
wavy line represents the free surface computed on

r,, [ ] panels closest to the centerplene. The2Fn2~j CA,+3 CX,+,., 4 O +, O i. ]Sj - 21S,+1 = 0 . computations were performed .or a Froude number

of 0.48. The free surface lips a small slope, which
(29) is appropriate for this Froude number, and the-flow
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Fig. 6. Computed wave profile in the centerplane Fig. 7. Comparison of the computed and
behind the transom for R/V Athena measured wave profiles for R/V Athena

at a Froude number of 0.48. at a Froude number of 0.48.

angle can be measured graphically. Notice the measured wave pattern resistance was then
ascending motion followed by the descending compared to the wave resistance predicted by
motion as expected. A gap is left between the integrating the pressure on the hull using the
transom and the computed free surface to indicate XYZFS program version 2.0.
the centroid location of the foremost panel, where
the free surface calculations are started. An 3.0 ,

upstream extrapolation of the free surface shows
that the free surface intersects the transom at the
transom depth ZTr. 2.5

Figure 7 gives a close-up view of Fig. 6 near
the transom. Again the dashed line and solid wavy
line represent the mean water line and the "2.0
computed free surface closest to the centerplane,
respectively. The corresponding wave profile
measured by Jenkins [121 is represented by isolated
points and the rearmost point indicates the extent 8 1.6
of experimental data. Thus, the experiment CALCULATED

indicates that the transom clears the water and the Cw
(XYZFS) Il /

assumption of a dry transom is valid for a Froude 1.o
number of 0.48. The numerical prediction and " MEASURED

experimental measurements of wave profiles CW(p)
behind the transom show close agreement, - (WILSON)

especially just downstream of the transom. The 0.6

double model approximation of the flow direction
seems justified in this case.

4.2 Wave resistance. 0
0 0.1 0.2 0.3 0.4 0.5 0.6

DTRC Model 5416 represents a typical FROUDENUMBEI, Fn

high-speed transom stern ship without a bulbous Fig. S. Comparison between calculated wave
bow. Dr. Michael Wilson of DTRC designed this resistance and measured wave pattern resistance
hull form s a candi~tlxt for n low rr<;iqfAne'p ship. versus F roude number for Model r410tn
The computations for Model 5416 were performed
at least one year prior to model construction and
tank testing at DTRC. The model tests involved a This comparison of computed wave
longitudinal wave cut experiment using capacitance resistance and n'easured wave pattern resistaice is
wave probes to measure wave profiles. A wave presented in Fig. 8. The computations were
spectrum analysis of the measured wave profiles performed for Froude numbers from 0.25 to 0.50 at
gave the measured wave pattern resistance. The increments of 0.05. The hull form was held fixed
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DISCUSSION DISCUSSION

by K. Nakatake by J. Ando"

I appreciate your paper treating the I'd like to congratulate for your good
transom stern flow. Fig.8 shows a good results for 3D transom stern flow, and I'd
agreement of calculated and measured Cw. But, like to discuss on the radiation condition.
in this high Fn range, the effects of trim and When we try to satisfy the radiation
sinkage become important. Did your calculation condition, if we use finite difference
include such effect? If possible, please show operator, we have some troubles. In my
the wave height contour around the model, experience, point-to-point oscillation of the

source strength occurred near the downstream
Author's Reply boundary. Sometimes, the source strength

oscillates so large that the wave pattern is
Dr.Nakatake asked about the effects of affected. And the results change due to the

sinkage and trim in the computations. The kind of finite difference operator which uses
results presented in Fig.8 of my paper number of points. Did you have such
correspond to the fixed case for both the experience?

computations and experiments. To include
sinkage and trim effect, we can reposition the So I'd like to present a method which does
hull according to sinkage and trim predictions not use any finite difference operator in
from fixed case calculations. We did not order to satisfy the radiation condition. In
analyze and plot wave height contours for a this method, the radiation condition is
sunk and trimmed case and is presented in satisfied automatically by shifting the source
Fig.Al. The corresponding wave pattern panel in the downstream direction by one panel
resistance curve, as measured by Dr. Michael length. We call it Kyushu University method
Wilson of DTRC, is presented for comparison, which is abbreviated as KU method.
The computed results could be further improved
by using the experimentally measured sinkage Next, I show some results for Wigley hull.
and trim to reposition the hull. Pig.A2 shows panel arrangement on the still

water surface. By KU method, we don't use any
finite difference operator along the stream

U I 'line of the double model flow. Fig.A3 shows

comparison of wave patterns. This pattern by
KU method looks like the experimental result.
Dawson's method gives wider propagation of

free waves.
A-

/2z/L

CALCULATED f
Ii 'o -

='s) -1.0 0.0 1.0 2x/L 2.0
KU Method

2Z/L
MEASURED-Q

(WLWo
0I -Q8

0 -1.0 0.0 1.0 2x/L 2.0

1 Si 0. 04 0* 93 07 Dawson's Method
FROUDE NUMBER. Fn

Fig.A2 Comparison of panel arrangement

Fig.Al Comparison between calculated wave
resistance and measured wave pattern
resistance versus Froude number for
Model 5416 (sunk and trimmed case)
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Author's Reply
I would like to thank Mr. Ando for his

Fn=0. 289 interest in my paper. It is true that the XYZ
Free Surface problem uses upstream finite

- - difference operators to eliminate upstream
propagating waves, thus satisfying the

". radiation condition numerically. However, we
' c " 'have not experienced the point-to-point

..-2- oscillations of the source strength near the
Measurement (by SRI) down stream boundary as referred to by Mr.

Ando. The reason is that we handle the
downstream boundary in the following manner.
As the downstream boundary is approached, a
four-point operator is switched to a three-
point operator and then to a two-point
operator for the rearmost panel. The two-point
operator gives considerable numerical damping
when the rearmost panel is relatively large.
Mr.Ando's "Dawson method" calculation seems to

KU Method include a reflection from the side boundary.
Such a reflection can be avoided by extending
the side boundary of the computational domain
to one ship length, measured from the ship's
centerline.

The Kyushu University (KU) method for
satisfying the radiation condition sounds
interesting and seems to be similar to the
method by Jensen[Al). It would be helpful for

Dawson's Method the research community to know more about the
KU method than has been presented in Mr.

Fig.A3 Comparison of wave pattern Ando's discussion. The results of the Wigley
hull look promising and I encourage Mr. Ando
to continue his studies on the radiation
condition.

[Al] Jensen, P.S.: On the Numerical Radiation
Condition in the Steady State Ship Wave
Problem, J. of Ship Research, 1988.
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Ship Wave-Resistance Computations

G. Jensen
Ingenieurkontor Lilbeck, Germany

V. Bertram and H. S~ding
Institut fitr Schiffbau Hamburg, Germany

H water depth
r point on tangential sphere

Abstract Lpp ship length between perpendiculars
M source strength
9 unit normal pointing into body

A method for the numerical determination of the po- g point
tential flow around a ship moving steadily at the free P projection of a point on the body surface onto
surface of an ideal fluid solves iteratively for the non- the tangential sphere

P pressurelinear boundary condition at the free surface, the body T point
boundary conditions and the equilibrium floating posi- r ratio between the area of the projection and
tion. The method can also be applied to shallow water that of the original surface element
and hulls with transom stern. The radiation condi- R radius of tangential sphere
tion and the open boundary condition are enforced by 1. wave resistance
a special arrangement of the collocation points at the S wetted or panelized body surface
discretisation boundaries. This paper also describes a So wetted surface at rest
new simple and flexible panel method for satisfying the g, F vectors tangential to the body surface
body boundary condition; the method could be used !f moment due to pressure on body
for other potential flow problems as well. TA additional moment on body

U free stream velocity
vn velocity component normal to body surface
v., Vt components of velocity tangential to body sur-

face
1. Symbols 5 point on free surface

x, , z right-handed coordinate system; the x and y
axes are on the undisturbed free surface, x

B breadth of the hull points upstream, z vertically downward
D draught iz point of action of towing force
Do draught at rest SG center of gravity of ship's mass
c, frictional resistance coefficient Z towing force
cW wave resistance coefficient 8 submergence of dipole
Fz unit vector pointing in the direction of he tw-igforce p moment of dipole

ing f trim angle (bow dowih trim is positive)
F pressure force on the body 00  trim angle at rest
f panel area velocity potential
FA additional force on the body 4t approximation of
F,. U 2 / -pp, Froude number a x
g acceleration of gravity correction of DG weight corcino ,

=(,O,G) p density of water
d, =" p l 0, p at a , nondimensional sinkage at midship section; see
G(I, q) potential at point f due to unit source at ~(26)
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T nondimensional trim; see (26) In 1978 Dawson [2] published a method using a dis-
c z-coordinate of free surface tribution of Rankine sources (potential = 1/distance)
Z approximation of C on the body surface and on a local part of the free

surface around the body. The flow is imagined to be
suffices: superimposed from the double-body flow, i.e. the flow
1,2,3 vector component in direction of the x-, y- or which would result in case of a rigid free surface, and

z-axis resp. a correction 3. The source strength distribution is de-
F refers to point or source at the free surface termined from the body boundary condition and a so-
k refers to point " called double-body linearization of the free-surface con-
K refers to point or source on the body surface dition. This linearization neglects nonlinear terms in
n component in direction of the normal i p and is applied at the plane, undisturbed water sur-
p refers to point P face. The radiation condition which states that waves
q refers to point T may occur only behind the ship is enforced by a one-
x,y,z partial derivatives sided finite-difference operator for the second deriva-

tive of the potential in the direction of the double-body
streamlines appearing in Dawson's free-surface bound-
ary condition. This numerical method of satisfying the
radiation condition has the disadvantage that the sur-
face waves are damped a little and are slightly shorter

2. Introduction than they should be.

Several authors have tried to extend Dawson's
method to an iterative solution of the exact, nonlin-

For the design of a ship hull and its power require- ear problem, but it was only quite recently that Ni [3]
ment it is of great practical interest to know the flow and Jensen (41 succeeded. Both methods show good
and the resulting forces due to the steady motion at the agreement with resistance force measurements for the
surface of a calm ocean. Experimental techniques try few cases compared so far.
to separate viscous from potential-flow forces to scale
measured force coefficients from a model to the full- Ni's method uses source-panels on the wetted part
scale ship. Due to the difficulty of computing viscous of the body surface and on a local part of the free
flow forces for high Reynolds numbers, the same sepa- surface as computed in the previous iteration step.

ration is used in numerical predictions as well. Serious In each step the body boundary condition and lin-
efforts to compute the potential flow and the accompa- earized dynamic and kinematic free-surface conditions
nied wave resistance of a ship started with the pioneer- are used to derive a system of linear equations for
ing work of Michell (1] in 1898. In spite of the great the unknown source strengths and surface elevations
emphasis placed on this problem, numerical solutions at control points. After solving this system the body
are only now at the threshold of practical applicabil- is repanelized automatically up to the computed wa-
ity. They neglect breaking waves, spray, bow vortices terline. The radiation condition is enforced by means
and other details of the flow, which may then be de- of a one-sided finite-difference operator as in Dawson's
scribed by a potential satisfying Laplace's equation and method.
boundary conditions at all fluid boundaries. Our method, on the other hand, employs Rankine

The major difficulty in this problem is the nonlin- point sources in a laye above the water surface, and
ear boundary condition at the unknown location of the in each iteration step it uses the same panelization of
free surface. To circumvent this difficulty, most known the body and a mirror image of it above the water
methods use, apart from the physical simplifications surface. A linearized free-surface boundary condition
stated above, additional mathematical simplifications: for the flow potential is used in each step of the itera-
Almost exclusively a linearized free-surface boundary tion together with the body boundary condition. After
condition is implied at the location of the undisturbed solving the resulting system of linear equations for the
free surface, and in most cases the solution is described source strengths, the shape of the free surface is deter-
by a superposition of complicated singularities that mined from the dynamic free-surface condition. The
meet this linearized free-surface condition identically. radiation condition and the open boundary condition
All linear methods show good agreement with mea- are enforced by adding an extra row of control points
surements only for special hull forms or high Froude at the up3tream end of the free surface mesh, and an
numbers F = U2 /"V'g , where U is ship speed, g extra row of source points at the downstream end. The
acceleration of gravity, and Lpp the ship length be- effectiveness of this simple method was shown already
tween perpendiculars. in [4,51. For the body boundary condition a new, flexi-
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ble panel method with simple numerical integration of the dynamic free-surface condition; for z - C outside.
the influence function is used. the body: 1( O2  _ gC u2  (4)

No flow across the free surface; for z = C outside the
body:

VOV( = 0. (5)

3. Problem (For simplification we write C(x, y, z) with C. = 0.)

Far from the body the flow field tends to a uniform
We want to compute the stationary flow of an incom- flow:
pressible, irrotational fluid around a laterally symmet- lim VO = (-U, 0, 0). (6)
ric body at or near the free surface of an otherwise W2+y+Z200

unbounded fluid. Far upstceam the fluid has the uni- In some distance from the body waves appear only
form velocity U opposite to the direction of the x-axis within a sector downstream (radiation condition).
of our Cartesian x, y, z coordinate system with z point- In case of shallow water there is no flow across the
ing downward. (plane) bottom; for z = H:

= 0 (7)

The pressure force fP acting on the body is determined
by integrating the pressure difference p over the wetted
part S of the hull:

p it dS. (8)

I The moment due to the fluid pressure is

rT=Lp 5i xfdS. (9)

The equilibrium floating position of the body is deter-
mined from the condition that the forces and moments

The velocity potential 4 meets Laplace's equation: on the body add up to zero. To compare computed re-
sults with resistance experiments for towed ship mod-

AO = 0 (1) els, besides P and f the weight G, the towing force Z
acting at Fz, and the force FA due to the viscous part

at points below the free-surface height C and outside of the model resistance together with the correspond-
of the body and, in case of limited water depth, above ing moments have to be accounted for. Therefore the
the bottom. equilibrium conditions are

The velocity potential is subject to the following + + + P = 0 (10)
boundary conditions:

No flow across the body surface with normal direction and
: f~~~+ax G + x =0A- . (I

i: V = 0 on the wetted body surface. (2) G+5z Z+TA (11)

In case of a ship with transom stern we assume that The wave resistance coefficient c, is defined as
the transom is dry. We require: At the edge of the
transom stern the pressure in the flow is equal to the F1  (12)
pressure %t the free surface. E U2So.

The pres-;ure on the free surface is constant. If p is So is the wetted surface at rest, F the x-component of
the pressure difference with re3pect to the free-surface .
pressure, we ,'1tain from Bernoulli's equation

I (V) 2  
+U2

P PI 2 (3)
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4. Free surface boundary condition V,,V [- (V,)) 2 + VtV4,] + IV4,V (V4)) 2 - go,"

The unknown surface height C can be eliminated + [2V4IV (V) 2 - gt] (18)
from (4) and (5); at z = C: +U2i[_ (Vp)2 + VDO- _g 0

2VV (VO)2 - go" = 0. (13) g - VWWV4,)

at z = Z outside of the body. The denominator in the

This free-surface condition is nonlinear; it is valid at last term is zero if the vertical component of the parti-

the unknown location of the water surface. Therefore cle acceleration VIV).6 is equal to the acceleration of

we iterate solutions with a linearized condition which gravity g; this is the stability limit of the approximate

assures that - if convergence is reached - the solution flow (D.

fulfills (13).

To derive this condition, let 4o and Z be approxi- 5. Radiation and open boundary condition
mations for 4 and C. We substitute 4, = (b + 3 in (13),
neglect terms nonlinear in derivatives of , and obtain
at z = C: 4, is approximated as the sum of the potentials of

V4V (I(V4))2 + VVT) (14) 'he uniform stream, a regular mesh of point sources
2 in a layer above the free surface and the potential of

( p) _ - singularities on the body surface. The point sources
+V iV (V4))) g(4 + P) = 0 are generally located vertically above the collocation

I, and p are developed into a Taylor series about Z. points. Only at the upstream end of the grid there

The series is truncated after the linear tezm. If prod- is an additional row of collocation points, and at the

ucts of C - Z with derivatives of r3 are neglected, (14) downstream end there is an additional row of point

becomes sources.

( ) (1 V ) To validate this sinipo dcheme to enforce the radi-
V)V ~ (V)) 2 + V4V) + VV (V4))2 (15) ation condition and the open boundary condition, the

flow around a submerged dipole with Kelvin condition

-g(C
) + o) + [!v4)V (V4)- 94)] ((- Z) =o at the free surface was computed and compared to an-

Jalytical solutions given by Nakatake [6]. Figs. 1 and

at z = Z. The index z designates partial derivatives. 2 show the resulting free surface deformation from the
To decrease the number of unknowns, C is substituted analytical and the numerical solution for different sub-
by expressions involving Z, 4)(Z) and (Z) only. To mergence speed parameters F = g6/U 2 . 6 is the sub-
this end (4) is developed into a Taylor series as well mergence of the dipole. The numbers at the contour

and linearized: lines indicate values of (g6/(47rUW), where 14 is the
moment of the dipole. The agreement is excellent.

= l [(vO)2 _ U2I 16
2g
Ig f(V.D) 2 + 2V4)VO - U2~ (16)
1 [(vD2 + 2VPVcp

+2V41V, (C - Z) - U21 z  6. Body boundary condition

This gives The Neumann condition (2) at the body surface is
fulfilled using a new panel method [4]. The commonly

- = (V4) 2 + 2VIVO - U - - g (17) used method of Hess and Smith [7) uses plane quadri-
g=9 - Vw4V(7, lateral panels with constant source strength and control

points in the (suitably defined) centre of each panel.
with 4) and 0 being evaluated at z = Z. The integral over the derivatives of the source poten-

Inserting (17) into (15) and substituting by 4,-4, tial can be evaluated analytically for each panel. This

we obtain the linearized free surface condition results in complicated expressions containing transcen-
dental functions. Such expressions are expensive to
evaluate numerically.
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Fig. Contour lines of surface elevation due to a submerged dipole for F 0.0
The upper half shows the analytical solution due to Nakatake 6,
the lower half shows the numerical solution
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Here we show a possibility to evaluate these inte- i(q) VG(P(p), q) r dS, = 0. (23)
grals with simple numerical integration by eliminating s
the singularity of the integrand at the control point on This expression is multiplied by M(q) and subtracted
the panel: from (21):

i(q= M(p) G(9, q) dSp, (19) Vt = Cqj Vq0(q) [M(p-) ftq) VG(g J-
SS

O(q) is the potential at a point f induced by a source
distribution M on the body surface S; G(, q) is the M(q") t(q) VqG(P(p), q) r] dSp. (24)
potential of the unit source at P G = -(47rIh- ql) - '. If ;P approaches f the integrand is still singular in-gen-
The normal velocity on the body surface S is eral, but within a panel of constant source strength it

v(q) = il(q) V (q) = (20) approaches zero. Details can be found in [41.

To evaluate (24) numerically the closed surface off M(p-) il(q) VqG(7, q) dS, - 1M(q-). the body is discretized into N panels. For each of them

s2 area fi, midpoint :i, unit normal i~i and two approxi-

If the normal velocity is prescribed by the boundary mately orthogonal tangent vectors 4 and 1 are deter-

condition, the velocity on S in two different tangential mined, and the radius of the tangential sphere is cho-

directions Fis to be determined only: sen. The radius turned out to have negligible influence
on the results within wide limits. At each collocation

vt = (," V1(q) = M(p) (q)VqG(i,q" dSp. (21) point on S the normal velocity v,, is prescribed (e.g.

s v,, = Uni).

For a S-dimensional flow the integrand in (20) is The panel midpoints 4 are used both as control
singular for 1 -. for a curved surface; inside a (collocation) points where the boundary condition is
plane panel it is zero. But the integrand in (21) is fulfilled, and as integration points for the numerical
'-nibounded even within a plane panel with constant integration over the body surface, which is performed
scurce strengtb So there is no difficulty to evaluate simply by adding the products of integrand times panel
(20) numerically, but (21) must be transformed to al- area. This gives a system of linear equations for the
low numerical integration. This is possible using the unknown source strengths.
following idea, Computing time and accuracy of this method were

A source distribution of constant strength on the found to be similar to those of the Hess&Smith method
surface S of a sphere does not induce any tangential [4]. But this new method is more flexible in the discreti-
velocity on S: sation since panels with arbitrary numbers of corners

are handled without difficulty. Furthermore, the pro-
gramming is simplified, especially if higher derivatives

q , q") dSk = 0 for t" and on S. (22) of the potential have to be determined also.

The potential at a point T outside of the body is
The sphere is placed touching the body tangentially computed as

at the point . If the centre of the sphere is within
the body, there exists a projection k = P(p) of every (= j M(f) G (, q) dS,. (25)
point 1Y on the body surface to a unique point k on S
the sphere surface, the projection being defined by a The integrand is regular, but the numerical evaluation
straight line passing through E, 9and the sphere's cen- of the integral by this formula is not very accurate if
tre. The projection of all body points will cover the the distance between T and S is small compared to the
whole sphere surface at least once. Surface elements panel size. Derivatives of the potential are computed
dSk on the sphere are projected onto surface elements by using the corresponding derivatives of G in (25).
dP on thc body. Let r be th aea ratio of the surface
elements: dSh = rdSp. The sign of r is defined by the As an example the flow around a sphere in uniform
sign of the scalar product of the corresponding normal flow in an unbounded domain was computed using tri-
vectors pointing into the body or sphere, respectively, angular panels. In this case we know the analytical
With these definitions, (22) can be transformed into an solution. The following table shows the maximum er-
integral over the body surface: ror of the velocity vector at the collocation points in

percent of the free stream velocity.
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As in most panel methods a smooth body surface
Table 1: Error depending on discretization is required. Ships often have sharp stems or sterns.
N number of elements The body boundary condition will always be violated

near such a corner. The panel method may still be
I N 1 I 4 1 16 1 64 I 256 1024 I applicable for practical purposes if the overall solution

error 13.5 15.62 3.19 1.58 0.78 0.39 is not disturbed. Figure 3 validates this property by
showing the computed deviation from the parallel flow

This shows that the method (like that of for a Wigley double model with different panelizations.
Hess&Smith) is of first order; the error decreases pro-
portional to the mesh spacing.

13

Fig.3. View of the forward lower half of a Wigley double model in direction of the -axis.
The arrows show the deviation from the parallel flow for 8, 32, 128 und 512 panels
on one eighths of the hull surface and for a grid with 208 panels,
which is the 128 panel grid with local refinement near the stem.
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7. Body at the free surface The transom stern is also covered by source pan-
els. However, if the water flow is. assumed to
separate smoothly at the transom such that the

For determining the stationary potential flow about transom face is not wetted, the usual condition
a body sailing steadily at a free surface of an ocean of of vanishing normal velocity is not applied on the
finite depth, the methods described in the preceding transom. Instead, at the collocation points on
sections are combined as follows. Source panels are the transom we assume a normal velocity through
used the transom of a size which satisfies the dynamic

(pressure) condition at the boundary between-the
* on the wetted starboard hull surface, and transom and the rest of the ship surface, assum-
e on a part of the above-water surface up to a plane ing the normal velocity to be constant over the

above the uppermost point of the assumed water- whole area of the panel. This results in a nor-
line at the hull. mal velocity greater than the ship's speed U if

the edge of the transom is below the undisturbed
* Further source panels of equal source strength as water surface, and a normal velocity smaller than

those below this plane are arranged on a mirror U if the transom edge is above the undisturbed
image of the hull surface above this plane. The water surface. Only if the edge of the transom
reason for this is that, on one hand, our special is at or above the stagnation height level, the
panel method requires the source panels to con- condition of vanishing normal velocity is applied.
stitute a closed surface, and, on the other hand, Whether the transom is wetted or not, has to be
this mirror image reduces the necessary width of guessed in advance.

* the grid of further sources arranged along the free At the free water surface the linearized free sur-

water surface. Here it is sufficient to use point face condition (18) is imposed.
sources above the free water surface instead of
source panels on the free surface. We use point These boundary conditions are satisfied at, typi-
sources located one grid spaciag above the free cally, 1000 collocation points on the body and on the
surface. free surface. When the source strengths have been de-

termined, the free surface elevation is computed from
* Further, all these sources are mirrored both at the dynamic boundary condition. The collocation

the symmetry plane of the ship and - in case points on the free surface are moved to this height.
of shallow water - at the bottom to satisfy the Then the process is repeated to get an iterative solu-
respective boundary conditions. tion of the nonlinear free surface conditions.

The source strengths are determined from the following On the water surface, the collocation points form

conditions: a regular grid outside of the body up to a distance
which was determined by test calculations and which

* On the ship surface up to the plane somewhat depends on the Froude number. Usually, point sources

above the water surface, the condition of vanish- are located about one grid length above each colloca-

ing flow velocity normal to the surface is satisfied. tion point. However, if the distance between source and

For the part of the hull surface above the water, collocation point is smaller than about 3 grid lengths,
this condition is applied for two reasons: On one instead of one collocation point a pattern of 4 points is

hand, we do not know in advance where the ac- used, and the average error of the boundary condition

tual water surface is, and, on the other hand, at those 4 points is considered.

the continuous source strength along the contin- It may be questioned whether our numerical meth-

uous ship surface and its mirror image above the ods applied to solve the potential-flow problem are cor-
horizontal plane helps to obtain a smooth poten- rect for derivatives up to 3rd order. Without theoret-

tial at the intersection between body and water- ically investigating this matter, we simply found that
line. The same argument could and has been the method usually converges to a solution in which
proposed for a continuation of the free-surface the errors of the nonlinear free-surface conditions are

source panels into the body. However, because indeed extremely small at all collocation points, usually

we use suurces not at, but above the water sur- below 1/1000th of the ship speed if they are expressed
face, at the free surface the potential due to these in form of a velocity. Due to the smoothness of the

sources is smooth anyway. potential, errors are relatively small also between col-
location points. To obtain such an accuracy, it was
necessary to apply a normalization of the equations
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which led to approximately equal values on the main range inv-tigated here it had only a small influence

diagonal of the coefficient matrix, on th :. rhe height of the centre of gravity which
is n. :ve , Ogiwara was assumed in the floatation

To decrease the cases of divergence, we found it line -t
helpful to determine the maximum error of the free-
surface condition at the newly determined positions of h
the free surface both with the previous and with the 5.0-

current source strength, and to use intermediate source
strengths if the maximum error was larger with the new o-linear
than with the old source strengths.2.5 . non-linea

In the iteration to solve the nonlinear free-surface 1 redo
condition the pressure distribution is integrated on the 0 0
actually wetted part of the hull to obtain the resulting 0 "
forces and moments. Together with corrections for the 0.0 .... ..... ...... . I
pitch moment of the viscous resistance and the towing 0.2 0.25 0.3 0.35 0.4

or propeller force, a correction of the equilibrium float- Fig.4. Computed wave resistance coefficients for
ing position is determined, and the panel grid of the Series-60 with CB = 0.60 and values measured
body is shifted and rotated correspondingly before the by Ogiwara [8]
next iteration step is performed.

The linear system of equations obtained during each In Fig. 4 our computed wave resistance coefficients
iteration step is solved by a combination of elimination are compared to Ogiwara's measurement evaluations.
steps with a GauB3-Seidel iteration: At first, only those For comparison also the results of the Neumann-Kelvin
elements below the main diagonal the absolute value problem are included. The results were obtained with
of which exceeds a certain limit are eliminated to im- the same program (1. iteration step) and the same
prove the condition number of the matrix. If the fol- grids; trim and sinkage were suppressed and the still-
lowing Gauf3-Seidel iteration indicates no convergence, water line used as an integration limit for the pressure
further incomplete eliminations using a smaller limit integration. Especially for higher Froude numbers non-
are performed. This method constitutes a completely linear results agree much better with experiments.
safe and quick solution scheme. Figures 5 and 6 show the nondimensional sinkage

and trim defined by

8. Applications 2 - ; 2 (00-0) (26)
F,2 L T 2~(oO) (6

as functions of the Froude number. For sinkage theagreement is good. The curve for the computed trim
is similar to the corresponding measurements, but ap-

The Series-60 hull shape with a block coefficient i ar to te oep o asureme
CB = 0.6 was chosen because extensive and careful
experiments and resistance evaluations have been per-
formed for this form by Ogiwara [8]. The principle
relations of his model are: 0.2 0.25 0.3 0.35 0.4

Lpp F.
breadth B = -P; draught at rest Do _ p ' computed'

7.5 18.75'L~e="~~~~ 187--']-measured]

L ~-0.05.wetted hull area at rest So = "pp
5.8685"

The hull surface was panelized up to a height
0.3125Do above the floatation line at rest. There were
453 panels used on one half of the body. As in Ogi- Fig.5. Computed and mesured i8J nondimensional
wara's experiments the horizontal towing force was sinkage o at midship section of a Series-60
applied at 0.485Lpp from the aft perpendicular and model with B = 0.60
0.461Do under the floatation line at rest. The vis-
cous resistance coefficient cF = R1/(O.SpU 2So) was es-
timated to be 3.5 • 10- 1 for all speedls. For the speed

601



0.1 TFig. 7 shows the computed elevation of the free
surface for the solution obtained with the linerxrized-

comptt-Afree-surface condition (Kelvin condition)

0.0 P U2 qS.-g ,,=0 atz=0 (27)
* 0.4 and the solution with the exact nonlinear condition

(13) for F,, =0.25.

Fig.6. Computed and measured [9] nondimensional

trim 7- for a Series-60 model with CQB 0.60
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Table 3: Influence of grid spacing at water surface

8.2 Containership in shallow water U H grid spacing C

The following results apply to a containership the (m/s) (in) at AP ' at FP
principal data of which are shown in the following table. 6 14 4.5m x 4.5m - -

6 4 ' 5m×5mSi -20% 5%

Table 2: Principal data of investigated containership 6 14 61n x 6m 6% 16%

10 14 6mx6m - -
length between perpendiculars 161.44 m 10 14 8m x 8m 2% 1 -3%
breadth 28.40 m
draught at U=0 10.00 m Table 4: Influence of grid size behind aft perpendicular
trim at U=O 0 m AP and -ideways
block coefficient 0.68
designed load waterline coefficient 0.82 U H grid size e

(m/s) (in) aft side at AP at FP
Dynamic sinkage and trim of ships on shallow water 6 14 -135m 93m - -

are of interest not only because of possible grounding. 6 14 -70m 70m -1% 18%
Forward trim usually encountered on shallow water can 10 14 -191m 101im - -
reduce yaw stability so severely that ships may loose 10 14 -135m 85m 2% -1%
their ability to keep couise.

Figure 8 shows results for the draught at the for- Table 5: Influence of height of source points over still

ward perpendicular divided by the stagnation height water plane
U2 /2g depending on depth Froude number Fh and
length Froude number F,. The theoretically most in- U H height C
teresting region around depth Froude numbers of 1 can (m/s) (in) at AP at FP
be investigated only in case of relatively large length 6 14 4m - -
Froude numbers because otherwise the ship touches 6 14 6m 25% -14%
the ground. Limits of ground-touching are indicated 12 18 8m - -

in Figure 9. This is the reason for investigating also 12 18 10m -2% 0%
high length Froude numbers which are unrealistic for a 12 18 12m -3% 2%
containership. As can be seen, near to a depth Froude
number of 1 large changes of the squat are experienced. Table 6: Influence of distance limit for taking 4 collo-
This is known also from model experiments and small cation points instead of 1
boats.

To determine the accuracy of these results, model U H distance
experiments are being performed but not yet finished. (m/s) (mn) limit at AP at FP
Instead, Figure 10 shows results of approximation for- 6 14 2.Oxgrid spacing - -

mulae according to Barras [9] which were established 6 14 3.3xgrid spacing -1% 0%

on the basis of model experiments and measurements 6 14 5.5xgrid spacing -1% 0%

aboard ships, ,nd results of the slender-body theory of The reason for this is held to be the fact that, due to
Tuck 110] applied to our ship. The nearly exact coin- limitations of the maximum number of grid points, the
cidence with Tuck's formula is striking; however, near grid length is not small compared to the 23 m length of
to the critical depth Froude number 1 this formula is the transverse surface waves and the even shorter di-
not applicable. agonal waves generated at this small Froude number.

Possible errors of our method were investigated also Fortunately, in practice the squat is hardly relevant at
on the basis of numerical experiments with different such small speeds. On the other hand, for Froude num-
grids on the body and on the free surface. In the fol- bers of 0.25 and more, the table seems to indicate that
lowing tables c denotes the difference in sinkage to the errors due to the discretization are small.
most accurate computation in % of sinkage at forward Computing times are about 10 minutes for each it-
perpendicular FP. eration step on a VAX 8550 in case of about 1000 collo-

cation points. The necessary number of iteration steps
The results indicate that for the small length to obtain an accuracy of 1 cm for the squat ranges typ-

Froude number of 0.15 (6 m/s) our results are doubtful. ically from 2 to 5, depending mainly on depth Froude
number.

603



, sinkage 0.15 0.25 0.3 0.4 8.3 SWATH ship

U2 /2g For an research SWATH ship of the German navy
we used our method for wave resistance prediction. We
estimated frictional and viscous pressure resistance-as

\ in Salvesen et. al. [11]. The rather ununsual- shape
of the cross section caused some difficulties in the non-
linear computation. Therefore, in each iteration step

o the free-surface collocation points were not only shifted
0.5 ' I / "in height but also in horizontal direction according to

F=0.15 o the current waterline. For a demiihull this modifica-
0 0.2 o k' tion ensured rapid convergence. The error in the free

o surface was reduced by a factor of 10 in each iteration
0.3 step. Each demihull induces a slightly oblique flow at
.the other demihull. Due to limitations in time, we did

Fnp not incorporate a Kutta condition at the rear of each
0

0.5 .o strut which would be necessary to take this effect prop-

0.4 erly into account. We felt justifi,.d in this decision by
the results of Bai et al. [12] who found for another

SWATH ship that including a Kutta condition had no
Fig. 8. Nondimensional sinkage at FP significant effect on the wave resistance. Bai et al. re-

Dotted lines are limits of ground-touching ported only some differences in the local velocity field

near the trailing edges of the struts. Figure 11 shows a
s8M - z, . . comparison of computational results with experiments

of the Hamburg Towing Tank HSVA. Unlike the com-

. putational model the experimental model was equipped
4, -with rudders, fins and a propeller guard.
2M E ._- 103 CT 0

0 lOkn 20kn U 0

Fig.9. Distance between ship bottom and sea bottom

at FP depending on speed for 3 water depths 0

0 ° o inear

-mnonsuine

sinkage F-
1.0 12g 0 F.......,,.

0.1 0.2 0.3 0.4 0.5 0.6

Fig.11. Computed total resistance coefficients for

Barras - SWATH ship and values measured by HSVA
Tuck Tc Only in a few cases a nonlinear solution succeeded.

. 0The agreement with experiments is worse than for
0. 0. 0.10 / O.13 conventional ships. For the medium Froude-number

range we noticed a considerable phase shift between
the waves on the inside and the outside of each demi-
hull before the computation breaks down. The point
with the highest error in the free-surface condition and
also the highest vertical acceleration was at the end
of the strut. This seems to indicate that cross-flow

0 Fnh effects afterall might be important for nonlinear solu-
0 0.s 1.0 ' tions despite Bai's et al. findings. For high Froude

Fig.10. Nondimensional sinkage at FP numbers the computation breaks down at a point be-
according to Barras [9J and Tuck [10] hind the SWATH ship at the plane of symmetry. Two

wave crests starting from the trailing edges of the struts
superimpose resulting in a splash. This phenomenon
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DISCUSSION We believe that our treatment of the
by A. Musker radiation condition will also work in the

limit of very small grid spacing. The

Have you tried the non-linear calculation derivative are taken analytically and the free

of Fig.4 with the ship fixed and compared with surface boundary condition is symmetric.
the data compiled by ITTC on the experiment of
Kim and Jenkins? What is needed to get the desired solution

is a numerical stimulation for an asymmetric
The novel treatment of the radiation solution.

condition deserves further study to see how it
behaves with high resolution surface grids. If the source distribution is in a layer

above the free surface, as in our method, the
Author's Reply vertical distance has to be decreased with the

mesh bize.
We did not try the non-linear calculation

with fixed trim and sinkage for the Series 60. We performed trial computations with 50
Fig.4 shows the result for the first and the points per wave length for the 2-d case and

final step of the interaction for the same did not have any problems.
computation.
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Abstract square obstacle in a channel has been considered [1].
When the geometry is mapped onto a computational

In this paper a finite difference method based on the domain, the coordinate lines turn out to be highly

Navier-Stokes equations in generalized curvilinear co- distorted. The comparison with experimental results

ordinates is applied to the simulation of unsteady vis- suggests that very fine meshes are required for an ac-

cous flows with free surface. An accurate analysis of curate resolution of flow reversal.

the method is performed by comparing numerical and To verify the treatment of the time dependent ge-

experimental results for several physical cases related ometry, the flow field inside a rectangular enclosure

to ship hydrodynamics. with a moving indentation has been studied and the
temporal evolution has been compared with the ex-

1 Introduction perimental findings.
The 2-D free surface flow over a semicircular bump

on a straight wall has been considered because it is
The flow of a viscous fluid past a body shows a very closely related to ship design. This case is relevant for
complex behaviour when a free surface is involved, the presence of large recirculating regions and of the
In fact the free surface strongly affects the flow field. free surface. Experimental results are also available
The detailed analysis of the interactions between body 12].
and fluid is very important in the field of naval hydro-
dynamics in order to quantify the viscous and wave
resistance. Experimental investigation can provide 2 Governing Equations
global information at reasonable cost, while velocity
and pressure measurement are difficult or even impos- The simulation of a two dimensional incompressible
sible and very expensive, instead numerical simulation viscous flow has been considered as a first step to

gives the complete flow field quantities provided par- build a numerical scheme for 3-D flows. The gov-
ticular care is devoted to implement the numerical erning equations are:

scheme. The validation of the numerical solution by
a comparison with the experimental findings is nec- OvV (1)
essary to verify the accuracy of scheme. The best 1 -0(

results, however, are obtained when the two fields of Ov' Ov =v
i  Op + 1 i

analysis compenetrate each other. 5t + T --x + Re OzyDxj V + fy (2)
In this paper a numerical method for the solution

of the Navier-Stokes equations in general curvilin- where v., v " are the Cartesian velocity components

ear coordinates based on an implicit finite difference and fI' = (0, -1/Fr 2 ) is the gravitational force. The

scheme is presented. The physical domain bounded by equations are nondimensionalized by the maximum

the moving free surface is mapped onto a fixed com- inlet velocity U and a length L characteristic of each

putational domain. The time dependent coordinate case examined. The Reynolds and the Froude nura-

transformation introduces extra terms that account bers are Re = UL/v and Fr = U/Vg, where v is the

for the grid velocity. For a complete test of the nu- kinematic viscosity and g the acceleration of gravity.

merical method, the scheme has been applied to dif- When the free surface is present and is advected

ferent physical problems with increasing complexity. by the unknown velocity field, the physical domain

As a first case the 2-D flow field past a wall-mounted varies in time. The numerical solution of the gov-
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erning equations describing such complex phenomena and the quantity
requires an accurate computational scheme. Among
the several possibilities to represent the behaviour of 01 - J o_. (11)
the free surface, such as the Marker and Cell method J at Ot
[3], in this paper it has been chosen to map the phys- accounts for the time dependence of the grid. The
ical domain (xi) into a Cartesian computational do- following definitions have been used:

main (Cy) at each time step. Interpolations to enforce 1,1 / a - a
boundary conditions are thus avoided. A 2(q')= j q'flnosumoveri (12)

The choice of Cartesian velocity components as a a
dependent variables allows a simple form of the equa- 1.2 . a a
tions in the ej coordinate system. The adoption of D1= - q'P a s 6 i (13)
other velocity components as unknowns require the in- ja
troduction of higher order metric coefficients, as shown and
in Ref. [4]. D2 -a -ql# (14)

Introducing the time dependent coordinate trans- M,,&s Ja a& ae ,

formation z = xi(Ci, t) into equations (1) and (2), it where A2 contains only second derivatives of qi along
follows ek, while the remaining part of the diffusive term is

1 i _ -1accounted for in Di and V2

-= e, (3)

1 a(Jvi) 1 a iii) 3 Numerical Model

1 i a__.p 1 1 3 a , + i Eq. (6) are discretized on a staggered grid where the
J aej Ree Ja'k aj +. (4) pressure p is defined at the node (i,j), q' at (i+1/2,j)

and q' at (i,j + 1/2). The discretized equations need
where q y = are the fluxes and qi =q'-L(U, )ac- the metric coefficients at (i,), (i + 1/2,j), (i,j +
counts for the time dependence of the mapping. The 1/2) and (i + 1/2,j + 1/2). These metric quantities
notation is given in Appendix A. are evaluated by second order centered finite differ-

Eq. (3) is a very important constraint for incom- ences. Interpolation of the metric coefficients intro-
pressible flows, which is fulfilled in a simple way by duces truncation errors [5]. To avoid such problem,
locating the fluxes qi at the cell sides, in the present work, the metric quantities are eval-

The equations for fluxes q are obtained by a lin- uated on a grid twice finer than the computational
ear combination of (4). The momentum equations grid. The governing equations are solved by a frac-
become tional step method [6,7,8], where a first step yields

aq' + -a the non-solenoidal field 0.

at J at at iae, 4- .(q)1 2A(4' (q1fl
a + q,#, + -a f At 2Re

aej Re J8Ce Tel3+~f (-(pl)fl - [3 (R' )n

Eq. (5) can be rewritten as + I A'(q') (15)
aq' -

1
Aqf

) 
- -P' -~ (6 R

at(6) To have a second order time accurate method the R'
where have been discretized by the Adams-Bashforth scheme

-i= H' - ' + G - -L.(D' +Di) requiring a restriction on the time step (Courant num-
2R 2 7) ber < 1 ). The direct inversion of Eq. (15) requires a

the convective term is large amount of memory and CPU time. The approx-
imate factorization scheme 19,10 reduces the number

H' = (0'qkp) (8) of operations. It consists on the approximation of the
] =J ' LHS by the product of two three-diagonal matric .

the pressure gradient is Eq. (15) becomes:

p i a( (1 - A,)(1 - A2)(4' - (q')f) =
At"(9)- At[ 3 ( R)n - (k) ] +

the body force term is 2

(10) + 2(Al + A 2)(q') n  (16)

Where Ak accounts for the discr. te d: iferential oper-
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ators of the laplacian along k. For slightly deformed grids the previouc conditions are

The velocity field (q )f+l is obtained by introduc- approximately equivalent to require the vanishing of
ing a scalar 4 at the second step, normal and tangential stresses.

)+ = - At 64 (17) The kinematic condition enforces the fluid parti-
M- + (17) cles to remain on the free surface. If the free surface

2 6ey configuration is described by the function

By applying the discrete divergence operator at
the grid point (i,j), the equation for 0 follows X2 = 17(z1 , t) (22)

1 6 _.60 2 84i the kinematic condition
-as-)_ - (18)J 6w( - 7) = 0 (3)

A significant amount of the CPU time of the en- Dt

tire computation is devoted to the solution of Eq. (18). yields
Direct methods, like LU decomposition, yield a solu- a 2 = _ = V2 _V 1 (24)
tion within round-off error, but their application to "t FX _ c
very fine grids (N = N, x N2 ) is impossible both for At every time step the free surface is moved us-
memory requirements and for number of operations ing the previous equation. To eliminate the possible
O(N 2). Generally iterative methods do not efficiently occurrence of instabilities, the new configuration is
reduce low wave number errors. For such reason a lin- smoothed with the same filter used by [13,14,15).
ear Correction Storage multigrid method [11,12] has
been applied with a reduction of CPU time.

The pressure field p appearing in Eq. (6) is evalu- 5 Results
ated from 4

To test the complexities associated with the described
1et1 = _kk

8  (19) numerical scheme, several cases have been chosen, each
-2Re J 6 e a one enlighting a particular complexity. The flow in

a steady domain and the flow in a domain where a
After the second step the overall accuray remains boundary moves with a prescribed law have been con-

of 0(Mt2 ). sidered as test cases before solving the free surface flow

past a semicylinder.

4 Boundary Conditions 5.1 Flows in steady complex domains
No-slip boundary conditions have been assumed on

solid walls. An assigned profile of the Cartesian corn- The use of a general curvilinear coordinate system is
ponent vI together with v 2 = 0 has been imposed at the main characteristic of the present method. There-
the inlet, and the fluxes are derived by Eq. (A.6). fore to analyze the influence of the grid on the numer-

At the outflow a developed flow condition ical solution the flow past an obstacle inside a channel
has been considered. The sketch of the domain and

= =0 (20) the mesh obtained by an analytical function based on
Ni (96 a conformal transformation is given in Fig.1. Fig. 2

has been assumed when free surface problems are shows, by a stream function plot, that the numerical

treated. The assumption of radiative conditions, that method reproduces the main features revealed in the

is done for the other cases, gives rise to instabilities in experiment of Ref. 111. To capture the relevant de-

presence of free surface. Work is in progress to avoid tails at least a 64 x 32 grid with refinements in the

this numerical instability. regions of flow reversal is necessary: The reattach-

The Navier-Stokes equations require one kinematic ment length Xr of the main separation bubble, is the

and two dynamic conditions at the free boundary. The significative parameter of this flow. The numerical

balance of the forces between the inner and the outer values of X,, together with the experimental data, are

fluid gives the dynamic conditions. With zero external given in table 5.1 for two Reynolds numbers (Re = 144

pressure and stresses, the normal and shear stresses and Re = 288). The numerical simulations have been

must vanish. These conditions cannot be easily imple-
mented by an implicit scheme. Therefore the simpler Re X Num. X, Exp.
conditions of ref. 115] have been used: 144 5.5 6.7

9V = =0 (21) 288 9.5 12J

N 2 N 2 Table 1: Values of Xr by present work and by Ref. [1]
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done respectively by a 64 x 32 and a 96 x 32 grid. The ment of free-slip conditions gives the deformation of

coarseness of the grid is the main reason to explain the the free surface which strongly affects the inner veloc-

disagreement between the numerical and the experi- ity field. To our knowledge few experimental results

mental results. A second reason, to a lesser extent, concerning free surface flows are available. One ex-

is ascribed to the fact that the calculation was inter- periment [2] deals with the flow over a semicylindrical

rupted before a real stationary solution was reached. obstacle. We have chosen to verify the validity of the

As it occurs for the backward facing step, numerical approximated form of the free surface boundary con-

solutions usually present a very steep growth of X, dition specified by Eq. (21). A proper treatment of

within a short time. Later on X, grows in time very the free surface conditions is very difficult particularly

slowly and the steady state is reached using a large when implicit schemes are used. In this case the ex-

amount of CPU time. However the obtained results act free-slip conditions require an iterative procedure

can be acceptable as a presentation of the method, which increases the CPU time.

A more accurate computation to obtain a physically Preliminary results were obtained at lower Re and

interesting solution will be presented in the future. higher Pr than those used in Ref. [2] because a coarse
grid was employed. However also in this case the free

5.2 Flows in complex domains mov- surface is largely deformed. The velocity vector plot,
shown in Fig. 5 for Re = 400 and Fr = 0.5, qual-

ing with a prescribed law itatively resembles the expected flow field. Also the

In order to verify the accuracy of the numerical scheme dynamic pressure reported in Fig. 6 and the develop-

to describe flows driven by an unsteady boundary, the ment of the recirculating regions qualitatively agree.

flow inside a channel with a moving indentation has However, it is to be noted that the flow field simu-

been considered. For such a case experimental [16] lation is not possible up to the steady state because

and numerical [171 results allow to test the treatment the free surface conditions are not correctly enforced

of the grid time dependence. The numerical results when the deformation of the interface becomes rele-

of ref. (171 have been obtained by a vorticity-stream vant. A better treatment of such boundary conditions

function method on a very fine grid (1440 x 48). The is required to achieve a complete and accurate flow

same time dependent law of the indentation consid- simulation.

ered in Ref. (16,171 has been used. Although this flow
is not relevant to ship hydrodynamics, it has been con-

sidered as a test case. A sequence of counter rotating 6 Conclusions
eddies close to the upper and lower walls and sepa- The purpose of this paper is restricted only to the

rated by a wavy core flow is generate downstream the descrpon of the numeri metric h has be
indentation. The eddies move downstream with a de- description of the numerical method, which has been
fined group velocity. This physical problem has been tested by using coarse grids, certainly larger than those
solved for Re = 760 and St = 0.025 and the same required by the physics of the flow. This is the main
flow time history reported by [171 has been obtained, reason for the discrepancies between the numerical
The time sequence of istantaneous streamlines is re- and experimental results in the two cases firstly con-
ported in Fig. 3 for a sequence of time steps within sidered. More work should be done to define the
one period and it shows the same position, shape and best grid transformation for the wall mounted obstacle

temporal development of the cddies of Ref. 1171. The case. On the contrary, the case of the flow generated

values of the positions of the crests and troughs cor- by a moving Indentation shows that the grid time de-

responding to eddies B, C and D are shown in Fig. 4 pendence is very accurately handled by our scheme.

in comparison with numerical (17] and experimental In fact our results computed on a relatively coarse

(161 values. In this case the better agreement derives mesh are in very good agreement with the numerical

from the much finer grid (384 x 32) used in this case results obtained with a larger number of grid points

with respect to that used in the previous case. in Ref. (171.

These preliminary numerical results assess that At the moment the lack of the method to accu-

the numerical model provides good flow simulation in rately describe free surface flows is mainly related to

presence of steady and unsteady irregular domains, two intimately connected aspects: the choice of the
grid transformation and the approxhuntLion on the
boundary conditions at the free surface. The present

5.3 Free surface flows results show that the generation of a grid with co-
ordinate lines orthogonal to the boundaries reduces

Free surface flows involve the difficulty of irregular the truncation errors. If such effect is large for solid
and time dependent domain, where boundary moves boundaries, the effect is amplified at the free surface.
according to the velocity field. The correct enforce- The generation of coordinate lines nearly orthogonal
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to the free surface is more difficult and requires a high 8q
CPU time but avoids the approximations in at the free (0) - g (A.O)-

surface boundary conditions. In the future our work - 1 a (A. l)

will be focused on these aspects and only afterwards Jg (A.11)

real ship related flows will be successfully simulated.
the metric quantities aci which appear in the equa-

Appendix tions for fluxes are simply given by

-J Jgq (A.12)
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Fig. 1 A sample 32 x 16 grid for the solution of the flow past a surface-mounted
obstacle in a channel (h/H = 0.5, 1/h = 4)

Xr

Fig. 2 Stream function plot for Re = 288; dashed lines correspond to negative
MIc. Thc i-,ter-m! between contour linpA is 0.02 for negative values and 0.1 for
positive ones.
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Fig. 3 Instantaneous streamline plots within one period for the flowi in channel
with a moving indentation
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Fig. 4 Time histories of the eddies B, C and D for the flow in a channel with a

moving indentation
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-s ti:

Fig. 6 Pressure contour map at t=0.8, Re =400, Fr =0.5 for the flow over a
semnicylindrical bump. The increment between two isolines is 0.05
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Abstract fatigue due to the high frequency oscillations of the
structure.

The flow around circular cylinders at moderate Several semi-empirical formulae exist for the pre-
to high Reynolds numbers is characterized by vortex diction of drag and lift forces. These models all have
shedding. Hydroelastic oscillations are caused by the

oscilatry n-lne nd ransers foces inuce by in common that details of the flow field are not takenoscillatory in-line and transverse forces, induced by into account, i.e. they are chiefly based on mechani-

this periodic shedding of vortices. The hydrodynamic int an t ilethe are chieflyvbased men
loading and structural response of a marine riser is cal and electrical analogons. More advanced models

simulated using the results of several flow simulations contain tuning parameters to fit the model to exper-
with the vortex blob method. A three-dimensional imental observations. Again, these parameters have
vortex blob method is discussed. Operator splitting no physical interpretation other than their analogons
vsex blobtn ain other fields. On the contrary, very advanced nu-
is used to obtain a formulation in which the viscous merical schemes exist for solving the instationary vis-

effects are incorporated using a stochastic process, csae es eqat in thesmtods cvr-
whil th iniscd fow s decried y te eoluion cous Navier Stokes equations. These methods cer-

while the inviscid flow is described by the evolution tainly take into account the flow field, but even with

of a flow map. The numerical algorithm consists of an present acout powe uc cm e sia
accurate and efficient spectral model combined with present day computing power such complex simula-
accuriateoa ffrmticnt spectAl combin with tions will impose an economical limit on their use for
a variational formulation. A comparison with exper- practical problems.

imental results and semi-empirical models is used for

validation. A description of the computational as- The authors stress that these models are invalu-

pects related to the coupling of the results obtained able for research purposes such as understanding more

from the vortex blob method to an existing struc- about the details of such complex flows. Attempts
tural analysis code is given. Finally some computed have been made to couple the direct flow simula-

results of the dynamic response of a flexible riser, a tion to a structural code by e.g. Hansen et al. [1].
pipe and a cable s'ibjected to environmental forces The limitations on computer power require many sim-

due to current will be compared with experimental plifications and heuristic arguments in the model.
and full scale rcsults. The predictive abilities of this approach are there-

fore rather doubtful. For practical situations such as
1 , Introduction hydroelastic oscillations, simplified models must be

developed, drawing on the results and insights ob-
Hydroelastic oscillations are caused by the peri- tained from large scale, systematic computations and

odic shedding of vortices from the boundary layer experiments. As a first step in this direction, a wake-

of a f1lxible cylindrical blunt. body, inducing trans- oscillator model (e.g. Griffin [2,13],14]) is tuned to
verse and in-line forces. The vortex shedding fre- the results obtained by performing a number of sim-

quency may lock on to the natural frequency of the ulations using a vortex blob method for solving the.

system, provided the internal structural damping is Navier-Stokes equations. The calculations were con-
sufficiently low. The structure extracts energy from ducted for a two-dimensional flow around a spring
the flow resulting in a motion amplitude increase to mounted circular cylinder. The tuned model is subse-
values of once to twice the characteristic length. An quently used in a structural analysis code to simulate
important issue is the increased drag force and risk of the hydrodynamic loading and structural response of

a marine riser, a pipe and a cable in current.
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2. Theory Vortex Blob Method t - Cr', I, to) (3)

The equations governing the evolution of a vortic- If r' is kept fixed, while t varies, equation (3) rep-
ity field w, defined as the curl of the velocity field fi, in resents the path of a fluid particle initially at '. The
a viscous incompressible fluid in a Eulerian reference flow map A must have a Jacobian determinant unity
frame are commonly known as the viscous vorticity due to the incompressibility constraint, [10]. Anal-
transport equations. They can be summarized as: ogous to the velocity field j it is advantageous to

D separate the total flow map & in a part R", related
Dt i - Vit + VV2W (1) to the velocity field of the potential flow around the

body and a disturbance flow map R by means of thewith the incompressibility constraint V. - -- 0 for relations:

the velocity field. In addition the velocity field must

satisfy the no-slip boundary condition at a smooth t(r', t,to) = Booo R (tt, to) (4)
body surface S and approach a uniform velocity field
U far ahead of the body. It is therefore advanta- with:
geous to define the total velocity field :j as the sum R Wr', t, to) = r' + MOO (t - to) (5)
of two components, viz. i = m + m'° with m the dis-
turbance velocity field which approaches a zero value where M' is the velocity field for the irrotational flow,
far away from the body, and u the velocity field i.e. the potential flow.
of the irrotational flow around the body. The set of
equations is completed with an initial vorticity field The vector stream function A can be defined by
wo which is assumed to be tangential to the body relating the curl of the vector stream function to the

surface. The left-hand side of the vorticity trans- total velocity field fi. The use of the vector stream

port equation is the material derivative of the vor- function has the advantage that this representation
ticity field, whereas the right-hand side is responsible immediately satisfies the incompressibility constraint

for vortex stretching and diffusion of vorticity. Note for the flow field. The relation between the fluid par-
that in two-dimensional flows, the stretching term is ticle velocity R and the Eulerian field velocity j now
absent. can be expressed as:

The vortex blob method is based on operator split- t (r', I, to) = V, X , Cr, t)
ting, where all relevant physical processes are mod-
elled subsequently in time. The solution of the vis- = V A (A Cr', t , to),t) (6)
cous vorticity transport equations is approximated by The relation between the vorticity field in both co-
successively solving the inviscid vorticity transport ordinate systems can be constructed likewise, [10],
equations for a small time step, followed by the dif- yielding:
fusion of vorticity and the creation of vorticity at the
body surface, in order to maintain the no-slip con- ( Cr, t) -= o W') - Vek (-', t, to) (7)
dition. Several authors have investigated this frac-
tional step algorithm as was proposed by Chorin, e.g. The introduction of the flow map has transformed
Chorin [5], Beale [6],[7j,[8]. Recently, Van der Vegt [91 the problem of determining the vorticity field by solv-
has given a convergence proof of a product algorithm ing the inviscid vorticity transport equation into the
for the approximation of the solution of the viscous calculation of the flow map A and the vector stream
vorticity transport equations. function j. The system of equations (6) and (7)

In order to state the algorithm, it is necessary to must be completed by deriving equations for the vec-
introduce some definitions. The inviscid flow map & tor stream function. This can most conveniently beintrduc soe deiniion. Th iniscd flw mp B done by first separating the vector stream functionA

is defined as an invertible continuously differentiable into several components:

mapping from the initial fluid volume flb to the fluid

volume fl at time t: A = A + A-' + V (8)

A ', t, to) : f00 -- f, Vt E [to, til (2) where the vector stream function A' has a curl equal
to u'. The function 0 which must be twice differ-

with r' the position of a fluid particle at initial time entiable can always be chosen such that the distur-
to. The position : of a fluid particle at time t then is bance vector stream function A is divergence free. It
given by the relation: is, however, not necessary to calculate the function O&
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because in the vortex model only the curl of the total the vorticity field can be determined. The distur-
vector stream function is required, hence the gradi- bance flow map can, however, be obtained from the
ent in equation (8) will give no contribution to the Taylor series expansion of the flow map. This is ac-
velocity field. complished by deriving from the Lagrangian formula-

tion a Hamiltonian formulation using a Dirac bracket.
The relation between the vorticity field w, and the An extensive discussion of this reduction process can

disturbance vector stream function A now is obtained be found in [9]. The result, which can be verified by
by using the definition of the vorticity field and the using (7), reads:
divergence freedom of A:

V2A (r,0 = -w(r, 0 (9) R Wr, t +t' 0) R (L ' t) +
At (VAX A (,t)) +

The boundary conditions for the vector stream func- 1

tion A can be directly obtained from the no-flux con- (
dition for the velocity field at the surface S in an +0 (&t3) (14)

inviscid fluid and equation (8), yielding:

n.V X A =- V x A = 0 at S (10) The determination of the flow map A is the first
step in the product formula. The next step is the

since A° is the stream function for the potential flow modelling of the effects of viscosity, i.e. diffusion and
around the cylinder. At great distance from the body creation of vorticity. The model is based on the ran-
the disturbance vector stream function A must sat- dom walk interpretation of the incompressible Navier-
isfy: Stokes equations given by Peskin [11]. The effect of

viscosity is to generate a random disturbance on the
particle paths generated by the flow map B. The

The whole system of equations for the disturbance stochastic flow map is defined as the sum of the in-

flow map, vector stream function and vorticity field viscid flow map and a disturbance flow map which is

(6), (7) and (9) was put by Van der Vegt [9] in a a random vector from a sphere of radius (12vr)2, r"

Lagrangian variational formulation for bodies with an being a small time step. The viscous vorticity evolu-

arbitrary geometry by means of the following Action tion operator is represented by the following sequence

Principle: of maps:

Jkr,A, to, ti] = dtL[RA,t] (12) W - o E, o Dig (15)
where 4I is an operator which reflects particles, which

with Lagrangian functional: diffuse into the body, across the boundary. The invis-
L[R, A, t] = !dr( ) " V,0 (r', t, to). cid evolution operator E, is defined by equation (7).

L A =The diffusion operator D, causes a random transla-
((r'to) x k(r',ito) - A(Ri)) tion of each point of the vorticity field.

/ r The main result of Van der Vegt (9] states that,

+'Jd3rIV x A(E,t) 2  (13) provided the inviscid flow map exists and is unique,
the expectation of the viscous evolution operator con-

together with the initial condition a~ -Wo at S for the verges to the evolution operator of the viscous vor-
vorticity field and boundary condition - V x A = a ticity transport equations. Analogously, the expecta-
at S for the vector stream function yields the set of tion of the particle paths, converge to the real particle
equations for the flow map and vector stream function paths. More details and a proof of convergence can
after variations 6R and 6A, with -.SA = Q at the be found in Van der Vegt (9].
body surface S with tangential vector t. Here the
integration in the Lagrangian functional is conducted In the next section, the numerical implementation

over both the initial fluid volume fl0 as well as the of the vortex blob model is discussed.

fluid volume fl at time t. 3. Nu.erica! t.mentation

The Eulerian-Lagrangian formulation requires at
first sight the determination of both a disturbance The numerical implementation of the vortex model

flow map and a vector stream function after which described in the previous section requires the dis-
cretization of the vorticity field and an algorithm to
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evaluate the flow map. For two-dimensional flows The procedure discussed in this paper is based
several schemes have been suggested. In the point on the results from Section 2. For two-dimensional
vortex method the vorticity field is represented by a flows, the stream function has only one non-zero corn-
set of point vortices as follows: ponent. The stream function is separated into three

N parts:
w = t t) 6 (r t-( ) (16) h+,-- A = Ah  AP + A-0  (19)

where N is the number of vortices, ri represents the where A is the solution of the Poisson equation in an
trajectory of the vortex with index i. unbounded domain, Ah is the solution of the Laplace

The flow map is then calculated by means of the equation with boundary conditions at the body sur-
Biot-Savart law of interaction, resulting in the fol- face S, and A- has a curl equal to the uniform onset
lowing set of ordinary differential equations for the velocity LL:
particle trajectories: V2AP = -w (20)

1 t(i- r)xezri + h =- = I12 +j (r' t) (17) V2A" -0 (21)

Here mB is an additional velocity due to an onset flow n x A -
and the disturbance velocity caused by the body. The - n. ((V x A'e_) - u + LL°) (22)
advantage of this procedure is that it is gridless, so The velocity of the surface S is given by u,. Both
that numerical problems related to grid generation stream functions AP and A' must have a curl equal to
and stability criteria for high Reynolds numbers areavoied.Howeerthe lgoithmhasan oeraion zero at infinity. Substituting A' and w in the actionavoided. However, the algorithm has an operation principle, results in:

count proportional to N2, and suffers from singular
behaviour in the induced velocities when two vortices J [rj, AP] = -I" df dr'IVA' (r')12
approach each other. The singularities lead to chaotic 2
motions after some time steps. A variation to the N

point vortex method is the vortex in cell method in - t dr If d'-y (l' - ri (t)I) AP (1')
which the flow map is calculated on a fixed grid, re- 1 ft.

ducing the singular behaviour and gaining numerical + - Y (23)
efficiency at the cost of accuracy. 2 ( dt di )I

in which rj (X,, Y',) is the trajectory of a vortex
The discretization used in this paper is the vortex bo with inde j an u n fhe ste

blob approximation: blob with index j in an unbounded fluid. The stream
function AP is expanded in Fourier harmonics with

Nperiod L. and L, in x and y-direction:
( E,t) = ri-r (It - rt (q) (18)

i=1 A" (Z) = E A'exp (ik.r') (24)

where -y is a function of compact support e.g. a Gaus- h
sian distribution. This method is more suitable for Substituting this relation in (23) and taking vari-
flows with a smooth vorticity field, and eliminates the ations with respect to AP, Xj and Y leads to the
singular behaviour in the induced velocities, following set of equations:

The vorticity field obtained by this discretization, L2 L, [k12 = P (IkI) E rj exp (-ik!. r) (25)
however, does not satisfy the inviscid transport equa-
tions. Convergence criteria for the two-dimensional
vortex blob methods are given by Hald et al. [12], dXj Pp([kED Aexp(ik.r) (26)
1131. In order to calculate the trajectories of the d'
blobs, the stream function is needed. As was men-
tioned earlier, the use of Bint-Savart's law is numer- dY 0
ically inefficient. Improvements are made by solving d - (27)
the Poisson equation for the stream function on a grid
fixed in space. This results in an operation count pro- where the filter function P is defined as:
portional to the number of vortex blobs N, plus some
overhead for a fast Poisson solver. P(IkO) = dr"Lr(It' - r (t)1)exp(ik .r') (28)
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For each vortex, the number of trigonometric func- The two-dimensional model as presented here is
tions to be evaluated equals the number of vortices discussed in more detail in Van der Vegt et al. [9],
N. This can be avoided by employing cubic spline ap- 1161, 114]. More information about two-dimensional
proximations to the exponentials, which has the extra methods for solving the viscous transport equations
advantage of being able to use Fast Fourier Trans- can be found in e.g. Sarpkaya [17], Tiemroth [18] and
forms. Several of the spline approximations were Leonard [19]. For simulation of high Reynolds num-
tested, and are discussed in Van der Vegt et al. [14]. ber flows, many blobs and small time steps are re-
After calculating the stream function AP, the bound- quired, resulting in a large computational effort. The
ary conditions for Ah are immediately known, and Ah extension of the vortex blob model to three dimen-
can be determined. The paths of the vortices depend, sions is not straightforward. Due to the large number
however, only on the curl of stream function so that of vortices required to obtain a realistic description
it is more efficient to formulate the problem in terms the flow field, the tracking of individual vortices is
of U3h = V x Ah r. Bearing in mind the product for- not feasible. Furthermore the stretching term in the
mula for the solution of the Navier-Stokes equations, viscous vorticity evolution equation introduces extra
and the fact that the only way to introduce vorticity difficulties. For the three-dimensional flows, a more
in a flow is through the no-slip condition at a solid advanced computational scheme is required. Van der
boundary, the following integral formulation was de- Vegt [9] developed a special purpose spectral model
rived: to calculate the flow map. The discretization of the

J7 f -I (f, K&(p,q)) vorticity field also requires special attention. A new
7g')' + j5 j dSq representation of the vorticity, employing blobs which

- f ( " - 
- - V × A ~e_.) are modified to account for the presence of a body, is

presently under development. Results and theoretical
SK1 (p, q)) dSq (29) details will be published in the near future.

in which y' is the strength of a vortex layer over the 4. Vortex Induced Cylinder Oscillations
body surface S, t is the tangential vector on the sur-
face, and KI, K 2 are given by: The wake of a bluff body is comprised of an al-

ternating vortex street. The shedding frequency f.
K1 (p, q) = Vpln jz - (30) of the vortices is a function of the ambient flow ve-

locity U, cylinder diameter D and Reynolds number.
K 2 (p, q) = g. X K1 (p, q) (31) This relation was first discovered by Strouhal. The

More details on the derivation of the boundary in- non-dimensional Strouhal number S is defined as:

tegral representation can be found in e.g. Hunt [15]. S = f D  (34)
The integral equation for -' does not have a unique U
solution (Hunt, [15]). When the body surface is dis- and is more or less constant over a wide range of
cretized by panels with a constant source strength Reynolds numbers (100 < Re < 10000): S = 0.2, for
and vortex strength, this leads to a matrix which is smooth cylinders. If the cylinder is flexibly mounted,
nearly singular. Since vorticity can only be intro- there are non-linear interactions between the shed-
duced through the no-slip condition, the integral of ding frequency and the cylinder motion. Provided
y' over the surface must be equal to zero: the damping is suffiently low, the cylinder can extract

fs'yqdS, = 0 energy from the flow, exciting sustained oscillations
s 0 (32) at a frequency close to, or coincident with, its natural

Adding this condition to the boundary integral frequency. In water both cross-flow and and in-line
equation poses a problem with a unique solution. The excitation occurs. The in-line oscillations are excited
inviscid vorticity transport can now be summarized at much lower velocities than required for cross-flow

als follows: excitation.

R = I? + !1 h + f" (33) Two dimensionless numbers which are often used
in analyzing experimental data are the reduced ye-

which is solved using a second order Runge-Kutta locity:
metihod. T ie resulting tangential velocity jump (vor-
ticity layer) at the surface, is represented by a set of V,. = U/fAD (35)

blobs, which are diffused into the fluid through appli- and the stability parameter:
cation of the random walk.

Ks = 2m6/pD l (36)
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where f,, is the natural frequency of the spring mounted the vortex shedding frequency is near the natural fre-
cylinder, m is the virtual mass, 6 is the logarithmic quency of the mass-spring system. The added mass
decrement of damping, p the fluid density and I the and damping are incorporated in the calculation of
cylinder length. Experiments have shown that the the forces from the vorticity field. The equation of
cross-flow excitation range extends over 4.5 < V, < motion is calculated using a second order Runge-
10 with a maximum amplitude of 1.5 diameters. For Kutta method in time, as is the case for the update
in-line oscillations there are two instability regions of the blob positions.
within 1.25 < V < 3.8 with a maximum amplitude
of 0.20 diameters. More details on experimental re- 5. Structural Analysis Code
suits can be found in the review of Sarpkaya [20]. The structural analysis code available at MARIN

During a test program conducted at MARIN, mea- is a general purpose time domain simulation program
surements were performed on the spring mounted cylin- to compute the three-dimensional behaviour of sub-
der. A general arrangement including the co-ordinate merged cylindrical bodies excited by end motions,
system is presented in Fig. 1. waves and current. Although the program was de-

veloped for flexible risers, it may also be applied to
other submerged flexible slender structures, such as

Spring flowline bundles, hoses, umbilicals and mooring lines.

Y yThe mathematical model is based on a discrete el-
ement technique known as the lumped mass method.
This technique involves the lumping of mass, excita-
tion forces and reaction forces at a finite number of
nodes along the structure. All forces are formulated

U -.-- - x in terms of element properties, i.e. position and ori-
:>entation. By formulating the laws of dynamic equi-

Uniform librium and the stress-strain relations for each node,
onset
flow a set of equations of motion results. Additional equa-

tions are derived for the element twist motions due to
torsion. These equations are solved in the time do-
main using finite difference and iterative procedures.
It is assumed that the structural elements have ax-
isymmetrical properties with respect to dimension,

Q fluid force coefficients and stiffness.

A detailed description of the computer program
Fig. 1. Spring mounted cylinder arrangement can be found in Van den Boom et al. [23]. In this

paper the discussion is limited to the incorporation
of vortex induced fluid forces and motions in the

Cross-flow and in-line oscillation experiments were model. At each time step the velocity and acceler-
performed. A comparison with the semi-empirical ation vectors of the structural elements are known.
wake-oscillator as proposed by Griffin is discussed From these vectors, the cross-flow velocity and ac-
in [22]. The results appeared very promising, and celeration components are determined. Using these
are rendered valuable for validating the vortex blob quantities, equation (37) is solved using a second or-
method. The two-dimensional vortex blob code has der Runge-Kutta method. The cross-flow hydrody-
been tested on a number of cases of practical inter- namic lift force is then known. The drag force is
est. Calculations on a fixed cylinder and on a cylinder derived from equation (40) and the time history of
forced to oscillate were presented in [16] and 121]. For the structural response. The lift and drag forces are
the spring mounted cylinder, the method was supple- then evenly distributed along each element. From
mented with a module for solving the equation of the excitation forces and reaction forces, the program
motion of a spring mounted cylinder. At each time computes the kinematice for the next time step. This
step, the exciting force originating from the flow field process is repeated for each time step. A circular
is used as the forcing term for the equation of mo- cross-section is assumed in this approach, i.e. ele-
tion of the cylinder, which is then displaced, causing ment rotation is assumed to be perpendicular to the
a modification of the flow field. The region which is flow. The flow along each element is further assumed
of practical importance is the lock-in region, where

622



to be fully correlated, i.e. two-dimensional. This results obtained with the vortex blob method. OD.

assumption is valid as the amplitude of motion in- is the mean drag coefficient for a stationary cylinder,

creases (201. Although the fluid loading is thus es- Re,, = w, D2/v is the Reynolds number based on the

sentially two-dimensional on each element, the struc- oscillation.

tural response computational scheme allows for three-
dimensional responses. 7. Discussion of Vortex Blob Calculations

6. Wake-Oscillator Models Calculations using the vortex blob method, were
performed for values of the reduced velocity ranging

As an attempt to collect all observed phenom- from 5.0 to 7.0. The Reynolds number ranged from

ena in a compact model, several semi-empirical ap- 0.9 x 105 to 1.2 x 10'. Table 1 shows a comparison be-

proaches exist [201. One of the models is the wake- tween experimental and computational results for the

oscillator model, in which a non-linear oscillator for cross-flow motion of a spring mounted rigid cylinder,

the lift force is coupled to the equation of motion of with V, = 5.25 , and D=0.1 m:

the cylinder. The response parameter SG = 2rS2Ks

is the main parameter of importance. The governing Table 1
equations of the so-called Griffin Model are: Cross-flow results: measured and calculated

6rL + W"CL, - [co o (s-fow Quantity Meaasred Computed

_2G L - C = w /W (37 = 0.05 = 0.005
-[wsGU, -wHCL = wsFY/ (37) CD 2.26 3.49 4.50

for the lift coefficient, and: (rc, 1.10 0,59 0.52

WC 18.33 19.60 19.60
k+ 2wY + wfY = (pUD/2m) CL (38) CL,,ax 6.77 4.40 8.33

for the equation of motion in the direction normal to ocL 3.83 1.70 2.50

the onset flow. The shedding frequency ws follows WCL 9.25 9.75 9.75
from the Strouhal relation and the natural frequency yax 1.27 0.20 0.22

from w,, = Vl , where k is the spring stiffness. ar 0.79 0.13 0.10

The dimensionless coefficients F, G and H are to be Wy 9.25 9.80 9.80

determined from experimental results.

The major drawbacks of the model are the facts The most striking result is the difference between

that it is based on fluid damping in still water and the maximum amplitudes of the motion. The cal-

that there is a continuous phase angle variation be- culated value seems to be closer to normal values re-

tween the exciting force and the response of the cyin- ported in literature, while the measured value belongs

der. Additional damping has therefore been added to to the largest values reported. As was mentioned be-

the Griffin model. This damping is a function of the fore, the calculations were not performed to get con-

cross-flow displacement and is given for ay > 0.25 clusive numerical results, but to capture the relevant

by: phenomena involved. The calculated quantities show
a reasonable resemblance with the measured data. Of

rpLD [ 4.5 + 0.25 (o - 0.25)] (39) course the comparison above does i-,.t take into ac-
4m [I. 4/M: count the details of the flow field. The vortex blob

This is a slightly modified form of the empirical equa- algorithm contains parameters, some of which must

tion as proposed by Skop et al., see e.g. Sarpkaya (20]. be determined through numerical tests. Interesting
items in the calculations were:

For the drag coefficient of the oscillating cylinder,
the following empirical formulation is used: * start-up time, i.e. dimensionless time passed

before the cylinder was allowed to oscillate,
CD = UD + J sin (2wt) (40)

e time step,
where:

* panel size,C D =  
C D,, (I + I (0-YID )° '6s)  (41)grd s ai ,

* grid spacing,

where w is the frequency of cross-flow motion, ay is
the standard deviation of the cross-flow motion and I * vorticity reduction scheme
and J are constants to be determined from numerical
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In the present simulations, the flow field is largely fore the shedding process. A bi-cubic interpolation
determined by the motion of the cylinder. For this to a fixed grid sufficiently far away from the cylinder
reason, some precautions must be made with respect did not cause dramatic disturbances in the motion of
to the coupling of the flow field calculation and the the cylinder, although it was noticable in the force
motion of the cylinder. In order to prevent the sys- registration.
tern from decoupling, the time integration and the Sensitivity to changes in grid and panel size were
start-up time must be chosen correctly. In simula- not investigated in this study. Numerical results con-
tions without a start-up time, the system became un- ceringesg a me t rs can N u nri n eu . Vn
stable in the lock-in region for a dimensionless time cerning these parameters can be found in e.g. Van
step at* = UMt/D larger than 0.05, i.e. the cylinder der Vegt (9].
disappeared out of the computation domain which The calculations discussed above were performed
was 8 cylinder diameters in both directions. A grid on an ETA-10P232, and a typical simulation required
of 64x64 was used in all calculations, with 64 panels 20 to 30 hours of computing time.
on the cylinder surface. A start-up time of t* = 20
was chosen, see e.g. Sarpkaya 120]. In order to keep 8. Practical Results
the number of blobs within reasonable limits, i.e. less In this section some practical results obtained from
than 40000, no experiments could be performed with calculations with the structural code will be presented.
a smaller time step, unless very crude vorticity reduc- A first case concerns a vertical marine riser subjected
tion was applied. to a uniform incoming flow. For this application, re-

Earlier calculations pointed out that the vorticity sults obtained from another computer program are
reduction should not be applied in the close vicinity also available, see Hansen et al. [ ]. The main pa-
of the cylinder, to prevent loss of accuracy. The re- rameters are shown in Table 2, while Fig. 2 shows a
duction or clustering process must be applied with general arrangement. Some statistical results of the
great care, since it distorts the flow field, and there- vibration properties of the riser are shown in Table 3.

Table 2

Vertical riser properties

Quantity Unit Value
Length m 100
Diameter m 2
Mass kg/m 3220
Natural frequency rad/sec 0.71
Flow velocity M/a 1.0
Tension N 1.6 x 106

Current Response parameter - 0.15
vel oc ity

Table 3

Comparison between calculated results
for vertical riser

". Quantity Unit Calculated Hansen

• ~~~~Oi ";' " ,, . ., M 1.05 1.35

rMa n M 2.60 2.80

Ymn m -3.05 -3.40
1 1mo m 3.05 1 .A

Fig. 2. Vertical riser arrangement CD - 1.75 1.60A 5 X 1 8.0 X 104
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- Typical second mode -- Typical non-synmetrical
displacement displacement
Extreme displacements - Extreme displacement

80 80

60 60 - -~I

" 40 " 4I

20 20 -/ -I

-2 0 2 -4 0 4
In-line displacement (m) Cross-flow displacement (m)

Fig. 3. In-line displacements of vertical riser Fig. 4. Cross-flow displacements of vertical riser

Relatively large displacements are shown which
are not unusual for lightly damped structures. The Z Current velocity
resemblance with results obtained from Hansen et al. in x-direction
[1) is good, although their maximum cross-flow and x

in-line displacements are larger. This may be caused
by the fact that they use no structural damping at all. y
Using the present structural code this is not possible
due to numerical instabilities for very lightly damped Test pipe or cable
structures.

Figs. 3 and 4 show the extreme in-line and cross-
flow displacements. The in-line displacement is dom-
inated by a static part due to the mean drag force.
The dynamic in-line displacement is dominated by a
second mode vibration. This is due to the frequency Fig. 5. Horizontal pipe and cable arrangement
of the drag force which is twice the cross-flow force
frequency. The cross-flow frequency is pronounced
and vibrates in the first excitation mode at a fre- Table 4
quency close to the natural frequency.

Horizontal pipe/cable properties
The second case concerns a horizontal pipe and

cable in a uniform tidal current. Full scale men- Quantity Unit Value
surement data are provided by Vandiver [24]. Fig. pipe cable
5 shows the experimental arrangement and Table 4 Length m 23 23
shows the pipe and cable particulars. Diameter m 0.0414 0.0318

Mass kg/rn 3.327 1.952
The agreement between calculated and measured Natr f n/e 4.3 5

vibration data is good, as shown in Table 5. F l v el cy rn/a 0.5 .5Flow velocity rn/S 0.5 0.5
Tension N 3500 3500

Response parameter - 0.24 0.27
Reynolds number - 18800 14500
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Table 5 9. C

Comparison between computed results and The results presented in this paper support the
experimental (full scale) results for authors' view that complex flow simulations based on

horizontal pipe and cable the Navier Stokes equations are invaluable for under-
standing flow phenomena. The Navier Stokes solvers

PIPE should not be used as black box modules. Especially
Quantity Unit Calculated Expcriment I in flow problems which are not fully understood at
zID - 0.121 0.125 present, the predictive abilities of computational pro-

O XD -I 0.362 0.411 cedures must not be taken for granted. The insight
C' - f 1.625 1.67 obtained from the numerical methods should be used,

CABLE _ together with experimental data and experience, to
"Quantity Unit Calculated Experiment obtain simpler models for engineering applications.
cz/o 0.015 0.063 The wake-oscillator model which was used to de-
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are rendered to be sufficient for use in practice.
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Stability and Accuracy of a Non-Linear Model
for the Wave Resistance Problem

A. J. Musker
Admiralty Research Establishment

Haslar, England

Abstract Musker [I designed to calculate the
potential flow past a ship hull in steady

A non-linear Rankine-source method for translation in calm water. The method
predicting the wave resistance of a surface employs non-linear forms of the free-surface
ship in calm water has recently been boundary conditions and on the basis of some
published by the author. In the present initial tentative calculations it has been
paper, an investigation into the stability found to give good agreement with experiment
and accuracy of the method is presented. The data for both the WIgley hull and the Series
method is shown to be quite insensitive to 60 hull (see Musker f2]).
changes in the various parameters which are
necessarily associated with the numerical Although the above problem can be
procedure but which do not feature in the formulated in terms of an integral of a
mathematical formulation of the problem. A source density distributed on the hull and
stable parameter regime is identified which the free surface, in practice the domain
has been found to give excellent agreement boundaries are made discrete by representing
with towing tank data for the Series 60 hull. them using a finite number of panels, In

addition, the free surface is not known a
1. Introduction priori because it is part of the solution.

Consequently panels must be associated either
During the last decade there has been a with the calm free-surface (with the actual

great deal of activity in the field of free-surface represented by means of a
numerical ship hydrodynamics. New methods Maclaurin expansion of the prevailing
for simulating a wide range of phenomena have boundary conditions) or with the approximate
been proposed; such methods invariably free-surface relating to the most recent
involve the generation of a grid covering iterate in a convergent sequence of surfaces.
either the boundaries of the domain (as in a The present method employs the first of these
panel method) or the complete interior of the two options and clearly falls into the
domain (as in an Euler or a Navier-Stokes category of so-called Rankine source methods.
code).

Rankine source methods have been the
Although it is usual to compare any subject of intense development in recent

numerical predictions with available years in connection with a particular
experiment data (or, where appropriate, formulation of the Neumann-Kelvin problem
analytic data) it is somewhat rare to find (see, for example, Raven [3]). The
examples of the effect of systematic Neumann-Kelvin (NK) problem models the
variations in grid geometry on the accuracy wave-making of a hull by a solution of
of the solution. Equally, there may be Laplace's equation subject to a linearlsed
factors other than the grid geometry which form of the free-surface condition and an
affect the outcome of a simulation and these exact form of the kinematic condition on the
too are often overlooked. In addition to the hull surface. Despite the much disputed
accuracy of a method, its stability also problems of uniqueness of solution for the NK
needs to be assessed. This may be achieved problem a large number of computer codes have
with the aid of theoretical treatment but been prepared based on this theory. The
ultimately the degree of stability of a beauty of the Rankine source method lies in
method can usually only be gauged by its Its inherent ability to provide engineering
actual behaviour in trial calculations. solutions to the NK problem (usually in a

modified form using double-body
This paper addresses both the accuracy and linearisatlon) whilst at the same time

stability aspects of a panel method due to providing the potential for addressing the
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non-linear problem. On the other hand, the should not travel upstream of the hull. This

more conventional approach to solving the NK approach involves the use of an upwind finite

problem, using a Havelock or Kelvin difference advection scheme for the wave

wave-making source distribution, has the disturbance and can take many forms.

important advantage of requiring fewer panels
which automatically satisfy the important Clearly the operator of any Rankine source

radiation condition that waves should travel rode has a great deal of freedom in the

downstream. manner in which a particular problem Is
posed. The purpose of the present paper Is

Staying with the linear problem for the to Investigate the effect of making certain

moment, it is interesting to note the great decisions about the geometry of the mesh and

diversity of solutions quoted in the the type of advection scheme used for the

literature. Figure 1 shows a collection of particular case of the method described In

computer predictions of wave resistance for Reference [1]. This method Is first outlined

the Series 60 hull (C. - 0.6, model fixed) for completeness and the 'degrees of freedom'
drawn from tth two Workshops on Ship at the operator's disposal are identified and

Wave-Resistance Computations held at the minimised to manageable proportions. These

David Taylor Research Center (see references are then systematically adjusted and the

[4] and 15]). All these predictions use effect on the accuracy of prediction and the

linearised theory for treating the free stability of solution is recorded. All ta

surface but differ In their method of calculations were performed for the Series 60

solution (NK using Rankine source technique, hull (CB - 0.6).

NK using Havelock source technique, thin ship
theory - in which the hull boundary condition 2. Methodolo"

is applied at the centre-plane etc). It is
interesting to note that a mean curve drawn A Cartesian coordinate system is used in
through the data would be significantly above which the xy plane is in the calm free
the tank results. More recently, Chen and surface with the x axis positive upstream and

Noblesse [6] have remarked on the the z axis positive downwards. The fluid Is

considerable scatter evident in published assumed to be Inviscid, incompressible,

predictions of wave resistance based on irrotational and infinitely deep.

similar theory. As noted by Bal [4] if no
algebraic or computer truncation errors are A scalar velocity potential Is defined

incurred then results of numerical such that -gradi is the local fluid velocity

computations based on the same mathematical vector. This potential satisfies Laplace's

formulation should be the same. Clearly this equation everywhere within the fluid subject

is not the case. to the following boundary conditions.

If the possibility of algebraic or coding (grad *) -f' = 0 (1)

error is dismissed (itself a dangerous
assumption) then the explanation for the on the hull surface,

disparity In the predictions most likely lies
In the mechanism whereby truncation errors [8zl d-' = i ra1
appear. The obvious source of such errors is [az 0  [Aeto dl od1J0
the manner In which the hull is divided Into
facets or panels. The distribution of such
panels around the hull, particularly near the ral,6 1 dx + [ad 1 (2)
bow, stern and waterline is bound to have an axzdl La dlo ayaz dl
effect on the solution. In the case of a[ ° d
Havelock source the numerical evaluation of and
the Oreen function poses its own problems.

If a Rankine source rather than a Havelock [ [ 8i .1 0
source is used then perhaps an even greater C j g +  Ox1oX o
problem presents Itself: how large an expanse 

0 a O

of the free surface in the vicinity of the
hull needs to be modelled using additional [aifj[ j + tlW[6 1a180 1 1
panels and how should the resolution of this + [al aya [Rzljaz' ii
region be chosen? The manner in which the o
source density is distributed algebraically
on each panel will also affect the solution.
Recent 14r [7] has shown that the ucc = f- l -I
of higher order curved panels with linearly ax aYJ az (3)
varying source density is computationally 0 0

more efficient compared with constant density
panels. Finally, Rankine source methods
invariably employ Dawson's approach [8] to
satisfy the radiation condition that waves
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on the calm free-surface. In the above of 1 mm for a hull of length 100 a.
equations, ft' (n', ny, n) represents the Further details of the non-linear algorithm

outward normal vector on the hull surface, I used can be found in Reference 1I].
represents a distance measured along a
double-body streamline measured positive in Having solved the equations, the pressure
the locally upstream direction, U. is the at a particular control point on the hull is

found from:
ship speed, g is the acceleration due to
gravity and C represents the wave elevation. p = pgz + I (Us - Igrad #12) (5)
The last two boundary conditions are 2 g(
non-linear and result from Maclaurin
expansions of the exact boundary conditions The wave resistance is ound by
prevailing on the free surface [i]. For the integrating the pressure around the hull
purpose of comparison, the above set of taking due account of the hydrostatic
boundary conditions reduces to the correction associated with the predicted
Neumann-Kelvin problem if the spatial water-line (note that for consistency with
velocity gradients are set to zero. The ship the opplied boundary conditions this
speed is defined such that correction is not performed for the linear

case):

grad * - (- U , 0,0) (4) R. JJpnx' ds (6)

at o except where waves are present.
Dawson's approach [8] is used to ensure that
waves are advected downstream, where S is the wetted area. As is often

found in panel methods, a residual resistance
The velocity potential Is prescribed by is observed at zero speed because of the

means of a source density distribution manner in which the hull is made discrete.
associated with the hull (and its optical Accordingly, the result for the double body
image in the z - 0 plane) and the free calculation (where no waves are present) is
surface. Constant, planar, source density first subtracted to yield the final wave
panels are used throughout the analysis and resistance.
in the case of the free surface panels these
are raised very slightly above the calm The free surface grid uses double-body
water-plane to improve the modelling of the streamlines generated by Runge-Kutta
spatial velocity gradients [9], [10]. The integration to within a lateral error of 10- 5
latter are calculated analytically and great of the ship length. These 3treamlines are
care has been taken to avoid singular regions separated laterally by equal intervals at the
(in the numerical sense) by employing upstream edge of the calm froa-surface and
suitable asymptotic expressions within the for each streamline the control points are
program. To avoid leakage, an additional positioned at equal intervals in arc-length;
system of vertical panels (referred to this process is facilitated using cubic
loosely as 'deck panels') joins the splines. The free surface panels are
water-line on the hull to the neighbouring constructed automatically such that their
system of free-surface panels; a Neumann stream-wise edge projections onto the z - 0
condition is imposed at the centrolds of plane follow the streamlines and have edges
these panels, along the water-line which are equal in

length. An additional constraint is imposed
Successive application of the boundary in that the panel aspect ratio away from the

conditions at a large number of control hull is typically unity.
points on the hull and calm water-plane leads
to a system of non-linear simultaneous A four-point upwind finite difference
algebraic equations for the unknown source scheme is used to advect disturbances in the
densities and wave elevations. The downstream direction. The boundary condition
associated Jacobian matrix is calculated imposed on the first three control points at
analytically and the equations are solved the upstream end of a given free-surface
Iteratively using Newton's method without streamline is different from equations 2
relaxation; each associated linear system is and 3. Instead, the vertical fluid velocity
solved directly using a Crout factrisation. in this region is forced to be zero. In
The criterion adopted for complete addition, the last three control points at
convergence is that the root mean square of the downstream end are treated differently.
the sum of the residuals (comprising the Here, the coefficients in the advection
most recent corrections to the source scheme are reduced gradually to 5 per cent
densities and wave elevations) is less than of their normal value to dampen the waves at
0.002. Although strictly dimensionally the edge of the domain.
inconsistent, in practice this criterion
relates to a correction in wave elevation
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It should be noted that the method does not resolution, the resistance approaches an
employ any clustering of panels in the asymptote as the size of the domain
vicinity of the bow and stern - in the increases. Accordingly, in order to decrease
author's opinion such clustering provides the number of degrees of freedom for the
too many extra degrees of freedom to allow a present study, a large domain was used
sensible study to be undertaken. In throughout the investigation. This was set
addition, the highly variable step-length for to 3 ship lengths in the longitudinal
the finite difference advection operator in direction and extended to 1.5 ship lengths
such a scheme will almost certainly affect transversely measured from the centre-plane.
the stability of the solution algorithm. The distance between the bow and the leading

edge of the domain was set to one half of the
The hull panels are arranged to mesh ship-length; this was based on previous

exactly with the free surface nodes along the experience with the method.
water-line. Below the water-line, panels are
constructed automatically in one of two ways. The hull and free-surface grids are
Firstly, they can be constructed such that an related in the sense that the water-line
equal number of quadrilateral panels is used nodes are forced to coincide prior to the
at each longitudinal station ('single-patch construction of the vertical deck panels. In
method' - see [1]). Secondly, a mixture of addition, an optional facility exists to
quadrilateral and triangular panels is used position extra hull panels between water-line
to allow the number of panels at a particular stations defined by the free-surface nodes so
section to be reduced in the ratio of local that the hull panel density (defined as the
section depth to keel depth. This is done in number of stream-wise hull panels per
such a way as to maintain a reasonably free-surface panel) can assume any Integer
constant panel area and aspect ratio (which value. If this option Is invoked then the
are thought intuitively to be important from grid generator positions these extra panels
the point of view of numerical stability) such that their stream-wise edges form equal
whilst at the same time lifting the divisions alng the water-line. In this way
restriction imposed by the single-patch the grid generating code can automatically
method that the hull panels below the calculate the mesh on the hull once the hull
water-line must be generated on the basis of panel density and free-surface resolution
strictly vertical stations. This is known as have been set since only an integer number of
the 'multi-patch' method and was developedl to panels is allowed along the water-line (in
extend the capability of the panel code to practice the latter condition is met within
hulls with more complicated geometry - the computer program by a very minor
particularly in the bow and stern regions. adjustment to the absolute length of the
The BLINES computer-aided design system [11] domain).
is used for interpolation purposes.

It can be seen, therefore, that there are
3. Stability and Accuracy Study now only four degrees of freedom which need

to be considered: the grid resolution, the
The following list defines the most hull panel density, the free-surface panel

important factors which need to be addressed elevation and the type of advection scheme.
before a calculation can be performed for a It should be noted that no other operator
particular hull geometry: Intervention is called for once these

factors have been set.
a. Length of domain.

4. Numerical Experiment
b. Half-width of domain (ie excluding
image in xz plane).

The Series 60 (CB = 0.6) hull was used forc. Distance between the bow and thealthcoperundsridinhs
leading edge of the domain. all the computer runs described In this

investigation. The hull was fixed and no

d. Free-surface grid resolution, allowance was made for sinkage or trim (in
the author's opinion this in no way detracts

e. Hull grid resolution. from the usefulness of the study). Unless
otherwise stated, the following default

f. Free-surface panel elevation (above conditions were used for all the runs:

z = 0 plane). hull panel density I

g. Type of advection scheme. and

Experience with the code suggests that panel elevation 15 per cent of
there are significant differences in ater pel
predicted resistance between large and small average panel
domains. Not surprisingly, however, at any diagonal
particular Froude number and for a fixed grid
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The latter figure was based on previous I and 3. Mode 2, multi-patch grids were
experience with the code and careful analysis employed throughout, with n set to 10.
of the ability of constant source density
panels to model spatial gradients of fluid Experiment C (effect of panel elevation)
velocity [10].

This experiment was designed to
Four numerical experiments were performed investigate the effect of elevating the

with the aim of determining the effect of free-surface panels above the calm
varying any one of the above-mentioned water-plane. As for Experiment B, mode 2,
degrees of freedom. The runs were performed multi-patch grids were employed throughout,
at the following Froude numbers: with n set to 10. Three different elevations

were tested: zero, 15 and 30 per cent of the
0.239, 0.271, 0.287, 0.303, 0.319, 0.335 average panel diagonal.
and 0.351

Experiment D (effect of choice of advection
based on ship-length at the water-line. All scheme)
arithmetic was performed using 64 bit
precision. The experiments are labelled A, The above three experiments were performed
B, C and D and are described below, with two different upwind advection schemes

for the stream-wise wave-slope:
Experiment A (effect of free-surface grid I
resolution) Taylor Scheme: Slope - x

This was performed in two stages. Firstly
(experiment Al), three free surface grids 1.667C - 2"Ci- + Ci-2 - 0167i
were generated each of which was fixed, in -1
relation to the ship-length, for all Froude 1
numbers (henceforth such grids will be termed Spline Scheme: Slopes = - x
'mode 1 grids). They are referred to as
coarse (1166 free-surface panels), medium [ ]
(1904 free-surface panels) and fine (2673 ["555Ci - 2'i77t-. + 0689Ct-2 -

free-surface panels). The number of
free-surface panels distributed along the where At = the increment in 1. The first
water-line of the hull was 17, 23 and 27 (Taylor Scheme) is identical to Dawson's
respectively. Single-patch hull meshes were scheme [8] except that Dawson allowed the
used for th s experiment, increments between free-surface nodes to be

variable. The spline scheme uses knots at
Secondly (ixperiment A2), grids were each interior node with a quadratic correction

generated such that their resolution related term for the rate of change of slope at the
not to the ship-length but rather to the first node. This experiment concentrated on
wave-length of the transverse waves expected monitoring the effect of changing the
to be shed by the hull. In this instance the advection scheme from the default four-point
grid resolution was described by a parameter, Taylor scheme to the four-point spline scheme.
n, where n is the number of panels per
transverse wave-length. The total number of 5. Discussion of Results
panels positioned along the length of the
free-surface domain is thus: In the following section, all results for

Experiments A, B and C are associated with
n x domain-length the use of the Taylor advection scheme.

2 iTFrz x ship-length Absence of a data point in any of the
accompanying graphs indicates that the

This meant that for each Froude number a algorithm failed to converge within the
new grid (henceforth termed a 'mode 2 grid) specified tolerance (often, but not always,
had to be calculated to conform to the chosen this meant that the algorithm diverged;
value of n. This exercise was carried out occasionally the root mean square of the
fovalue of n Th gi g x rcise ws c d ot Iresiduals meandered about a mean value above
for values of n ranom t 12 i the selected tolerance - such runs were
intervals of 2 (it was not anticipated that a deemed to have failed even though the

value of n as low as 4 would perform very associated wave resistance had apparently

well but for the sake of completeness it was converged to witiane tol en)
included In the experiment). Multi-patch converged to within a finer tolerance).
inludmesheswreused in ts experiment). MConvergence was usually attained after about
hull meshes were used for this experiment. 5 iterations. All results are compared with

the Series 60 tank data of Kim and JenkinsExperiment B (effect of hull panel density) [12] for the case of a fixed model.

This experiment compared the performance
of the method using two different values of
the hull panel density; the values used were
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Experiment A calm water-plane. The absence of data points
for the case of zero panel elevation

A comparison of the coarse and fine grids indicates the instability inherent in
is shown in Figure 2 and a summary of the introducing spatial derivatives of fluid
results is presented in Figure 3. The method velocity calculated using panels of constant
converged for all speeds using the coarse source density if the control point lies in
grid. For the medium grid the method failed the plane of the panel [10]. With the
at a Froude number of 0.335 whilst for the possible exception of the two runs at a
fine grid the method failed for the three Froude number of 0.271 it can be seen that
highest Froude numbers within the Range used. there is little difference between the

results for 15 per cent and 30 per cent panel
It should be recalled here that Experiment elevations. All the runs performed with

Al was designed around the original method elevated free-surface panels were stable.
described In Reference [I] employing mode I
free-surface grids and single-patch hull Experiment D
grids. It is perhaps surprising that the
coarse grid should have led to such good Attention here will be focussed on three
agreement with experiment data particularly results of significance. In the first two
at the lower Froude numbers where shorter cases the data refer to mode 2, multi-patch
wave-lengths are prevalent. It is similarly grids with n = 10. Figure 8 shows the very
curious to observe the closer agreement small effect the spline advection scheme has
between the coarse and fine meshes at the on the accuracy of the predicted wave
lower Froude numbers compared with the medium resistance compared with the Taylor scheme;
mesh results. the results are very nearly identical.

Figure 9 shows the data for Experiment C with
The results for experiment A2 (mode 2, zero panel elevation replotted using the

multi-patch hulls) are summarised In results for the spline advection scheme. The
Figure 4. It can be seen that all the runs results are compared with the single Taylor
converged successfully for values of n from 4 result from Figure 7. Two Important
to 10. For n = 12, however, the method conclusions emerge from these data. Firstly,
diverged for Froude numbers of 0.319 and the effect on the accuracy of using a spline
0.335 (note that the lowest Froude number scheme is minimal. Secondly, the results for
case was not processed because it exceeded zero panel elevation are not only inherently
the capacity of the computer - this was the unstable using the Taylor scheme, as observed
only run In the whole investigation which above, but also Inherently inaccurate when
could not be processed because of size they can be made stable by employing a spline
limitations). Not surprisingly, values of scheme. This again reinforces the findings
n = 4 or 6 appear to be quite Inadequate to of Reference [10].
resolve the flow-field and hence the wave
resistance. The data for n = 8 define the Further evidence of the more stable nature
shape of the curve well but slightly of the spline scheme Is offered In Figure 10,
under-estimate the resistance for the higher which shows the spline results for Experiment
Froude numbers. Excellent agreement is A2 with n = 12, compared with the Taylor
obtained for n = 10 and no improvement in results with n = 10. The results for Froude
accuracy is achieved for the stable runs when numbers 0.319 and 0.335 when n - 12 are now
n = 12. stable - thus allowing a comparison in

accuracy between n = 10 and n = 12 to be made
Experiment B throughout the whole speed range. It can be

seen that there is little advantage to be
In this experiment mode 2 free-surface gained by Increasing n above 10.

grids and multi-patch hull grids were used
with a hull panel density of 3 (see The stability of panel methods for the
Section 3). Figure 5 shows a perspective linear problem has been analysed recently
view of one of the meshes from a point below using Fourier techniques by Sclavounos and
the water-line looking towards the hull. The Nakos [13]. They found that the numerical
effect of the increased resolution of the damping associated with upwind finite
hull can be seen in Figure 6 to be quite difference schemes decreases as the grid
weak. At the higher Froude numbers the becomes finer or as the number of upstream
increased hull panel density consistently nodes included in the scheme at a particular
lowers the resistance by a very small amount control point increases. Although the
whilst little or no effect is observed at the present technique Is non-lJnear this
lower Froude numbers. All the runs performed nevertheless probably explains why the method
were completely stable. has a tendency to diverge for the finest grid

tested (n - 12) using the Taylor scheme.
Experiment C Their work may also explain the stability

problems experienced by the only other
Figure 7 illustrates the effect of non-linear methods which, to the best of the

elevating the free-surface panels above the author's knowledge, have appeared In the
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literature since 1985 (Maruo and Ogiwara in Figure 11. The Series 60 data for the
[14]. Xia [15], Ni [7] and Rong et al [16]). method of Maruo and Ogiwara is taken from

Reference [17]. The present results using
Maruo and Oglwara used a two-point formula the default conditions of 15 per cent panel

but still experienced quite severe elevation (based on average panel diagonal,
convergence problems, whilst Xia and Ni both not ship-length), four-point Taylor advection
used three-point formulas. Xia found that scheme, mode 2, multl-patch grids with n = 10
this method diverged for all cases tested If are included for comparison.
a 4-point scheme was adopted but much better
convergence characteristics were observed 6. conclusions
when this was abandoned in favour of a (less
accurate) 3-point scheme. Ni employed a
sophisticated higher order panel scheme very A panel method based on a boundary
successfully using a three-point scheme but integral approach to solving the non-linear
again found stability a problem using an free-surface wave-making problem has been
extra upstream node. In the present method, thoroughly tested against tank data for the
using mode 2 free-surface grids and Series 60 hull. The number of degrees of
multi-patch hull grids, stability only became freedom at the disposal of the operator of
a problem at the highest resolution (for the the computer code has been minimised with the
highest Froude number only) and this was aim of investigating systematic changes to
completely alleviated by utilising a the input parameters which may affect the
four-point spline rather than a four-point numerical solution but which do not feature
Taylor scheme. In the method of Rong et al a in the mathematical formulation.
two-point scheme was used near the stern
region to provide sufficient damping to Two types of grids were tested. The first
ensure convergence, type, labelled mode I, single-patch, uses

panel geow,)tries on the calm free 3urface
Mention should be made of the practice of which are independent of Froude number but

elevating the free-surface panels above the which are kept constant with respect to the
calm water-plane. It might be argued that ship-length. The hull panels are organised
the ensuing system of equations will be less so that th3 same number of panels is used at
well conditioned in the sense that a control each station. The second type, labelled mode
point on the z = 0 plane would not be so 2, multi-patch, uses panel geometries which
strongly associated with its corresponding depend on the Froude number in the sense that
panel If the panel were raised above It. On a fixed number, n, of free-surface panels per
the other hand, the author has shown that the transverse wave is selected. In addition.
modelling of the spatial gradients of fluid the bull panels are organised into
velocity which are required in the non-linear quadrilateral or triangular panels
formulation Is inadequate if the control automatically such that the size and shape of
points are contained In the plane of the panels do not change significantly from
panels. Indeed, it is so inadequate as to station to station.
cause the method to diverge.

The following conclusions can be drawn:
It should be noted that the amount by which
the panels need to be raised is very small - a. As expected, the method was
typically between 0.8 per cent and 1.5 per unstable for zero free-surface panel
cent of the ship length, depending on the elevation. The method was invariably
Froude number, when n = 10. In addition, stable, however, for non-dimensional
Figure 7 demonstratec that the predicted panel elevations (based on average panel
resistance appears not to be particularly diagonal) of 15 per cent and 30 per
sensitive to the panel elevation. Xia [15] cent. Furthermore, the solution was
also tried raising his free-surface panels observed to be reasonably insensitive to
and found improved convergence at some the choice of non-zero panel elevation.
expense in accuracy. Panel elevations used
by Xia, however, were much larger - typically b. Accurate results were obtained
between 2.5 per cent and 10 per cent of the using a coarse, mode 1, single-patch
ship-length - and in the author's opinion grid for all Froude numbers. This
these values are too large. Ni [7] has approach became unstable as the grid
circumvented the problem altogether by became finer.
adopting higher order panels with linearly
varying source density which follow the c. The mode 2, multi-patch grids
calculated free surface as It progresses exhibited greater stability and were
towards its final converged solution. The used for the remainder of the
present work suggests that such Investigation. The results approached
sophistication may not be necessary. the tanls data asymptotically as n

increased from 4 to 12, with very little
Finally, a synopsis of the published data difference in the accuracy between 10

for the above non-linear methods is presented and 12. The n = 12 results diverged at
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two of the higher Froude numbers using 5. Noblesse, F and McCarthy J H,
the four-point Taylor advection scheme. "Proceedings of the Second DTNSRDC

Workshop on Ship Wave-Resistance
d. No case of instability or Computations", DTNSRDC, November 1983.
significant change in accuracy of
prediction was recorded for any value of 6. Chen, C Y and Noblesse, F, "Comparison
n using the four-point spline scheme. between Theoretical Predictions of Wave

Resistance and Experimental Data for the
e. A threefold increase in hull panel Wigley Hull", Journal of Ship Research,
density in relation to the free-surface Vol 27, No 4, December 1983.
grid resulted in no significant effect
on the stability or accuracy of the 7. Ni, S Y, "Higher Order Panel Methods for
method. Potential Flows with Linear or

Non-Linear Free Surface Boundary
f. Comparison with other non-linear Conditions", Chalmers University of
methods described in the recent Technology, 1987.
literature shows the method to be very
stable and accurate using mode 2, 8. Dawson, C W, "A Practical Computer
multi-patch grids with n set to 10. Method for Solving Ship-Wave Problems",

Proceedings of the Second International
Having identified a stable and accurate Conference on Numerical Ship

parameter regime, it is hoped to perform a Hydrodynamics, Berkeley, 1977.
similar investigation in the near future to
determine the effect of decreasing the extent 9. Musker, A J, "A Note on Free-Surface
of the free surface surrounding the hull. Flow Prediction", ARE Technical
Tests with different hull geometries are Memorandum TM(UHR)86306, March 1986.
also planned.
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Calculation of Free-Surface Flow
around a Ship in Shallow Water by Rankine Source Method

H. Yasukawa
Mitsubishi Heavy Industries

Nagasaki, Japan

Abstract a slender ship moving in channel [7].
The other hand, there is Rankine Source

Rankine Source Method was applied to the Method developed by Gadd [8] and Dawson [9], a
shallow water and channel problems, and cal- kind of numerical method for solving steady
culations were made of free-surface flow free-surface potential flow in deep water. In
around a ship moving in calm water and her this method the free-surface condition based
wave-making resistance. The calculated on double body flow is employed, and the ac-
results were compared with experiments and curacy of predicting wave-making resistance is
calculations by conventional linearized generally better than the conventional linear
analytical method. It was shown that the calculations. Further detailed informations
Rankine Source Method promises an improvement for wave elevations, pressure distributions
in predicting free-surface flow around a ship and velocity fields around ships can be ob-
in shallow water than the conventional tained easily.
linearized analytical method. In this paper the Rankine Source Method was

applied to the shallow water and channel
1. Introduction problems. Calculations of free-surface flows

and wave-making resistance were made for Inuid
Flow around a ship traveling in shallow and S-201 ship hull form [10], and the calculated

restricted water is much different from that results were compared with experiments and
in deep and unrestricted water due to the in- calculations by conventional linearized
fluence of sea bottom and bank walls. There- analytical method. It was shown that the
fore many studies have been carried out for Rankine Source Method promises an improvement
investigation of performance and safe naviga- in predicting free-surface flow around a ship
tion of the ship in the shallow and restricted in shallow water than the conventional
water such as river, coast, harbor, channel linearized analytical method.
and so on.

The theory on ship waves and wave-making 2. Formulation of Shallow Water and Channel
resistance in shallow water was presented by Problems by Rankine Source Method
Havelock in 1922 [1]. Kinoshita and Inui cor-
rected the Havelock's theory so as to satisfy Let us consider a ship moving in center of
the boundary condition of sea bottom exactly channel-in calm water. We ass-ime that sec-
[2]. Further Inui extended its theory to the tional shape of the channel is uniform in
channel problems [3). By these studies the lengthwise direction. The coordinate system
hydrodynamic characteristics of waves and is defined as shown in Fig.l. x-axis coin-
wave-making resistances near the critical cides with the direction of steady uniform
speed (F h = 1.0, where F means Froude num- stream whose velocity U is identical with the
her baseaI on water depth 0 wPrP madp rpar, ship speed. The origin of th- -JS 40 at the
Kirsch carried out calculations of wave-making point of intersection of still water surface,
resistance in various water depth and channel midship section and center plane of the ship.
width for mathematical ship hull form and dis- y-axis is horizontal and normal to x-axis, and
cussed the shallow and channel effect [4]. z-axis directing vertically upwards.
Bai calculated wave-making resistances in Supposing a ship is in an inviscid, irrota-
shallow channel by localized Finite Element tional, incompressible fluid, the velocity
Method [5]. Muel]er compared experiments with potential 0, which represents flow around the
calculations by conventional linear theory in ship and satisfies Laplace's equation V20 = 0,
shallow water, and indicated that the conven- is introduced. 1P has to satisfy the following
tional linear theory could not predict free- boundary conditions
surface elevation and pressure distributions
with sufficient accuracy [6]. Recently Mei 4xx + Oy~y - z - 0 on z -, (1)
and Choi presented the higher order theory on
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Now 4j is expressed as

where

SF velocity potential representing free-
- - -surface,
-U "added velocity potential representing

ship hull due to the presence of free-
surface,

,C added velocity potential representing
channel due to the presence of free-
surface.

Z F' j and Care represented by Rankine
sources which are disLributed on undisturbed
free-surface S ship hull SH and channel sur-
face SC as follows :

4(P) - FSFOF(Q)GF(P, Q)dx'dy', (8)

¢ItP) ' ffSHO11(Q ' ) G1'( P 
, Q' )dSH, (9)

Fig.1 Coordinate system €¢(P) - ffSoc(Q")GC(P, Q")dSC, (10)

,A2 22. - on z - C, respectively. lere OF , all and aC are strength
x y z(2) of source distributions for free-surface, ship

hull and channel resp.ctively. P is field
OnH = 0 on ship hull surface, (3) point (x, y, z). Q, Q' and Q" are source

points for free-surface, ship hull and channel
OnC = 0 on channel surface, (4) respectively, and are defined as follows

where is elevation of free-surface, g the Q = (W', y', 0 ),
acceleration of gravity. nH and nC mean the
outward normal directions on ship ull and Q' = ,Y 11 zH),
channel surface respectively. Eqs.(1) and (2)
represent the exact free-surface conditions. Q (xc, YC zc).

Eqs.(3) and (4) represent the boundary condi-
tions of ship hull and channel surface. Here GF is represented as
in order to simplify the calculation, the ex-
act free-surface conditions (1) and (2) are GF(P, Q) = I/RF, (11)
linearized as :

P is expressed by following form where

= 4 , (5) RF = /(x-x') 2 + (y-y') 2 + z2.

where Gy andfGC are representing the double body
0 velocity potential for double body flow, flows for ship hull and channel as
j velocity potential for steady wavy flow.

It is assumed that the double body flow is GH(P, Q' ) = 1/RH + 1/RH, (12)
dominant in the flow field, and we neglect
higher order terms with respect to 4j for GC(P , Q") 1/RC + 1/RC', (13)
eqs.(1) and (2). Then the linearized free-
surface condition based on double body flow is where
derived [9] as :

+ + 84 i2z RH = '/(x-xH)2 + (Y-YH )Z + (z-zH)
2,

on z - 0, (6) RH' = .'(x-xH)' + (Y-Y11)' + (z+zH71Y

where the subscript S means partial derivative RC = /(xC)2 + (Y-YC)
2 

+ (z-zC)
2
,

along the streamline of double body flow on Rr' = /(x-xr)' + (y-yc)2 + (z+zC)2.

still water surface. In this paper eq.(b) is
employed for the free-surface condition.
Double body potential 0 can be obtained by
Hess and Smith's method [11]. Therefore our
concern becomes to solve the 4j so as to
satisfy the boundary conditions.
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3. Numerical Procedure 4. Wave Height and Wave-Making Resistance

Eqs.(3), (4) and (6) can be discretized by Wave height 4 is represented by a
following procedures : linearized form of eq.(2) with respect to 4j
(a) A finite area of the still water is as :

divided into MF rectangular panels ZFl It~2 . 2  
2(j = 1 - MF), the hull surface into HA 2

panels EZg (Z = 1 - Hi) and the channel -2 oxjx-2 oyjy)i (25)
surface into MC panels ECn (n = 1 MC).Z

(b) It is assumed that variable on each Pressure p is represented by a linearized
panel is represented by value on the form of Bernoulli's equation as
panel, and the source strength is con- 22 2 2
stant in each panel. p 0 0(U -x- oy 0z

The system of simultaneous equations with (26)
respect to the source strength aFj (j = 1 -0(26)
HF), aH£ (Z = 1 ~ H ) and aCn (n = 1 ~MC) are where p is water density.
composed as follows :

Wave-making resistance R is evaluated by
(Aij]{)aFj} (Bit9{OH90 + [Cin){OCn} - (COil integration of pressure on slip hull as :

(Dkj]{apj } + [Ekt){011 [Fkn3{Ocn} - O }I Rw - -ffSHPnHxdSH, (27)

(Gmj]LOFj} + (HmZ)OH£ }  [Imn){OCn1 = { 0 }. t;here nix is x-component of directional
cosines of the ship hull surface.

(14)
where In this paper, p and Rw are represented by

V2GF aGF the following non-dimensional expressions
Aij [ifZ (Aoi "--- Boi )dx'dy ]P.P 1

- 2as6a, (15) 2p - p/ 1 P ,1(28)

a2GH 2jG1  C _ R-/!PSoU2, (29)
Big,- (fS(Aoi-Sj Bor-=)dSH]p-pi (16)2

where S is wetted surface area of ship hull
C4 a2GC aGC in stili water.Cmn = [(ifn(AOim -- ±'Boi- ")dSc]P..pi. ._(17)

Cn s a5. Results and Discussions
a GF

Dkj - -dx'dy']p3 pk' (18) For evaluation of the present method, cal-
Fj~nH kculations in deep and shallow water were

8GH carried out for Inuid S-201 ship hull form
Ek = ijs dSH3p-P (19) [10] and compared with experimental data[ 2EnH [6][10]. Further, calculations were made of

aGC wave-making resistance of the ship in channol.Fkn " [ ¢n dSC]P"'0
(kn kCn n1  I ' (20) 5.1 Results in deep water

Gmj - GF -dxddy ']Pm"' (21) First, calculations in deep and un-
SFJ nC mrestricted water were carried out. Fig.2

3H GH  shows panel arrangements for ship hull sur-
= lif 1ZHZP3n 0C " (22) face. We used 2 types of panels for valida-

tion. Panel H-i has 220 panels and panel 11-2

3GC has 440 panels. Fig.3 shows panel arrange-
tmn i . J' (23) ments for free-surface. Panel F-I has swept

nd back [9], and panel F-2 has not. When we cal-
AOi 4- sj/g culated the flow by using the free-surface

panels with rapid change of panel width in
lengthwise, oscillations occurred in the cal-BOi. = 

24 osi 0s/g (24) culated results for free-surface source
2S strength. So the free-surface panels with

COli -0si~ossi/ , smooth change of the panel width were used to
prevent the oscillations. Fig.4 shows varia-

6i is the Kroenecker delta function. tion of calculated wave-making resistance with
6I'or the calculations of 32/aS2 terms in respect to the size of free-surface panel

eqs.(15) - (17), the 4 points upstream dif- region. Wave-making resistance coefficient Cw
ferencing was used so as to satisfy the radia- converges around BFp/L = 0.4, where BFP is
tion condition of free--surface numericaly [9]. lateral width of free-surface panel region and
The OF (j = 1-= 1-N M ) and L the ship length.

OCn(6 = 1 M ) are 6 tained by solving the
matrix of eq.(l).
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Panel H-1 & F-1
Panel H-1 0.007 Deep water LBT P 7

Fn = 0.310

Ship hull Free-surface

Panel H-2 
panels

RHMM UMN 0.006-

Fig.2 Arrangements of hull surface panels

0.2 0.3 0.4 0.5 0.6 0.7
Panel F-i BFP/L

Fig.4 Variation of calculated wave-making
resistance for free-surface panel
region in deep water

Panel F-2 panel region than that in deep water.
'" In the present calculations, however, the

free-surface panels with BFp/L = 0.55 (BBp/L =
1*1 0.65, where BBP is lateral width of bottom

surface panel region) were employed for saving
computation time.

Figs.8 and 9 show comparison of wave-making
Fig.3 Arrangements of free-surface panels resistance curves in shallow water. The

present calculations (in 'fixed cond.') are a
little larger than Mueller's experiments [6]

Fig.5 shows comparison of wave-making in low speed range, and the tendency of hump
resistance curves in deep water. In this and hollow in Cw curve shows good agreement
figure, 'fixed cond.' means to take no account with the experiments. However, Froude number
of sinkage and trim into the computations. at the calculated maximum Cw is different from
The calculated results by using panel H-i and the experiment. The tendency of hump and hol-
F-i show good agreement with the results by low in calculated C curve by conventional
panel H-2 and F-i, so the panel H-i seems to linear theory (Haveyock's integral) [6) is a
be sufficient for the number of hull surface little different from the experiments. How-
panels. For the hump and hollow in Cw curve ever the Cw values show good agreement with
the results for panel H-i and F-i show better the experiments as well as the present
agreement with Inui's experiments [i0] than calculations.
the results for panel H-i and F-2. There is a Now, let us compare C curves in Figs.5, 8
discrepancy between the present calculation and 9. In the present calculations, with
and the Dawson's one [12]. The reason for the decrease of water depth Cw near the critical
discrepancy may be due to the difference of speed increase and Froude number at the maxi-
number of the panels. (Dawson used total 512 mum Cw becomes smaller. These tendencies
panels [12].) agree with the experimental results. However,

the Froude number at the maximum Cw is larger
5.2 Results in shallow water than the experiment and the differece of this.

Froude number becomes larger with decrease of
Next, calculations in shallow and un- water depth. The present method of calcula-

restricted water with horizontal sea bottom tion does not take into account the effect of
were carried out. We calculated in h/d = sinkage and trim. For reference, therefore,
2.389 and 3.413, where h/d means the ratio of attempts were made of calculations of wave-
water depth and ship draft. For this case making resistance by use of sinkage and trim
Mueller has made detailed experiments [6]. estimated from Mueller's experiments [6]. InPanel " - and the sea bottom hiqomuttion hull surace anels were

shown in Fig.6 were used for the computations. rearranged. 'n Figs.8 and 9 'free cond.'
Fig.7 shows variation of calculated wave- means the calculation made by this way.
making resistance for the free-surface and sea Froude number at maximum Cw in 'free cond.'
bottom panel regions in shallow water. The becomes smaller than that in fixed cond.' and
sea bottom panel region is larger than the comes closer to the experiment. Thus, it is
free-surface region by 107 of ship length. It suggested that for the improvement of the
seems that the convergence does not achieve present method the effect of sinkage and trim
yet at BFP/L = 0.65. Thus we need larger should be included.
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0.025
total panel numbers

- A - Cal. (panel H-i & F-i) 640
0.020 El- - Cal. (panel H-i & F-2) 650

--- - Cal. ( panel H-2 & F-i) 860 xecnd

0.015- X Cal. by C.WDawson (12) 512,
0 Exp. by TUnui (i0)

0.010 0

0.005-X0 4

I Exp.1 Cal. (fixed)

05 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Fig.5 Comparison of wave-making resistance curves in deep water

Fig.6 Arrangement of ship hull, free-surface
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ship for different water depth. Froude number
Free-surface panels in the computations is Fn = 0.410 (Fnh = 0.849

for shallow water case) and at its Froude num-

0.0 08- ber the wave-making resistance increases
0.000- 88P remarkably in shallow water. From the figureIF it is found that the waves go down near the

midship and much swell behind the ship hull in
shallow water. Thus the effect of shallow

Ship hull Sea bottom water on the ship waves appears more

panels remarkably near the stern part than at the
0.007 Panel N-2 & F-i fore part of the ship.

h/d = 2.389, Fn = 0.310 It was shown that the present Rankine
Source Method made an improvement of predict-
ing the wave-pattern around a ship (wave
profile), and we can predict the change of
wave-pattern for various water depth as shown
in Fig.12. However, the accuracy of predict-

0.006 ing the wave-making resistance by the present
method was same order as that by the conven-

I I tional linear calculations. Thus, improvement

0.2 0.3 0.4 0.5 0.6 0.7 of the present method may be required for bet-
ter prediction.
5.3 Results in channel

0.3 0.4 0.5 0.6 0.7 0.8 Finally, calculations in shallow channel

Bge/L with rectangular section were carried out.
We calculated in h/d = 2.048 and W/L = 2.0,
where W/L means the ratio of channel width and

Fig.7 Variation of calculated wave-making ship length. For this case Inui has made the
resistance for free-surface and calculations by conventional linear theory
sea bottom panel regions in shallow [10]. Panel H-2, F-i and the channel panels
water as shown in Fig.14 were used for the

computations.
Fig.15 shows comparison of wave-making

Fig.1O shows comparisons of wave profiles resistance curves in the channel. The conven-
in shallow water (h/d=2.389). Agreement be- tional linear calculations by Inui [10] are
tween the present calculations and Mueller's larger than the present calculations as a
experiments is good as a whole. However, it whole, and particularly increase of the wave-
can be pointed out that calculated wave height making resistance due to channel effect is
at the fore part is lower and tendency of wave much larger near the critical speed. Further
profiles at the aft part is a little different the shift of hump and hollow in Cw curve can
from the experiments. The reason for this be seen between both calculations. The dis-
difference seems to be the nonlinear effect of continuity of C curve at Fnh = 1.0 occurs in
free-surface condition and the viscous effect the conventionaY linear calculation, but it
which are neglected in the present formula- does not in the present calculation. Thus, it
tions. The conventional linear calculations was showed that the present calculation of
are less satisfactory than the present calcu- wave-making resistance was different from the
lations, The difference of the calculated conventional linear calculation.
results in between 'fixed cond.' and 'free
cond.' is small. 6. Concluding Remarks

Fig.11 shows comparisons of pressure dis-
tributions on sea (tank) bottom in shallow The Rankine Source Method was applied to
water (h/d=2.389). The present calculations the shallow water and channel problems. Cal-
show fairly good agreement with Mueller's ex- culations were made of wave-making resistance,
periments at the tank bottom below the hull wave-pattern around a ship (wave profile) and
surface Yo/L = 0.0 where Yo is lateral dis- pressure distributions on sea bottom. The
tance from center line of ship. The conven- calculated results were compared with experi-
tional linear calculations show good agreement ments and calculations by conventional linear
with the experiments also. The pressure coef- analytical method. It was shown that the
fcicnt at yo/L "0.1667 is th= h.. Rankie SouuL(Le 'NLiud ude ii Lw impiuvemeaL uf
experimental one near the negative peak value, predicting the wave-pattern around a ship in
The conventional linear calculations are also shallow water. However, the accuracy of pre-
smaller than the experiments near the negative dicting the wave-making resistance by the
peak value. The difference of the calculated present method was same order as that by the
results in between 'fixed cond.' and 'free conventional linear theory. Improvement of
cond.' is small. the present method may be required for better

Figs.12 and 13 show comparisons of prospect prediction. For example, the effect of
view of wave-pattern and wave contour around a sinkage and trim should be considered exactly.
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Fig.8 Comparison of wave-making resistance curves in shallow water (h/d =2.389)
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Fig.9 Comparison of wave-making resistance curves in shallow water (hd - 3.413)
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Fig.II Comparison of pressure distributions on sea bottom in shallow water (h/d = 2.389)
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deep water

Fig.12 Comparison of prospect view of wave-
pattern around a ship for different
water depth
(factor of wave height is 1.5)
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Fig.13 Comparison of wave contoui around a ship for different water depth
(contour interval A is 10.0)
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Fig.14 Arrangement of ship hull, free-surface
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Fig.15 Comparison of wave-making resistance curves in channel
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Computation including the sinkage and trim can 10. Inui, T., "Study on Wave-Making Resist-
be made by improvement of the present method ance of Ships", 60th Anniversary Series,
as the following iteration procedures: The Society of Naval Architects of Japan,

(a) First, computation of the flow around Vol.2, pp.173-355 (1957).
the ship fixed is made, and the vertical 11. Hess, J.L. and Smith, A.M.O., "Calcula-
forces (sinkage force and trim moment) tion of Non-Lifting Potential Flow About
are calculated. Arbitrary Three-Dimensional Bodies", Report

(b) From the vertical forces, we determine No.E.S.40622, Dauglas Aircraft Co. Ltd.
the amounts of sinkage and trim needed (1962).
to hydrostatic balance. 12. Dawson, C.W., "Calculations with the XYZ

(c) The panels for the ship hull surface are Free Surface Program for Five Ship Models",
rearranged to take the sinkage and trim Proceedings of the Workshop on Ship Wave-
into account, and the flow is recomputed. Resistance Computations, Vol.2, Bethesda,

Furthermore, the nonlinear effect of free- Maryland, pp.232-255 (1979).
surface condition should be considered.
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DISCUSSION bottom generally and has much time for
by R.C. Ertekin calculation of the infinite image. For the

above reasons we employed not the infinite
I wish to make some comments on your image method but the source distribution

paper. First of all, it is very surprising method on the sea bottom.
that you do not mention the existence of
upstream waves in shallow water. There are 3

papers presented in this conference on the DISCUSSION
subject, where you can find all the related by S. Ogiwara
references. Your parameters in shallow water
falls i, the range we used in our experiments As referred by your paper, T.H. Havelock
(Ertekin, Webster, Wehausen, 1984, 15th ONR (1922) studied shallow water effect on ship
Symp., Hamburg). I am not familiar with wave resistance, in which he predicted
Mueller's paper but if he hadn't observed significant feature of wave pattern that the
these waves the something is wrong with his angle of diverging wave increases as the water
observations. In any case, I will seriously depth decreases. Could you simulate the same
question the results and data for Fnh larger feature by the proposed Rankine source method?
than, say 0.6 or 0.7 in shallow water because

linear theory is no longer valid, also Moreover, considering the case of
steadiness, in general, is not possible, extremely shallow water, we can find the

soliton which generates periodically forward
Even though we have not paid any attention upstream from the bow, as pointed out by T.Y.

to Thews and Landweber's (1935) work in the Wu and others.
last 50 years, we now know that in very
shallow water linear and steady results do not The method, you proposed here, is not able
have much meaning. to treat such phenomena, because this method

is involved in the framework of steady state.
In shallow water, the angle that divergent How do you think about the limitation of water

waves make with the waterline of the ship must depth (or Fnh=U/v'g), to which this method is
be much wider than the deep water case. Even able to apply?
the linear theory can predict this. Therefore,
I do not think that your Fig.13 is accurate. Finally, Resistance and Flow Committee of
It doesn't look right so it must be wrong. the 19th ITTC is carrying out the evaluation

of shallow water effect on ship resistance and
By the way, considering that you are using flow around a hull through the Cooperative

linear theory, could you explain why you need Experimental Program. You are encouraged to
to distribute source on the sea floor (which conduct new experiments in order to verify the
is flat) and on the free surface? Thank you. effectiveness of your numerical method, and to

contribute to ITTC.
Author's Reply

Author's Reply
Thank you for your comments. The present

paper deals with steady wave-making problem, Thank you for your discussions and
so we did not refer to the papers of unsteady comment. So far as we observed the comparison
wave-making problem in detail. rhe detailed of calculated wave-height distributions for
review on the unsteady wave-making problem in different water depth (see Fig.13), it does
restricted water is shown in ref.[7]. not seems that the remarkable change of

diverging waves appears in the present
As expressed in Dr. Ogiwara's reply, we calcula-ion. The reason why the change does

think that the influence of the solution is not appear may be due to adoption of linear
small for unrestricted shallow water, free-surface condition based on double-body

flow in the present method.
The present method is a kind of the panel

method where Rankine sources are distributed The linear free-surface condition is
on uoundary surfwue, bu we need Lu dibilbuLt u qeLpluyv. ii h. pU.S tA m..Lhod, so predictin
the source on the free-surface and sea bottom accuracy becomes poorer in high speed range.
surface. In case of flat sea bottom, there is Actually we can not see that the tendency of
the method which takes into account infinite wave-making resistance curve in the present
image of the sources distributed on the free- calculations agrees with that in the
surface and ship hull surface. However this experiments for water depth Froude number
method can not apply to non-horizontal sea larger than 0.8 (see Figs.8 and 9). However,

654



from the view point of practical use, the taking no account of the channel walls.
present method has sufficient accuracy for the
Froude number smaller than 0.8. Needless to [Al] Huang, D.B., Sibul, O.J. and Wehausen,
say, for better prediction non-linear effect J.V.: Ships in Very Shallow Water,
of free-surface condition should be Festkolloquium zur Emeritierung von Karl
considered. Wieghardt, Institut fur Schiffbau der

Universitat Hamburg, Bericht Nr.427,
It is well known that when a ship moves in pp.29-49, 1982.

shallow channel near the critical speed, [A2] Wu, D.M. and Wu, T.Y.: Three-dimensional
solution generates periodically forward Nonlinear Long Waves due to Moving
upstream from the bow and the flow around the Surface Pressure, Proc. of 14th Symp. on
ship becomes unsteadyCAll[A2. The generation Naval Hydrodynamics, Ann Arbor, pp.103-
of the solution is related with blockage 129, 1982.
coefficient of the channel (or towing tank) (A3] Ertekin, R.C., Webster, W.C. and
and the amplitude of the solution decreases Wehausen, J.V.: Ship-Generated Solitons,
as the blockage coefficient decreasestA3]. All Proc. of 15th Symp. on Naval Hydro-
calculations in the present paper except dynamics, Hamburg, pp.347-364, 1984.
Fig.15 are for unrestricted shallow water
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A Hybrid Model for Calculating Wave-Making Resistance

V. Aanesland
Norwegian Marine Technology Research Institute

Trondheim, Norway

Abstract theory where the resistance is given by the geometry of
the hull. T. H. Havelock, [2], used a Green's function
method instead of the Fourier-integral method used by

A hybrid method for calculating the wave-making Michell and confirmed the results of Michell. The reason
resistance of ships has been developed. The method for referring to these two authors is not only because they
is based on three-dimensional potential theory, and the where among the first to attempt to solve the problem
flow is assumed to be steady. The fluid is divided into an theoretically, but also because their results will be used
inner and outer domain by two vertical control surfaces. in the present solution method. For a comprehensive
These surfaces are parallel to the free stream, extending review on the wave resistance problem, see for exam-
to infinity and one at each side of the body. The inter- pie Wehausen, [3]. Two other contributions will be of
nal flow is matched to the external flow on the control importance when relating the present work to already ex-
surfaces in order to satisfy the radiation condition. isting theories. G. E. Gadd, [4], and C. W. Dawson, [5],

introduced the idea of distributing discrete source panels
A three-dimensional source-sink method is adopted on both the ship hull and the mean free surface. The

in the numerical treatment of the problem, using a source wave-making part of the velocity potential is calculated
function for an infinite fluid. A distribution of source as a perturbation to the double-body flow. Gadd used a
density on the wetted part of the body, on a local part nonlinear free-surface boundary condition, while Dawson
of the free surface and on the control surfaces has to linearized with respect to the double-body flow. In the
satisfy the boundary conditions in the inner domain, former case an iterative procedure was adopted because

the position of the free surface is unknown.
The wave resistance can be calculated by two differ-

ent methods. One is to calculate the pressure distribu- It can be argued that the methods of Gadd and Daw-
tion on the wetted hull surface and to integrate for the son need a considerable amount of computer power and
force in longitudinal direction. The other is to ise the time. If preliminary results are needed quickly, a number
inner solution combined with a control surface integra- of thin ship and slender ship methods are available. On
tion. The fluid velocity and wave elevation along the the other hand, the restrictions set by these methods can
control surface are needed. be troublesome. For the present author, the flexibility of

the method is of greater importance than a fast run-

Introduction ning program on a medium-size computer. The capacity
of new computers is increasing rapidly, and the corre-

For a ship in service it is important to have as low to- sponding cost is decreasing. Indeed, the use of super-
tal resistance as possible in realistic sea conditions. Both computers minimize this problem. The Dresent orogram
model tests and calcudlitons have been used extensively has been run on both VAX785 and CRAY X-MP. On
in order to be able to estimate the resistance at the de- the latter computer a speed up factor of about 100 is
sign stage. Methods of varying sophistication have been typicpl. In other words a computation of about 1 hour
developed, and many restrictions and assumptions are on the VAX machine is finished in half a minute on the
made ;n each case. CRAY.

A large number of contributions on the wave-making The present method incorporates some ideas from
problem have been published. Concentrating on theo- Gadd and Dawson, the thin ship theory and some nw
retical and numerical solution methods which are inde- ideas. Results are presented for a single point source,
pendent of model tests, an important contribution was the Wigley parabolic model and the Series 60 block 0.60
given by J. H. Michell, [1], who introduced thin-ship ship.
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The boundary value problem (vi) radiation conditions.

The steady-state wave-making problem is formulated The hull surface is defined in the body-fixed coordi-
in a Cartesian coordinate-system x,y z moving with the nate system.
ship velocity. The z - y plane describes the uldisturbed
free surface with the z-coordinate positive towards the Yj = ±h(zhzj) (7)
stern, see figure 1. Another coordinate-system xj, y, z
is fixed in the ship and coincides with x,y,z when the The transformation from one coordinate system is
ship is in its equilibrium position and with no forward easily performed by using the relations
velocity. The fluid is assumed ideal, (i.e. inviscid, in-
compressible and homogeneous), and its motion is irro-
tational. Surface tension is neglected. X = Xcosa - (z - q) sina (8)

Y1 = y (9)zi = xsina+(z-s)cosc (10)
(11)

where j is the sinkage and a is the trim angle.

X- The hydrodynamic forces in z and z direction and
the trim moment are calculated by integration of the
pressure over the wetted part of the hull.

F, = -I .p(xy,z)n, dS (12)

Figure 1: Coordinate systems = Lp (13).

The problem is formulated as a potential flow prob-
lem where the total fluid motion is described by the ve- M(; z(- ) - f:(z -o)IdS (14)
locity potential 4P(z, y, z). The following conditions have p(x, y, z)[nx(z

to be satisfied:
(i) Laplace's equation in the fluid The Bernoulli equation is used to evaluate the pres-

sure,
VI'P = 0.()

0.()P = -0(V'f), - U - pgz (15)
(ii) the dynamic boundary condition on the free surface 2

1y 22 + 2 +p2_U)=and the normal unit vector n is positive into the fluid.g( +0 J on y = (x,y). (2)

where subscripts denotes partial differentiation. Solution method

(iii) the kinematic boundary condition on the free surface The fluid is divided into an inner and outer domain
as shown in figure 2. The inner domain is bounded by

+ 41(, - @P = 0 on y = ((x,y). (3) the body surface, SB, the free surface, Sp, two vertical
control surfaces, Sv, and a surface at infinity, So,. The
outer domain consists of the rest of the fluid domain,
which is two segments of a sphere, marked by the dotted

(iv) the kinematic boundary condition on the hull lines in the figure. The outer domain is mainly used
,, hh 4. ?P + t-h, = 0 on SB (4) in order to find a boundary condition on the matching

" +surfaces, while the main task is to find a solution in
where p -h(zi, zj) = 0 defines the hull surface the inner domain. The use of Green's second identity

;n the outer domain gives the houndakry condition. The
(v) the kinematic boundary condition on the sea bottom derivation is described in appendix A.

4t, = 0 on z = -d, (5) The reason for introducing the vertical control sur-
faces is partly to restrict the computational domain and

which in the infinite depth case is replaced by partly to obtain well defined radiation conditions. The
numerical scheme will show that a disadvantage is that

lira V4 = U. (6) panels have to be distributed on a restricted part of the

658



control surfaces in addition to the hull surface and the
free surface. On the other hand many elements can be
excluded from the free surface compared to the method
of Dawson and Gadd. It is assumed that the wave effect
will decrease rapidly with depth and a large part of the e" 'y
control surface can be truncated.

In addition to the two above-mentioned reasons for /
using two domains, the scheme also suggests to linearize
the free-surface condition differently in the outer and -n- S\

ner domain. A low-speed linearisation is adopted in the
inner domain (similar to the one used by Dawson) and a
free-stream linearisation in the outer domain (similar to - , .
Kelvin's thin ship formulation). Assuming that the free
stream linearisation is satisfactory in the outer domain,
other linear or nonlinear boundary conditions on the free
surface in the inner domain may be used. Another pos-
sibility is to use a totally different numerical solution
method in the inner domain. A finite difference scheme
may be of interest when a local flow phenomenon is Figure 2: Inner and outer domains
studied, and the fluid can be described by more complex
equations. This is the same result as Dawson obtained in his equa-

tion (14), [5].

In the present case the appropriate boundary condi-
tion on the free surface is found by linearizing the equa- When matching is performed on the vertical control
tions (2) to (3). On the free surface in the inner domain, surfaces, ' from the outer solution has to equal 0o + 01.
the double-body flow is used as the main flow upon which Equation (17) can be written in the form
the wavy perturbation flow is superimposed. The total
potential is divided into three parts. 1 2

9
P = UX+- ('P,(Ux),),) on z = 0. (18)

= 4,t + 01 The problem is solved with respect to source strength
= Ux + 0Po + 0 (16) which automatically gives the velocity components i.e.

where the first derivatives of the velocity potential. A numerical
operator identical to the one obtained by Dawson, [5], is

Ux = free-stream potential adopted in order to estimate the second derivative with

0,1 = double-body potential respect to s.

Oo = disturbance potential in double- The vertical control surfaces are assumed to be so
body theory far from the body that the waves will satisfy the linear

01 = disturbance potential in low- free-surface condition. It is then appropriate to use the
Kelvin source function, G1 , to describe the outer flow.

speed theory It is shown in appendix A that the boundary condition
' = disturbance potential in thin- on the vertical control surfaces is

ship theory.
'P = ~~ Jf aG ,,dS on y = ±b (19)

The free surface condition is simplified as described

by Dawson even though Raven, [111, has reported that and the corresponding boundary condition on the hull is
the formulation is inconsistent. (Anyhow, the difference
in calculated wave resistance is within a few percent.) , = -Un,. on z = 0. (20)
The subscript s denotes differentiation with respect to The radiation condition i tenn domain is sat-

the streamlines of the double-body solution. Neglect- isfied by using an upstream differential operator when
ing quadratic and higher-order products of '1 and its satisfying the free-surface condition. The operator in-
derivative, the following equation is obtained. sures that waves are only present behind the ship. On

the downstream boundary, an artificial damping is ap-
1 - 2q,, 'P, plied to the free surface condition. The inner solution is

,P: -9- 2,),d,,] on z = 0. (17) only affected a short distance upstream of the damping
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Numerical tests of a single point source
10- 0.40 0.50 Verification of a computer program is very important,

0 1 [10]. The present code has been tested using single point
. lL..... i . 2 9  1 1 07 9  sources and single point dipoles situated below the free

Table 1. Minimum depth of the vrtical control surfaces surface. The results have been compared with results
as function of Froude number. obtained by Nakatake 191 in the case where the double-

body linearisation in the inner domain is replaced by the
common free stream linearisation. Figure 3 shows the

area. The calculation of the wave resistance by control panel distribution in the case of 8 longitudinal rows of

surface integration is obtained from the undisturbed part elements on the free surface.

of the inner domain. A far-field solution may be applied
instead as a matching condition on a downstream trans-
verse boundary.

The necessary depth of the vertical control surfaces
can be estimated by use of the fundamental wave length,
A, defined by the Froude number, r/,,, and the length of
the ship at waterline, L.

A, = 2irE,,L. (21)

As seen from the formula, the wave length increases
as the square of the Froude number. Using the assump-
tion that an elementary wave disturbs to a depth of half
the wave length, the minimum depth of the control sur- Figure 3: Panel distribution on one fourth of the surfaces
faces, III,, is given by in the case of a single point source situated at F = 1. b

HI , A , is the distance between the center plane and the vertical

= - =L (22) control surfaces.
Table .1 indicates the necessary depth of the ver-

tical control surfaces. At the higher Froude numbers, Different aspects were important to investigate in
however, the results obtained using depths much smaller these single point tests. The first was to check the ra-
than indicated by the table are good. On the other diation condition on the vertical control surfaces. The
hand, it is necessary to have a depth about twice the closer to the center plane it was possible to position the
draft of the hull, which indicates that the near-field flow surfaces, the better. Then a very limited part of the
about the hull is dominating the wave making. While free surface was needed to be panelized. The effect of
running the program, the contribution to the wave re- moving the control surfaces was checked by investigat-
sistance from the first vertical row, the last vertical row ing the wave elevation along the innermost row of panels
and the bottom horizontal row of panels on the vertical compared to the wave elevation obtained by using the
control surface is checked in order to control the exten- Greens function definition, equation 25, in appendix A.
sion of the surface. The depth of the surface can then be The plots presented in figures 4 and 5 show the case
within the limits of confidence without actually satisfying when the nondimensional vertical position of the point
the numbers in table .1. source is F = (-z) = g/U 2(-z) = 1.0. Figure 4

includes the results as presented by Nakatake.
The evaluation of the Kelvin Green's function, G1 ,

is only needed on the vertical control surfaces. Until Secondly, the number of elements needed to dis-
recently the calculation of this function has been rather cretize the inner domain was checked. It was found
time consuming. In the present work, nondimensional that a number of about 20 elements pr wave length was
values have been tabulated and linear interpolation has needed to obtain a stable solution. By increasing the
been used. New, fast algorithms are now available, for number of elements beyond that limit, nearly no differ-
example Jewman [6], and can easily be included in the ence was observed in the case of 8 longitudinal rows of
program. elements on the free surface. In the case of 3 rows of

elements on the free surface however, even a higher num-
ber of elements would increase the accuracy of the wave
elevation as seen in figure 5 where three different grid
sizes in longitudinal direction is presented. Also included
are the curve when the control surfaces are removed. It
is obvious that this solution is totally wrong both with
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respect to the wave length and wave amplitude. In addi-
-1 o 1 1 6 1 XX tion the result for the Kelvin Green's function evaluated

I / / ,'" . //V . at the center plane is given in figure 5.

A third aspect of importance is the behaviour of the
numerical differential operator. Two-, three- and four-

, ,I . point upwind operators where tested and the last one was
selected. As can be seen from the curves in figure 5, a

' . reduction of the first wave length of about 5 percent is
observed. But additional computations have shown that
the wave length is very good further downstream. This
might be caused by the boundary condition applied on
the control surfaces.

Figure 4: Contour plot of the wave elevation due to a Finally, it is important to check to influence of coin-
single point source situated at F = 1. The upper part of bining a double-body linearisation in the inner domain
the figure is from Nakatake. and a free-stream linearisation in the outer domain. New

tests where carried out for the single point source using
these conditions. The wave elevation changed, as ex-
pected, somewhat compared to the tests with only free-
stream linearisation in the inner domain, but the effect of
using the vertical control surfaces where similiar. Tests

8rows, xQ25 have also been carried out for single point dipoles which
3 rows, Axx =0 4O0 confirm the results.

. 3rows, Ax -- 0 25
- - 3rows, Axx = 0.15

3rowsnc control surface The Wigley hull

3 -The hull surface of the Wigley parabolic hull is de-
fined by the equation

Y1 -1 (.)2)11 - ~!)2 23

2' L L
\ where -L/2 < x, < L/2 and -H < z, < 0.A The main parameters are given in table .2, and the

-1, -3 -2 -27 Xx body plan in figure 6, which has smooth lines ard fore-
--1/ \ \aft symmetry. A lot of numerical and experimental data

-2

-3- V U.

Figure 5: Wave elevation along the innermost row of
panels. The results for different positions of the verti- The Wigley hull
cal control surfaces are compared with results using the
centre plane source function.

I~~"-- I vvgyaris601AI - I

B/U,,,I 0.1000 0.1333 ___-,.___ ...

H/U,,,, 0.0625 0.0625-.
I/U,,, 1.0000 1.0167 The Series 60 hull
Chi 0.444 0.600
Gs 0.661 1 0710

Table .2: Main parameters of the hulls Figure 6: Body plans of the different ship hulls.
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exists which makes the hull well suited for comparisons. PRE MET ETHO-

Data was taken from the 1.st and 2.nd Workshops on O HULL PSURE TEOGR a
Wave Resistance Computations, [12] an,] [13], and plot- 1 9 WALL INTEGRATION -

ted in figure 7 as the envelope of residual resistance coef- 0 Huu. PResuR. FREE MOO]. 32

ficients. In addition, the mean values of the experiments W & WALL INTEoR. FnE MODEL

of the two workshops are plotted separately in the case - -
'

- -

of a restrained ship and a ship free to sink and trim.
In (7], the results of a great number of test cases are z. -- -

listed, varying the number of elements on the hull, free ,
surface and control surfaces. Also the position and ex- - - -

tent of the vertical control surfaces were changed. Two
configurations will be presented. The first is a reference
case, where the control surfaces are positioned at a suf- o . --

ficient distance from the hull surface so that reflections 0. 120 a . 06 0.3 0 0.s 0.50

as described by Dawson are avoided. The solution is

essentially the same as Dawson's solution. Figure 9: Wave-resistance coefficients calculated by the
present method using both hull-pressure integration and

Computer programs, essentially based on the same control-surface integration.

-- MEAN OF EXPERIMENTS INCLUDING Fn
SINKAGE AND TRIM .20 .25 .30 .35 .40 .45 .50

-- MEAN OF EXPERIMENTS FIXED /~ . MODEL (FROM 2.WOI1<SHOP) - -e'rretldt

- LONGI'rUDIIIAL CUT 00- a calculations2

'a '_0.04

00* - --- ---- ----

o1s 0.2o o.s o 035 0.0 os o.so Figure 10: Nondimensional sinkage of the Wigley hull.
FROUOE NUMBER

Figure 7: Wave-resistance coefficients calculated from
experiments using the longitudinal cut method.

t

5, - -. 0 experimental data

A OAWSON'S METHOD c . Calculations

V FEI'S METHOD I~ I. - - -

2 Al
0.6

"'" 1.20 - = - - -
.2 PREEN .M0ETH.0OD' .5

'I ~~~~~~~~~~0.8-------------------Li 0.4- -

.- - -0.0 wob- --

I L14"rz 1 .1-1
.20 .25 .30 .35 .40 .45 .50

ciJ Q0 02 t3 0.35 0.'0 0.45 0,50
FROUOE NUMBSER

Figure 8. Wave- resistance coefficients calculated by com- Figure 11. Nondimensional trim of the Wigley hull.
puter programs.
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theory, have often produced results with a large spread- case is tested in the present paper and the main param-
ing. In figure 8 the numerical results of both Dawson, eters are given in table .2. Experimental data, from Kim
[5], and Xia Fei, [14], have been plotted as reference to and Jenkins (1981), 116], are plotted together with nu-
the present data. Sinkage and trim have been neglected. merical results in figure 12. Mewis and Heinke (1984),
The discrepancy is small compared to the known limits of [17], have published almost the same results, which con-
experimental data. Note that the plotted curves are the firm the difference between the ship fixed and free to un-
experimental values of the wave-resistance coefficients dergo sink and trim. The experimental wave-resistance

estimated using the longitudinal-cut method. coefficients are obtained by using the longitudinal-cut
method.

The wave-resistance coefficients plotted in figure 9
are results of the second test case where the vertical Two numerical test cases are considered where the
control surfaces are inserted at y/L = ±0.07. Remem- difference is basically the number of panels used. The
bering that the half-breadth of the hull is 0.05L it is position of the vertical control surfaces and the upstream
obvious that the control surfaces are very close to the and downstream truncation boundaries are kept con-
hull surface. This configuration is presented because it stant. The computer time for solving the equation sys-
gives satisfactory results even though the matching sur-
face is closer than what would be a reasonable distance
were linear waves assumed. The wave resistance coeffi-
cients are in good agreement with the results obtained- - .,.... ,". I
in the first test case. The effect of including sinkage + .......,oI
and trim is obvious at the higher Froude numbers. The I

resistance obtained from both pre3sure integration over
the hull surface and over the control surface is plotted.
Some differences are observed between the two methods - I
which can be explained by errors when truncating con-
trol surfaces or local effects close to the body which are
eliminated in the far field.

The sinkage, nondimensional;zed with respect to U2/2g r, m. :0.30
and trim, nondimensionalized with respect to the length
are plotted in figure 10 and 11.

I.

The Series 60 hull (CL = 0.60)

The Serie 60 is a collection of ship forms with block P
coefficients varying from 0.60 to 0.80. The CB = 0.60 L

W 0 FME WOOL TU$T

2.5a * FI MOOL Cj A2 FCm no. OM

2.0-- FM " a/,1
..... MOCEL a, k (CCIt )

2 I I ,-

o I I

ffo1.5 .-: --
0.5 A1z 4 IC

0.22 0.40.26 0.28 0.30 0.32 03 .6tAAC.A AC AC

FROUDE NUMBER t-~,

Figure 12: Wave-resistance coefficients calculated by the Figure 13: Wave elevation along the hull for Serie 60
present method and experimental results from Kim and ship.
Jenkins, (16].
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tern in test case number 2 is about four times the time in References
case 1. The values plotted by filled markers in figure 12
include the effects of sinkage and trim. The numerical [1] MICHELL, J. H. 1898. The Wave Resistance of
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and the convergence of the method is reasonable. Fig- Works of J. H. and A. 0. M. Michell, Noordhoff,
ure 13 shows the wave elevation along the hull plotted Groningen, 1964, pp. 124-141.
for three different Froude numbers. The main observa-
tion is that the calculations underpredict the wave crests [21 HAVELOCK, T. H. 1923. Studies in Wave Resis-
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lock on Hydrodynamics, published by the Office of

Conclusions Naval Research, Washington D.C. 1966, pp. 30-38.
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function, the numerical differential operators and the Method for Solving Ship-Wave Problems. Second
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The present method can be extended to include non- [101 SCLAVOUNOS, P. D., NAKOS, D. E. 1988. Sta-
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114] FEI, X. 1984. Calculation of Potential Flow with G1dx,y,z;4,riC) = + + r'

a Free Surface. Report no. 65 ISSN 009-112X, r

Chalmers University of Technology, Department where
of Ship Hydrodynamics, Sweden. 1-.=[( - ) + (Y - ) + (z -)21-  (26)

[151 NEWMAN, J. N. 1976. Linearized Wave Resistance r

Theory International Seminar on Wave Rests- 12
ance. pp 33-43. r/ (x - 4)2 + (y - /)2 + (z + 7)- (27)

1161 KIM, Y. H. and JENKINS, D. 1981. Trim and Sink- No(r') = [2 d~pv I dkeA(C)
age Effects on Wave Resistance with Series 60, r Jo o

CB=0.60. David Taylor Naval Ship Research and cos[k(z - 6)cos 0] coslk(y - /) sin 0] (28)
Development Center. Report DTNSRDC/SPD- - k cos2 0

1013-01. W(r') = 4t 12 dO sec2 0e+0bee (29)

[17] MEWIS, F. and HEINKE, H. J. 1984. Untersuchun- siniic( - )see0 cos1K(y-r)sec2 0sin01
gen der Umstromung eines Modells der "Serie 60"

mit CB=0.60. Schiffbauforschung, 23 3/1984, pp. and . = g/U "2 and sec 0 = 1/cos0.
148-154. Both 0 and G1, satisfy the Laplace equation, V2 =

[181 FRY, X. and KIM, Y. H. 1984. Bow Flow Field 0 and V2GK = 0, and equation (24) becomes

of Surface Ships. Fifteenth Symposium on Naval , q8n
Hydrodynamics. J G( - - O)dS = 0. (30)

Boundary condition on the vertical control sur- Separating the integral into three parts, the contri-

face bution from each surface can be investigated. Remem-
bering that ;t is a limited part of S1. that is needed as a

Consider the volume bounded by S ,SFand S,, in control surface, S11 , the following integrals are consid-

figure 14. An arbitrary point is located on the surface S, ered.

at the position where the boundary condition is wanted.
The point is enclosed by a hemisphere 5, with a small
radius. It is assumed that the two functions 4 and ip
together with their first and second derivatives, are finite = OGK 04,
and single valued in the closed volume. It is then possible On- GO,
to use Green's second identity

When (x - 4) 0 the potential 0 and its derivative

n- ¢  )dS =j (,V'IP - aVo)dV 04/On are of O(1/r) and O(1/r2) respectively. Simi-
(24) larly, when (x - ) < 0, G, and OGK/On are of O(1/r)

where S = S, + S,- + S,. and O(1/r 2 ). Consequently the contribution will vanish
when r --* oo.

The surface Sj- is located at y = b, S, on a seg-
ment of a sphere at infinity and SF is the free surface. The free surface
Replacing V' with the Kelvin Green's function, Gh,, and
using 4 as the perturbation potential The boundary condition on the free surface is applied

to both the potential and the Green's function. By lin-
earizing equation (2) and (3) and combining them, the
condition Iecomes

U2-0€.. + 0.,, 0 on z=0. (2
g0:4.j o =0. (32)

.= / (.,,. - GKLO)dS

U 0 .(4,O'GK 0)dS

Figure 14: Outer solution - [ (33)
66= --G,, )d5 (33)
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The surface integral is now reduced to a line integral The concept of an inner and outer domain is espe-
along the intersection of the free surface and both the cially attractive since it makes use of the matching sur-
vertical control surface and the surface at infinity. The faces as a part of the control surface, S(, = S, + S ,
integration along C, will vanish when r - oo by a as described in figure 2. Ec' is the intersection between
similar argument as for the surface at infinity. The y- the free surface and the S(.. In the case where the ver-
position of the vertical control surface is constant, which tical control surfaces are extended to infinity, only S1
gives no contribution, and the total integral from the free will gi,,e a contribution to the integral because Vo and
surface vanishes. ( vanish at infinity. Equation (36) then simplifies to

The vertical control surface Ru. = 2pf ,15k,,dS (37)

By differentiating equations (26), (27), (29) and (30), Here continuity has been used, (ffs, 0,,dS = 0).
OGI, IOn on the vertical control surface is zero when
x 0 or z 54 C. The interpretation is that only the In the computer program only a restricted part, S11,
source point creates a normal velocity to the surface. of the vertical control surfaces S1 is used. Consequently
For all other points on the control surface, only a com- two transverse control surfaces, SF11 and S11 , have
ponent in the plane itself exists. The contribution from to be inserted in order to enclose the control volume.
the source itself is found by enclosing the source point The corresponding part of E(, is E- and E+. Figure 15
by a small hemisphere with radius e. describes the configuration.

When z < 0 and r -- 0, OGij Oy -* (y - b)/r :l Finally the equation becomes

I . " d S - G, Lo = 2pS = 2 0,,,dS

an andSfJ1511d 'L1SV 1(2( 2 + + )n, - 00,1 JdS

im G - G o dS (
2dy (38)

= 21ro¢-..,.G, dS (34)
GOn The normal vector n, of the elements on S1,T and

'S1-7 is ± 1, and the disturbance potential and the wave
Finely Ir, + If. + I = 0 which gives elevation vanish rapidly upstream. Consequently the

computational domain will have contributions only from
the vertical control surfaces and the transverse control

0= --./L G,4,dS on y = ±b (35) surface behind the ship.

Wave resistance calculated from control-surface z

integration Y

Wave resistance can be calculated by pressure in-
tegration over the hull. An alternative procedure is to
calculate the change of momentum in a closed volume.
Newman [15] derived an alternative expression based on
the fluid velocity and wave elevation at an arbitrary con- S1
trol surface. Using the perturbation potential 4. the
formula is:

= -p I ( 2 + 4', + 0';)n, - ¢ ,,dS

pg 1 4 dy (36)

Figure 15: Control surfaces for calculating wave resis-
tance.
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Finite Difference Analysis of Unsteady Cavitation
on a Two-Dimensional Hydrofoil

A. Kubota, H. Kato and H. Yamaguchi
University of Tokyo

Tokyo, Japan

yet fully understood. In order to
Abstract accurately predict the generation of

noise or onset of erosion, it is
The authors present a new cavity particularly Important to illuminate the

model, which is named a Bubble Two-phase unsteady structure of cavitation.
Flow (BTF) model, to explain the
interaction between viscous fluid and Vortex cavitation is often observed
bubble dynamics. This BTF cavity model in the flow downstream of attached
treats the inside and outside of a cavitation. It is caused by vorticity
cavity as one continuum by regarding the shed Into the flow field just downstream
cavity as a compressible viscous fluid of the cavity. Such vortex cavitation
whose density varies widely. Navier- generates a large cavitation cloud under
Stokes equations including cavitation certain conditions. The vortex
bubble clusters are solved in finite cavitation impinges on the body and its
difference form by a time-marching subsequent collapse results in erosion
scheme. The growth and collapse of a [2]. In previous work, the authors
bubble cluster is given by a modified performed an experimental investigation
Rayleigh's equation. Computation was of the unsteady structure (velocity
made on a two-dimensional flow field distribution) of cloud cavitation on a
around a hydrofoil NACA0015 at an angle stationary two-dimensional hydrofoil
of attack of 8.0 deg. The Reynolds using a conditional sampling technique
number was 3x10 5 . The computational [3]. It was found that the cloud
results showed the occurrence of the cavitation observed in the experiment
attached cavity at the foil leading was a large-scale vortex with many small
edge. Furthermore, the present results cavitation bubbles. Consequently, the
predicted the generation of cavitation Importance of the interaction between
clouds with large-scale vortices. The large-scale coherent vortices in the
newly proposed BTF cavity model is very flow field and cavitation bubbles was
flexible and promising. recognized.

1. Introduction Much theoretical work also has been
done in order to obtain a better

When the pressure of a liquid is understanding of the physics of
reduced at constant temperature by cavitation phenomenon. Researchers have
either static or dynamic means, a state continually developed new models of
is reached at which vapor or vapor- cavitating flow based mainly on the
filled bubbles exist. This phenomenon is assumption that the flow is irrotational
called cavitation [1]. Cavitation (Inviscid). For example, Tulin [4][5]
results in performance deterioration of proposed small-perturbation (linearized)
hydraulic machinery, generation of theory for the case of a supercavitating
noise, vibration and erosion. This is hydrofoil. He has treated the cavity as
because cavitation is a dynamic a single vapor film and assumed that the
phenomenon, as it concerns itself with pressure inside the cavity is constant.
the growth and collapse of cavities. In This Is a sort of macroscopic analysis
spite of many excellent studies, the of cavitation. Using this model, many
actual structure of cavitation is not researchers have gradually improved the
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calculation methods [6][7][8][9][10]111. cavitation. The occurrence of attached

The single vapor film model Is now well cavitation yields boundary layer

established. It can also predict separation. The separated shear layer

macroscopic cavity characteristics rolls up, thus turning into a large-

fairly well. lowever, they all dealt scale vortex [201. On the contrary, the

with only steady cavitation. Furness and large-scale vortex yields a low pressure

Hutton 1121 treated the case of an region at Its center. In the low

unsteady attached cavity on a stationary pressure region, bubbles grow and

two-dimensional body by the singularity remain. Existing cavity models are

method. This calculation result showed powerless to explain the nonlinear

unsteadiness of the cavity surface and a vortex dynamics of the above problem

reentrant jet [1]. Their methods, since they assume inviscid flow.

however, could not predict the behavior

of a detached cavity after the attached In this paper, the authors will

cavitation splits into two parts. Tulin propose a new cavity model that can

and llsu [13] and van Houten [14] have explain the interactions between

solved the unsteady cavity problem on a vortices and bubbles. The authors call

periodically oscillating hydrofoil. this new model a Bubble Two-phase Flow

Their method also could not predict the (BTF) cavity model. In a macroscopic

generation of detached cavitation (coarse-grained) view, this model treats

clouds. This Is because of a limitation the cavity flow field phenomenologically

of the cavity model, which treats the as a compressible viscous fluid whose

cavity as a single vapor film where density varies greatly. It can treat the

pressure is constant. Therefore, a new inside and outside of the cavitation as

model of cavitation is required to a single continuum and hence it can

theoretically study the breakoffs of express the detached cavitation clouds.

attached cavitation and cavitation In a microscopic view, this model treats

clouds, cavitation structurally as bubble

clusters. By coupling these two views,

]ow to model the cavity trailing the BTF cavity model can clarify the

edge, where the cavity collapses, is the nonlinear interaction between

most difficult problem for the above- macroscopic vortex motion and

mentioned single film, constant pressure microscopic bubble dynamics. The authors

cavity model. When one observes actual have developed a program code SACT-III

cavitation, It is found that the sheet (Solution Algorithm for Cavitation and

cavity splits into minute bubbles with Turbulence, version III) to solve the

vortices in the end region. Then the BTF model equations using the finite

bubbles collapse. One can often observe difference method. They will apply this

many vortex cavities in this region even program to cavity flow around a

if the sheet cavity is stable. Van stationary two-dimensional hydrofoil in

Wijngaaden 115][161, Morch [17], Chahine order to verify its ability.

and Lie [181, d'Agostino and Brennen

[19] and others have studied the 
2. Formulation

dynamics of bubble clusters. The bubble

cluster Is a kind of microscopic An attached cavity, which is formed

modeling of cavitation. However, these at the leading edge of a cavitating

studies treated only a cluster of hydrofoil, collapses at the mid-portion

collapsing bubbles under given of the hydrofoil. It is also well known

conditions. Hence, they could not answer that the attached cavity oscillates

how the unsteady attached cavity sheds cyclically within a certain range of

cavitation clouds. cavitation number. This unsteady cavity
sheds a cavitation cloud in each cycle

Highly vortical fluid motion such as [3]. The front part of the attached

a cavitation cloud is often observed cavity is a film of vapor where pressure

downstream of a cavity. Experimental is constant. At its rear part, the vapor

observation shows a close relationship 11im splits up into tiny bubbles. A

bctween large-scale coherent vortex and large-scale vortex caused by the cavity

cavitation [3]. Therefore, it is rolls up the bubbles, thus generating a

necessary to develop a theoretical cavitation cloud. There are two cavity

elucidation of the mechanism that types in a microscopic view. As shown in

generates the large-scale vortex Figure 1, these are the vapor film and

structure. There Is a strong interaction the bubble cluster (with vortices).

between the large-scale vortex and
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LIQUID MICROSCOPIC VIEW
CAVITY SURFACE

LOCAL HIOMOGENEOUS MODEL
(LRM)

REAL PHENOMENON
SHEET CAVITATION

TINY BUBBLES CAIAION CLOUD

SVORTICES

MACROSCOPIC VIEW

COMPRESSIBLE VISCOUS FLOW

Figure 2 Modelling concept of Bubble Two-phase
Figure I Two microscopic views of cavitation, Flow (BTF) cavity model.

vapor film types (above) and
bubble cluster types (below), where t, pv, v and p are time, mass flux

There is, however, a third type of vector(pu,pv,pw), velocity vector
cavitation. This is traveling cavitation (u,v,w) and density of the mixture,
or bubble cavitation []). This respectively.
phenomenon is not treated in this paper. The conservation equation for

2.1 Macroscopic Modeling momentum: Navier-Stokes equation is

a( PV) 1(Pv =VL V2v 1(~
ln the macroscopic view, the Bubble at +v(Pvv)=-1P+ep{V7v+ (vv)} ,(2)

Two-phase Flow (BTF) model treats the
inside and outside of the cavitation as where P is the pressure in the mixture,
one continuum. This is because it A Is the viscosity of the mixture, and
regards the cavity flow field as a Re is the Reynolds number. This equation
compressible viscous fluid whose density is in conservation form [211. The
varies greatly. According to this nondimensionalized quantities based on
phenomenological modeling, contour lines the uniform flow velocity and a
of void fraction (volume fraction of reference length have been employed in
cavities) express the shape of the theabove two equations.
cavity as shown in Figure 2. Governing
equations of the macroscopic flow field The BTF cavity model assumes that n
are as shown below, fluid of variable density ,replaces the

water-vapor mixture. The density of the
The equation of continuity is water containing bubbles (mixture) is

defined as follows:

La-v(pv)=o669 P=(1-fg9)P L ,(3)
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where PL is the water density and fg is density is assumed to be constant all
the local void fraction. The mass and over the computational domain though
momentum of the vapor are Ignored, since real cavity flows have a distributed
they are small compared with those of bubble density. This is because it is
the liquid. The actual ratio comparing too difficult to formulate coalescence
the density of vapor to that of liquid and fragmentation of the bubbles.
Is of the order 10-4 . The change of
liquid mass due to the phase change is
also ignored. ... . ,

The viscosity of the mixture Is n..
assumed to be as follows:

/lfg)PL+fgPG ' (4)

whereJL is the water viscosity andYG
is the vapor viscosity.

2.2 Microscopic Modeling ,.:

- Local Homogeneous Model -

To calculate the macroscopic flow f =n.!7R
field, it Is necessary to know the local g 3

void fraction function fg(t,x,y,z). The P = ( )PL
greatest problem is to develop a model
that gives the relationship between the Figure 3 Local homogeneous microscopic cavity
flow field condition and the void model (1IM).
fraction. The present BTF model treats
cavitation microscopically as bubble The LIIM assumes that cavities form in
clusters. This is because bubbles play the shape of spherical bubbles. The
important roles in the cavity inception bubbles remain separate and distant
122]. Furthermore, one of the main enough from each other so that their
purposes of the BTF model is to study shapes remain spherical. Interaction
the mechanism of the cavity collapse. between bubbles occurs through the local
The sheet-type cavity splits up into pressure that develops In the liquid as
tiny bubbles there. This structural bubbles grow.
microscopic model cannot be basically
applied to the vapor film type Lord Rayleigh originally derived the
cavitation. However, the type of the equation of radial motion (growth and
microscopic model has less effect on the collapse) of an isolated spherical
macroscopic model when the void fraction bubble in a homogeneous infinite medium
is high. The present BTF model [23]. This equation is widely known as
Introduces a Local Homogeneous Model Rayleigh's equation. It takes the
(LUM), which is a sort of Mean Field following form, neglecting the effect of
Approximation (MFA), for simplicity. It surface tension and viscous damping,
treats the cavity as a local homogeneous d2R 3 dR 2 (6)
cluster of spherical bubbles as shown in R-2 V-P ='7L- (6)
Figure 2. Bubble number density and a dt
typical radius are assumed locally. This where P is the vapor pressure. In this
typical bubble radius is obtained from vthe rowh-colape eqatin ofthestudy, the vapor pressure is assumed
the growth-collapse equation of the constant. This is because the behavior
bubble cluster. This equation is derived of the bubble Is nearly isothermal and
from the growth-collapse equation of one
spherical bubble (Rayleigh's equation), gas inside the bubble is also ignored.

,hc 71", gives the loca vod Pract on The finite-difference method was

f by coupling the bubble density and employed in SACT-III. In this method, a
tFe typical bubble radius as follows: continuous domain Is discretized into

finite grid points. Hence, an
fg=n.5R 3 

, (5) interaction between individual bubbles
within the grid spacing must be

where n is the bubble number density and considered to eliminate the effect of
R is the typical bubble radius (see the computational grid. This effect is a
Figure 3). In this paper, the bubble sub-grid-scale (SGS) bubble interaction.
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Next. let us consider the SGS bubble
interaction of the LIM, deriving =-( R n.2xAr
analytically the equation of motion of
the bubble cluster. 2.n-2d2 R dn 2dR ^ ndR (+6 =2nAr (nR t2+U-, U-+nRU- .(12)

*drt

Combining Equations(lO) and (12) and
replacing the time derivative with

D

Referring to Equation(13), it is found
that the effect of the other bubbles

decreases with a decrease in r. This
is a preferable characteristic in(D fsolving the present problem. This is

because the other bubbles do not affect
intracion the referred bubble if the grid interval

Figure 4 Sub-grid-scale (SGS) bubble interaction er
mod e 1.was zero.

model. Quantities in the above equations

As shown in Figure 4, we consider the have been nondimensionalized based on

influence of the other bubbles which the uniform flow velocity U.* and a

exist inside of the distance Ar (=grid reference length d*. Hence:

spacing). The total velocity potential p *= *U *2p' t*=d, v*=U*v,Lo* * *
due to the other bubbles P
at the origin 0 is P =PL *P - il=/'L P '  (14)

1 1 drn2 =2_nn R*=d*R,r- T -, R d t7 I d, 3

when Ri<<r i . From the local homogeneous x*=d*x, y*=d*y, z*=d*z,

assumption, where * denotes dimensional values. In

I dri 2 the following computation, the chord
V( j v --iR )=0 (8) length of a hydrofoil has been chosen as

and d*. The Reynolds number Re, pressure
(9) coefficient C_ and cavitation number

I .( r are defined as follows:

The following equation is therefore U.*d U. dPL*
obtained by adding the time derivative Re= -

of Equation(7) to the original vL PL
Equation(6): p,_p -

a 1 dR 2 +d 2 R 3dR2_Pv - P

2-~~1 )+RA. +(0)2vP p -*2 '(15)8t f -d " "  ) - - (10) 2L u

The number of bubbles which exist inside P v-*'Pv
the sphere of radius Ar is a = .2

4 r3 (ii

Then the first term of the left-hand 3. SACT-III Program

side in EquationtlO) becomes The program SACT-III Is the third
I 2 dR,2_ adlR2 11 version of the SACT series. The purpose

at r dt' at of the SACT series is to study

2 2 theoretically the unsteady structure ofatdt 0.s°  r or) cavitation using the BTF model. Over
several years, we developed a program
SACT-IH (SACT, version IH; two-
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dimensional rectangular cell version). Pv-P

The results computed by SACT-I %(P)= (23)

explained cavity formation caused by (1+2rn)PL

large-scale coherent vortices behind a If n=constant, the last term of the

rectangular obstacle on a wall [24). The right-hand side becomes zero in

present SACT-III employs the finite Equation(22).

difference method in the body fitted

coordinates to solve the governing Substituting Equations(20) and (21)

partial differential equations given In into (18), we obtain the quasi-Poisson

the preceding section. This section equation for pressure including the

explains the computational procedure and motion of the bubble cluster as follows:

the finite difference scheme of SACT-III. v2  .
The computational procedure is basically V p+c(p)=9(pvvAR,R)+%(PVv) .(24)

the same as the Marker-and-Cell(MAC) where

method [25] except for the use of a (,(P)=2. (25)
regular mesh system, instead of the PL4nxR%(P)

staggerd mesh system. 9R(pv,va-,R)

3.1 Quasi-Poisson Equation for Pressure at 8R v , R2). (26)

By taking the divergence of the The left-hand side in Equation(24) is

Navier-Stokes equation(2), the following approximated by the second-order finite

Poisson equation for pressure is given: differencing scheme. As a consequence,

V=- V( v simultaneous equations of pressure P are
at )+(Pvv) (16) obtained if the right-hand side is given

= V(pv)+Z(pv, v) ,in Equation(24). SACT-III solves the

where simultaneous equations derived from

1 2 1 ] Equation(24) with a point successive

'Z(pvv)=-V[V(pvV)+lep{V v+V(V.v)}] .(17) relaxation method. Equation(24) Is

Substituting the continuity equation(l) equivalent to the normal MAC method's

into Equation(17), Poisson equation of incompressible flow8 .22[25] when

V2 P= - P +,(pvv) 
(18) [2 = 01' O

at2 s 3,=
From Equations(3) and (5), which They are always set to zero for non-
represent the basic assumptions of the cavitating conditions. If the mixture is

LUM, filled with liquid, Equation(13) cannot

(1-n R3) L  be solved since the bubble radius R
- PL (19) becomes zero. If the mixture is filled

To simplify the LIIM, n=constant is with vapor, Equation(2) cannot be solved

assumed in this study as mentioned in since density of the mixture becomes

section 2.2. By differentiating zero. Hence, when the void fraction fg

Equation(19) twice with respect to t, we isless than fgmin(>
0 .O) or more than

have the following equation: fgmax (<1.0), the bubble radius becomes

2 fixed. Then, c" and sW are also set to
_ =p4n =(x- 2R . (20) zero. In the following computations,
atZ a t fgmin and fgmax are set as follows:

From the LIM's equation of motion(13), 4 3

at R- ( p v , v , - , R )
+

g
( P ) ,(21) f gmax= 0 9 5

where where R0 is the initial bubble radius.
R .)

(p, v,-at'3.2 Numerical Methods

=-{2(V-VYL R+(V-V) (v-V)R}+ 4x~r 2nR {+ (22) Lquations(2) and (13) are time-

nR)R 2v.V2R2 integrated with and Euler explicit

(1+2,r nR)R' atscheme using the value of pressure P

2:A2R2  .obtained by solving Equation(24). To
--+2 - 'vn~-- Ft asolve a high-Reynolds-number flow, each

(1+2x~r nR)[R nonlinear term in Equation(2), for

and example -(puv) , was approximated with
ax
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the fourth-order centered finite- FLOW
differencing scheme with the fourth-
derivative term:

1 a4 3 -
ax IX

The fourth-derivative term plays an FI
important role in stabilizing the
calculation. Physically, fourth-
derivative term means shorter-range
diffusion compared with the second-
derivative viscous term [261. The PHYSICAL DOMAIN
fourth-derivative term consequently Outer-flow Boundary Side Boundary
stabilizes the computation without
decreasing the Reynolds number and
introducing any turbulent models. The
universal availability of this fourth- Downstream

,Downstream Bondrderivative term nas not been ascertained onrBoundary
yet for the turbulent flow calculation. Boundary
However, SACT-III introduces no '.

turbulent model since there exists no
established one for the two-phase I Wall Boundary
(cavity) flow at present. L_ ------- j

Branch Cut
All the other space differential TRANSFORMED DOMAIN

terms in Equations(2) and (13) are
approximated with the second-order Figure 5 C-grid system around a two-dimensional
centered differencing scheme. hydrofoil.
Equation(13), however, has no spatial
diffusive term for bubble radius R and conditions are imposed at the outer-flow
its time-derivative. The second- boundary. These are:
derivative term is accordingly added in u=l, v=w=O,
equation (13) to eliminate the au=avaw 0
instability of the nonlinear terms. For 8' 8' 8-2?- ' p=9
example, R=R0, at, =O

lul. 'RAX (28) At the downstream and side boundaries,
ax2 the boundary conditions of the zero-th

is added to u R  . This term means order (zero-gradient) extrapolation are
diffusion. x imposed. At the branch cut boundaries,

the periodic boundary conditio' are
To compute the high-Reynolds-number imposed. At the wall boundary, 6he

flow around a body of arbitrary shape, following boundary conditions are
it Is convenient to use body-fitted imposed.
coordinates through coordinate u=v=w=O,
transformation. Figure 5 shows the grid 8P_aR ^ (30)
system for the present problem of flow j- - - .
around a two-dimensional hydrofoil. Thissystm i caleda Ctyp grd [71.The First order (linear) extrapolation insystem is called a C-type grid [27. The (, )domain Is used for the
connected physical (x,y,z) domain around v doa suse the
the hydrofoil is mapped onto the velocities to calculate the nonlinear
rectangular computational Q Z) ppterms of Equation(2). Tth he terms are
domain. Here the pair of planes forming approximated by the fourth-order
the branch cut are both on the same centerivtieerm
plane of the transformed region. The
surface of the body is also mapped on 4. Computational Results and Discussion
the same plane with the branch cut.

4.1 Condition of Computation
A regular mesh system is employed.

Velocities, pressure and bubble radius A hydrofoil section with a simple
are given on the grid points. As shown mathematical configuration, NACAOO15
in Figure 5, the uniform flow boundary [28], was chosen for the computation.
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The computation was performed at angles the trailing edge and the downstream
of attack k of 0.0, 8.0 and 20.0 degrees boundary was 3.0. The shape of the front
[291. However, this paper discusses only part of the outer-flow boundary was oval
the results at d, v0.0 and 8.0 degrees, as shown in Figure 6. A direct numerical
The Reynolds number Re was 3x10 5 in all methcfd [301 was used for the grid
the computations. It is based on the generation. The minimum grid spacings at
uniform flow velocity and chord length the leading and trailing edges were
of the hydrofoil The viscosity ratio 0.70x10 -4 and 1.54x10- 4, respectively

hG/AL was 9.12xl0- 3 . The computation at The minimum spacing was about one
ck=0.0 deg. was performed only for non- twelfth of Re-0' 5 at the trailing edge.
cavitating condiltons to evaluate
numerical accuracy. Experimental CP
observation at O -8.0 deg. shows laminar -p t X
separation without bursting near the 0 Experiment (Re=6xl0 s)

leading edge. For cavitating conditions, OC Present Calculation (Re=3X10 5)

an attached type cavity accordingly .less-Smith Method with
occurs near the foil leading edge. Boundary Layer Calculation

The hydrofoil was accelerated from -1.0 (Re=3x 10')
u=0 to the steady speed of I for T=0-I.
The cavitation number was also decreased
gradually for T=2-3 so as to compute
stably for cavitating conditions. The
time increment t was determined in each
computational step to keep the Courant 0- L EE

number less than 0.25. The relaxation
factor was set to be 0.8 when
Equation(24) was solved with the
successive relaxation method. However, LOT
It was reduced to 0.3 for cavitating
conditions. The convergence condition of
the pressure computation is as follows: Figure 7 Foil surface and wake pressure,

max (IPl) < 0.001 NACAOO1S; a =0. Odeg. ;T=2. 0.
(for non-cavitating conditions)

max([4P) < 0.01 Figure 7 shows the pressure
(for cavitating conditions), distributions on the foil surface at

where aP is the residue of pressure in T=2. The circles show the distribution
an Iterative calculation, of Cp on the foil surface. The triangles

show the distribution of C in the wake,
i.e., on the branch cut shown in Figure

, 6. The computational results are
- compared with the computation using the

Hess-Smith method (31] and the
measurement at Re=6xl0 5 by Izumida [32].

IThe Hess-Smith method is a sort of
numerical solution method of potential
flow based on the boundary element
method. The foil shape was modified by
adding the computed displacement

Figure 6 C-grid system around NACA0015 hydrofoil thickness of the foil surface boundary
at a=.0deg,101(f)x31(;7)X3(C). layer [33]. The laminar boundary layer

was computed using Thwaite's method,
Preceeding the computations for with the empirical constants derived by

cavitating conditions, it is necessary Curle and Skan [34]. The length of the
to evaluate numerical accuracy of separation bubble was 150 times as long
SAC'!'-TTT for non-cav!tang conditions. as the momentum thickness at the laminar
The angle of attack was 0.0 degrees. separation point. The Head's entrainment
Figure 6 shows the c-grid system. The method modified by Cebeci [35] predicted
grid was uniform in the spanwise the turbulent boundary layer
section. The number of grid points was development. The turbulent separation
101(j)x31(j)x3(Q). The distance between was predicted to occur when the form
tbe trailing cdge and the upper or lower factor 1112 exceeds 2.1. The computed
boundaries was 1.2. The distance between pressure distribution agrees very well
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with the others as shown in Figure 7. \8
Furthermore, the pressure coefficient is

.982, which is almost equal to 1.0, at
the front stagnation point. As a

consequence, the present numerical
method has good accuracy when the grid

system is fine enough. The computed
pressure distributions disagree with the

experimental result when the coarser -2

grid systems are used [29].

Convective Term

q DMAX=14.4 Figure 9 Close-up of the grid system aroind NACA0015hydrofoil, a =8.0deg., 101( )x3l(?7) X3(r).

trailing edge. It was almost the same as
Fourth-derivative Numerical Dissipation Term that of the grid tystem at ot =0.0 deg.

Figure 10 shows the time-averaged
0y DAX6. 63 velocity vectors from T=2 to 4 for non-

cavitating conditions. The computation
Pressure Term was performed stably. The boundary layer

separates at X=0.74 on the back side.

Instantaneous velocity vectors, however,

SDMAX= 17.4 show unsteady vortex shedding from the

foil trailing edge region. In the other
region, the flow is almost steady. No

Truncation Error of Pressure Term separation occurs near the leading edge.

1. 0 DMX=1-40 
Separation Point (X=O.74)

Figure 8 Distribution of convective, fourth- -

derivative, pressure and its truncation o-=-...

error terms in x-momentum equation, IL
NACA0015; a=0.0deg. ;Re=3.OX 10

5;T=2.0. "00

Figure 8 3hows the distributions of Figure 10 Time-averaged (T=2-4) velocity vectors

the convective term, tht fourth- around NACAOO15 hydrofoil, a=8.Odeg.

derivative term, the pressure terms and Re=3.0X 10.

its truncation error in the x-momentum
equation. The contour interval is 1.0. Figure 11 shows the chordwise

DMAX shows the maximum. The maximum of distribution of boundary layer

the fourth-derivative term is not displacement thickness on the foil

negligible compared with the convective surface. The present result agrees well

and pressure terms. However, it is with the boundary layer calculation at

distributed only near the foil surface the front part of the back side.

around the leading and trailing edges. However, it cannot predicte a laminar

This result shows that the effect of the separation bubble because of the

fourth-derivative term is local but insufficiency of the grid points in the

important to stabilize the computation. i-coordinate. The separation point is

The truncation error of the pressure further upstream than in the boundary

term is sufficiently small compared with layer calculation. On the contrary, the

the main differenced terms, agreement of the separation point is
good on the face side. However, the

4.2 Ursteady Attached Cavity hotindary 1a~er is thicker near the

leading edge.

Figure 9 shows a close-up of the grid Figure 12 shows an example of the

system around the NACA0015 hydrofoil. velocity profiles using wall variables.

The angle of attack was 8.0 deg. The The present profile closely follows the

number of grid points was 101x31x3. It low of the wall. The present method can

was the same as that at ok =0.0 deg. The consequently express the turbulent
minimum spacing was 0.70x10-4 at the boundary layer without any turbulent

models.
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.51 llowever, the shape of the pressure
distribution agrees well with the

0. 02 -BACK SIDE experiments. Hence, the disagreement of
pressure hardly affects the nature of

-Present Cal. the unsteady cavitation.Boundary Layer Cal. Pv- P

0.-0.

S p rp n oi

IlI
Separation Bubble /.

T B.

A Bn7n 6 0 0

0 0.5 1.0 3 -

AlC SID 3 nnA r' 10

0.03 Present Cal. 0 I S 4 7 I soI

Boundary Layer Cal. Pv- P +.Time t

B:oundary'

distrib tion PAAoi yrfola 8 d g r a t3 O x i ~
A. n~r t,

10ur 11 Bondr layer~ diigureen 13ckes Inlunc ofteSSbbl neato
distribuodel on bubble1 collapsel (above) and

10 ~ Prsn 100 (157 y* Sbbl neaTinmel Fiuet
10 Cf = 5.91XIO-3 Pshows e e1 tffect of the SGS bubbleeato

Figue 1 Velcit proilen ounar layer on- mneatone whn thbbe cabie prboesr an

NACOI hydrofoi uigwlvaabe, hsc and ltepise th e iampg lud
0=8 -d-g field, weO5  should. 0827). ofe effectpr=*1  nof)~ 3 i the

nubehfobls withinet o the gri scalee

While the velocity profiles are Ar. The convective terms were neglected
predicted well, the pressure is not in Equation(13). The Runge-Kutta-Gill
predicted quite so well. The present method was used to solve the
lift coefficient CL is only about 58% of differential Equation(13). The bubble
that obtained by the experiment, radius is nondimensionalized using its
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initial value. The case A is the
calculation of isolated bubbles, i.e.,
with no-bubble interaction effects. As
shown in this figure, presence of other T = 3.65
bubbles delays growth and collapse of
the bubbles. Fujikawa et al. [36] 0.1 0.01
carried out a theoretical analysis on
the Interaction between two bubbles.
Their result shows that the collapse Is T 3.75
delayed when the two bubbles have the
same radius. The present result shows
the same tendency.

In the following computation, the
grid scale of the SGS bubble Interaction
model is assumed as follows:

1
r =(31)

where

g' xy T = 3.95

'two-dimensional Jacobian).
This is because the flow structure is
two-dimensional. Accordingly, the SGS
bubble intcraction effect is independent
of the grid spacing in the spanwise T 4.05
direction.

T = 4. 15

Vertical Exaggeration of 4:1

T = 50 17 :T = 4. 25

Figure 15 Void fraction contours around NACAO015
Figure 14 Void fraction contours around NACA0015 hydrofoil, a =1. 2: a=8. Odeg. ;Re=3.OX 105;

hydrofoil. 1=1. 5:a=S.0deg. ;Re=3.OX 105; the contour interval is 0.1 except for
the contour interval is 0.1 except for the outermost line.
the outermost line. Lr=1.2. The void fraction is more than

Figure 14 shows contour lines of void 0.9 at the center of the cavity. The

fraction at 0=1.5. The initial bubble rear portion of the cavity oscillates
radius Ro and the bubble number density cyclically. Not only does the cavity

a -4  6 length change but the cavity itselft aer we andefine a rescavity .as arises up at its rear part. The upsteadyt h i s p a p e r , w e d e f i n e a c a v it y a s a c a a t r s i s c m u e e e a r e w t
region where void fraction is more than characteristics computed here agree with
0.1. The bold contour lines are those of the experimental observations of sheet-
f,=0.l in this figure. Contour lines are type cavitation [32]. It is therefore

d~awn at Intervals of 0.1 except for the con.... thatthe.......... ..o.e....n
most outer line of fg=O.Ol. As seen In express the features of sheet-typethis figure, thin steady attached cavity cavitation beyond its microscopic model,incepts smoothly. which is essentially suit&ble tothe bubble cluster flow.

Figure 15 shows the time series Figure 16 shows the time-averaged
contour lines of void fraction at pressure distribution on the foil
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TIME-AVEIRAGED, Vertical Exaggeration of 4:1

CP-DI STR I 1UTI ON
cP (T=3.0- " 5. O)

NACA0015; a =80. a =1. 2

CL = 0. 5472
CD = 0.0693

-I.o Cavity Area

0
Contour Interval of 0. 1

1.-...0== = - ..=_=_ =0.01 -~~ .-

Figure 16 Time-averaged pressure distribution and
void fraction contours around NACA0015 Figure 17 Time-averaged pressure coefficient contours
hydrofoi 1, a =1.2; a =8. Odeg. ;Re=3.0 X 10, and velocity vectors around NACAO015
the contour interval is 0. 1 except for hydrofoil, =1.2; a=8. Odeg. ;Re=3.0 X 10,
the outermost line. the contour interval is 0. 1, the bold broken

surface and void fraction contour lines. lines are void fraction contours of 0.1.

The foil surface pressure where cavity 010 0.1

exists is almost constant and equal to 1=61 1=64

the vapor pressure (Cp=-l.2). However, a X=0. 2115 X=0. 3375

small pressure peak exists at the front

part of the cavity. The pressure

distribution Is similar to the I
calculated result by a nonlinear free- ,.0 0 ,.0

stream line theory [10] . Furthermore, oISPCt,,, ,,iJ C ,ESS 0 0284 OISPLACCIEHT IICKEJSS • 0.02112

th e tim e -a v e ra ged ca v ity shap e is ISOMENU,, ,,,,CMUSS O.00'197 0oMPIU0 ,,1CK ESS 0.00S57

similar to the experimental observation 
RM FMCTOn"112i 5.0 ron mi 3.79

of sheet-type cavity. These facts also
suggest that the present BTF model can ,

be applied to sheet type cavitation 1=67 1=69
beyond its micro structure limitation. X=O.4812 X=0.5832

Figure 17 shows the time-averaged

pressure contours and flow velocity
vectors. The contour line of f =0.1 (the

bold broken line) agrees approximately 0 1.0 0 1.0

with that of CY =-l.2. This is the reason oISPs, ,IIIIcIKoSS. o.11 oIsrL tn ,,LCO ,,,CxitS .0.01507

why the cavity is defined as a region M0,,t,Uf ,,h C ,II ,ESS o 0,u7 *IICK,,ES 0.00813

where void fraction is more than 0.1.

The reverse flow is observed clearly in........ - aFl.2

the neighborhood of the end of the j - 169 - No-cavitation

cavity. 164 7'

Bold lines in Figure 18 show time- Figure 18 Time-averaged velocity profiles in cavity

averaged velocity profiles in the cavity wake region. o=1.2;a=8.Odeg. ;Re=3.0X10
5 .

wake boundary layer along the fine lines show the boundary layer velocity

q-coordinate. Fine ones are profiles profiles for non-cavitating conditions.
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4.3 Cloud Cavitation

a=1.2 Figure 20 shows void fraction contour
--- No-cavitation lines at r =1.0 with a time increment of

0.03 j 0.2. The initial bubble radius R0 and
I the bubble number density n are ixlO 3

I and lxl0 6 , respectively. For this
I condition, unsteady cavities

continuously grow and collapse. The
highly distorted attached cavity sheds
cavitation clouds cyclically (T=5.9 and
7.1), which soon collapse. This0.02 I phenomenon agrees well with many

I experimental observations
I [32][39][40][41][42][43]. Figure 21
I shows an example of the photographs of

/ cloud cavitation [29]. The position of
the cavity break off point agrees wellwith the computational result.

0.01 / Figure 22 shows velocity vectors
around the foil. Overlaid bold broken

/ lines are void fraction contours of 0.1.
/ As mentioned before, they show
// instantaneous cavity shapes. As shown in

/ this figure, the unsteady attached/ cavity sheds not only cavitation clouds
but also vortices (see marks A, B and

0 ... ..... C). The experimental result has
Cavity Area 0.5 1.0 confirmed such vortex shedding phenomena
0 [3]. The position of cavitation clouds,

however, does not agree very well withFigure 19 Comparison of boundary layer displacement that of shedding vortices. There are two

thickness distribution on the back side ofNACAO015 hydrofoil, a=8.0deg.;Re=3.0xiO5. possible explanations for thisfor non-cavitating conditions. As shown dircrepancy. One is the phase delay ofthe cavity growth. The other is that thein the section of 1=61 (X=0.2115), the present cavity model does not consider
flow inside the cavity is quite slow nuclei convection towards the center of
except near the foil surface. At the vortices.
section of I=64 (X=0.3375), strong
reverse flow occurs. At 1=67 and 69 Figure 23 shows a close-up of the
(X=.4812 and 0.5832), the flow velocity vectors around the cavity. This
reattaches and inflection points exist figure elucidates the mechanism of
in the velocity profiles. The cavitation cloud shedding. At T=5.5, a
measurement result downstream of astab e s eet cav ty s ows sim larnew separation vortex occurs at the
stablechti cvitshowte ivelaiy cavity leading edge. Then it induces theinflection points In the velocity flow toward the foil surface (T=5.7).
profile [37][38]. As shown In this Fluid density and pressure on the foil
figure, the generation of cavity causes surface increase due to the impinging
an increase in the boundary layer flow. It causes the cavity to break and
thickness behind it. Figure 19 shows the tear off (T=5.9, separation of thecomparison of the chordwisedistrions of the onday lcavitation cloud). The impinging flowdistributions of the boundary layer turns into a Jet along the foil surface.displacement thickness for cavitating The jet sweeps away the cavitation cloud
and non-cavitating conditions. For , _ 1) Th
cavitating conditions, the displacement 11.J. tile Seenario of the
thickness decreases at the cavity generation of a cavitation cloud.
collapsing region. It becomes minimum 5. Concluding Remarks
near the mid-chord, then it begins to
increase again. This is also the same In this study, the authors presented
tendency that the experimental results a new modeling concept of cavitation
show [38]. called BTF (Bubble Two-phase Flow). In a
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T = 5. 3T = 6.5

0.01

T 5.5T =6. 7

00

Cavitation Cloud av0I--onClou

Figure 20 Void fraction contours around NACA0015 hydrofoil, a =I.0;a 8.0deg. ;Re3.0xl10,
the contour interval is 0. 1 except for the outermost line.

treats the inside and outside of a
cavity as one continuum. That is. it
regards the cavitating flow field C),.iCoud'
phenomenologically as a compressible
viscous fluid whose density varies .
greatly. Contour lines of void fraction -.

can express the cavity shape. In a
microscopic view, a simple LOIM (Local i
Homogeneous Model) is introduced. This
is a kind of Mean Field Approximation.
This structural microscopic model treats
a cavity as a locally homogeneous bubble
cluster. Assuming bubble density and a

typical bubble radius, a local voidfraction function is given. The BTF Figure 21 C.viy appearance on NACA015 hydrofol!,
cavity model is significant in the a .30;c 8.reg. ;Rot3. 0 × 0 X .
following points: (1) The BTF cavity (3) The BF cavity model can express
model can investigate the nonlinear unsteady characteristics itf cavitatio.
interaction between large-scale vortices The BF cavity modvl, therefore,
and cavitation bubbles, (2) The BTF includes three essential factors fo
cavity model can consider the effects of cavitation. Those factors are pressure,
bubble nuclei on cavitation inception, nuclei and time. By examining the
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//" .

1//fT / 5. 9~

'A

k.6.

it.5. 7__ _ __ _ _ _ T=___ _6.___1

0 0. 1 0. 2 0.3 0. 4 0 0.1 0. 2 0. 3 0. 4
Vertical Exaggeration of 4:1

Figure 23 Close-ups of velocity vectors around NACA0015 hydrofoil1, o, =1. 0; a =8. Odeg. ;Re=3. 0OX 105.
the bold broken lines are void fraction contours of 0.1.
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DISCUSSION dimensionalized shedding period is 1.4x(chord
by F. Stern length)/(uniform flow velocity). It becomes

O.Oll7sec (85.7Hz) when the chord length and
I would like to congratulate the authors the uniform flow velocity are 50 mm and

on a very interesting paper which appears to 6.0m/s, respectively (the experimental
present a new approach for unsteady condition). The authors did not measure the
cavitation. The authors discuss the fact that Lime period of the cavitation cloud in their
cloud cavitation is often periodic. In my own experiments. However, the authors' similar
work on unsteady cavitation experiment[Al] showed that the
(Stern, F.,"Comparison of Computational and nondimensionalized time period of cloud
Experimental Unsteady Cavtation on a Pitching cavitation shedding was 2.1. This value is
Foil", J. of Fluids Engineering, Vol.111, very close to the present computed result.
No.3, September 1989, pp.290-299), close
correlation was shown between the experimental The main purpose of this study was to
cloud-cavitation shedding frequency and the clarify the generation mechanism ot cloud
predicted cavity natural frequency. Do the cavitation. The computed result showed a close
authors' results provide an estimate for the relationship between the behavior of the
cloud-cavitation shedding frequency and how separated shear layer and the cavitation
does it compare with the experimental value? cloud. This is because the cavitation cloud

shedding frequency also depends on the
Author's Reply Reynolds number. Further theoretical

investigation is needed to predict the
The authors would like to thank Prof. F. cavitation cloud shedding frequency for

Stern for his valuable discussion, arbitrary flow conditions.

The computed time period of cavitation (Al] KubotaA. et al.: Unsteady Structure

cloud shedding, which is nondimensionalized Measurement of Cloud Cavitation on a Foil
based on the uniform flow velocity and the Section Using Conditional Sampling
chord length of the hydrofoil, is about 1.4 at Technique, ASME J. Fluid Eng., Vol.111,
a cavitation number of 1.0. The No.2, 1989, pp.204-210
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Theoretical Prediction of Midchord and Face Unsteady

Propeller Sheet Cavitation

S. A. Kinnas and N. E. Fine
Massachusetts Institute of Technology

Cambridge, USA

Abstract Helinholtz and Kirchoff [3] more than a century ago.

In this work, first the linearized hydrofoil problem The analysis of cavitating flows at non-zero cavitation

with arbitrary ca ity detachment points is formulated numbers created a lot of diversity on the cavity termina-

in terms of unknown source and vorticity distributions. tion models, i.e. the Riabouchinsky model [28], the reen-

The corresponding integral equations are inverted analyt- trant jet model [7], [21], the spiral vortex models [32], etc.

icall% and the results are expressed in terms of integrals A complete description of the different cavity termination

of quantities %hich depend only on the hydrofoil shape. models can be found in [32] and [38]. The difficulty of

Then, the cavitating hydrofoil problem is solved nu- the hodograph technique to treat general shaped bound-

merically by discrctizing the problem into point source aries necessitates the introduction of the linearized cavity

and vortex distributions and by applying the boundary theory.

conditions at appropriately selected collocation p.oints. . Linear theory was first applied by Tulin [30] to the

Finally, the disrete vortex and source method is ex- problem of a supercavitating symmetric section at zero

tended to predict unsteady propellct sheet cavitation with incidence and zero cavitation number. It was then ap-

arbitrary midchord and/or face detachment. plied to general camber meanlines at zero cavitation num-
ber (33], and to a supercavitating flat plate at incidence
and arbitrary cavitation numbers [31].

1 Introduction Linear theory was subsequently extended to supercav-
itating hydrofoils of general shape at non-zero cavitation

Cavitation has always been a great concern in the de- numbers [39], [11], [27], [8, [29].
sign of marine propellers. A successful propeller design The partially cavitating hydrofoil problem has also
is one which precludes cavitation at design conditions. been addressed in linear theory and analytical results
In recent times, however, with an increasing demand for have been produced for some special hydrofoil geometries
higher propeller loadings and higher efficiencies, the pro- [1], [131 , [12], [14], [37].
peller cavitation is very often unavoidable. The task of The problem of a supercavitating hydrofoil with arbi-
the hydrodynainicist is. therefore, to predict. and con- trary cavity detachment was first formilated by Fabula
trol the propeller cavitation and its undesirable side ef- [8], who also gave results for a flat plate with different
fects. An analysis method for the prediction of unsteady detachment points.
propeller cavitation is, therefore, an indispensable de- Hanaoka [15] formulated the linearized partial and su-
sign tool. Furthermore, this propellei cavitation anal- percavitating hydiofoil problem with arbitrary cavity de-
ysis method should be able to treat cavities which start tachment. lie also gave series representations for the cay-
on the suction side behind the leading edge towards the itatmon number and the hydrodynamic coefficients when
UWadc n-OuchOrd alid'VL ooil LI. pi4c-lUc bic, "face', ol the iydiofoii shape could be expiesse in teims of poly-
the propeller in front of the bia,le trailing edge, since nomials in the chordwise coordinate. Nishiyama and
these types of cavitation are very likely to occur at the Ota [29] also gave integral expressions in terms of known

design conditions. quantities, for the cavitation nunber and the hydrody-
Cavitating or fre-streamline flows have been studied namic coefficients for general Mhape hydrofoils with rbi-

extensively in the last ccntury. First, the flow around flat trary detachment.
plates or polygonal bodies at zero cavitation number was An alternative way of formulating tl.e linearized pat-
analyzed. The analysis of these problems was achieved tially and supercavitating problem lhc , been given in [211
by applying the hodograph techmique as introduced by and [20]. The linearized boundary conditions have been
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expiessed in teiis of singulai integial equations of un- The corresponding ca% itation number a is defined as.
known source and vorticity distributions. Those integral
equations are inverted analytically and expressions for P - P

the cavitation number, the source and vorticity distribu- 2
U
c

tions are given in terms of integials of functions which where pcc is the aml)ielt pressure and p, the vapor pres-
depend only on the geometry of the hydrofoil. Those sure inside the cavity.
integrals are then computed nuieiically and the cavit In the context of the linearized cavity theory the cor-
shapes are finallly computed [21], [20]. The same tech- responding Ililbert problem can be formulated [21] in
nique has also been extended for paitial cavities with terms of vorticity and source distributions I(x) and q(x)
arbitrary detachment [23]. The leading edge correction respectively, located on the x axis as shown in Figure 1.
has also been implemented in the formulation of the cav- With the use of the definuitions:
itating hydrofoil problem to account for the non-linear
foil thickness effects [23]. ;7())=2_(4)(2)

In the present work, the technique used in (21] for ato

supercavitating hydrofoils is extended to treat supercav- and
ities with arbitrary detachment on either the suction side q(X)
and/or the pressure side of the hydrofoil. The effect of 7(x)- UC" ' (3)
the detachment point on the cavity shapes and foil pres-
sure distributions is investigated. In the case where the the complete boundary value problem becomes [21]:
supercavity detaches on the pressure side in front of the
trailing edge, an equation for the chordwise location of v
the cavity detachment point is given.

The cavitating hydiofoil problem with arbitrary suc- u
tion and/or pressure cavity detachment is then solved by
employing a disrcete vortex and source method.

A numerical vortex and source lattice method has
been developed at MIT for the prediction of the unsteady )
propeller sheet cavitation in spatially non-uniform wakes x

[25], [4], [18]. The coml)uter program which implements '
this method is called PUF-3.

Finally, PUF-3 is modified to predict unsteady pro-
peller sheet cavitation with arbitrary detachment on ei-
ther the pressure or the suction side of the propeller. The U+ =U0*
effect of the location of the caN ity detachment on the time X "
history of the cavity volume and the cavity shapes is in-
vestigated.

2 The Cavitating Hydrofoil -The
Analytical Method I

In this section. the linearized cavitating hydrofoil prob- x
lem is formulated in terms of unknown vorticity and
source distributions. For given cavity length and spec-
ified cavity detachment points, the involved zingular in-
tegral equations are inverted analytically. Expressions
are then fot, d fi " the corresponding cavitation number,
vorticity and source distributions in terms of integrals of .
qua,.tities which del)end only on the foil geometry. I J

First, tle superca-itating hydrofoil problem for three I
different cavity detachment situations is considered. I

2.1 Leading Edge Detachment

Consider a liyd;ofoil of chord length one, subject to a Figure P Supercavitating hydrofoil
uniform flow U,,. and snperca, itating at a length x = 1,
as shown 'n Figure 1. The cavity starts at the leading
edge x - 0 or, the suction side and at the trailing x = 1
on the pressure side.
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1. Kinematic Boundary Condition for z > t, where:

0-z0,s= =1+t (13)
2-+ J4- x

0 (4) The integrals in equations 9, 10, 11 and 12 are com-
puted numerically with special care taken at the singu-

2. Dynamic Boundaoy Condition larities of the integrands [21].

The cavity thickness h(x), which also includes the foil

-7 1t J ) _ <x <x 1 Y- = + thickness as shown in Figure 1, is determined by integrat-
2 J  -x 2 ing the equation:

(5) dh/

3. Kutta condition U = q(x) (14)

0 (6) 2.2 Face Detachment

4. Cavity Closure Condition For thick symmetric foils at small angles of attack and for
many foils at negative angles of attack, it is found that

the supercavity detaches forward of the trailing edge on
J4(x)dx 0 (7) the pressure side of the foil, as shown in Figure 2.
0 The point of separation, s, may be found by consid-

whe;e ering the following two conditions:

Sdi(8)

and, i/t(x) is the ordinate of the lower hydrofoil surface,
as shown in Figure I.

The singular integral equations of Cauchy type, 4 and V L

5, can be inverted to produce expressions for the un- 0 .
known a, ̂I(x) and q(x) in terms of the cavity iength I 8 1 £

and rn/(x), as follows (21]: Figure 2: Face detachmtnt on a supercavitating hydrofoil

4v/2rr4 
j, f71= + ,2 -+I + ] 1. the pressure on the wetted foil surface must

)r(r
2 + 1 Vt - q (1 + )2) Jdr  be greater than the cavity pressure

(9) 2. the cavity and foil surface must not intersect
aft of the separation point.

(z)I= (1+ ) t: 2) Oitq ( )- In linear theory, condition 1 is equivalent to

(10) y(x))>0 for O<x<s (15)

( T -- z - r -z The corresponding boundary value problem may be
4(z =-E(z) + . 2 v - solved by using the analysis in the previous section and

+ - 2vr2 by considering as foil the part of the original foil between

1 +z '"/ ("w-) w--- o  = 0 and x = s, cavitating at a cavity lenbth I/s.
7r 1 + + The vorticity distribution between x = 0 and x = s

for z < t, and: is given by equation 10, with the cavity length, however,
being scaled to i/s. The behavior of the vo-ticity distri-
bution at x = s can be found, by using equation 10, to

z) + (v2U - z V7 T ")- be as follows:7 ( ) =" 1) r , .2-

1 + Z2 It + _F 0tw)d (r) - A(s, 1)'-- (16)
TV z"" Io \I (1 + w2 )(z + W) where A, for a given foil geometry, depends only on the

St (zV7 + V;/ -i) point of separation and the length of the cavity:
2v/2,.2 r -I

Z2 (W)dw 4(, ) r- i+ Z.v~
- 2

7 -z jo, t- (1 + W2)(z w)(1) 2\2)2,.
2  

7+ z2
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+ () (.) - 0, (,I)-ticty .
o)0.10 - .70

+ ,l=,) -- Vfr. (17) 0. --0.-" .

0 00

where
0O W NACA.16O

8
. elpho-2 d.&

Z r2 = %/I + t (1S) 0 2n o oa 0400 0o. 00 0.50 W6no0000.SFi-sFigure 3: Cavity shape and vorticity distribution-

By observing the behavior of the vorticity distribu- A (s,) C0
tion by varying s, we conclude that the correct detach.
ment point is the one for which the vorticity distribution
goes to zero at s with zero slope. This can be seen in
Figures 3 to 5, where the cavity shapes and the vortic- c.m
ity distributions as predicted by the presented analytical -Vortclv. dlstr. b lon

method, are shown for different detachment points. In 0.0,0 - . 20

Figure 3, the circulation distribution is negative at the
trailing edge ( A(s,l) < 0 ), thus violating the condi- 0.000

tion 15. In Figure 4 the vorticity distribution is positive 0. 050

everywhere on the foil ( A(s, 1) > 0 ), but the cavity inter-
sects the foil. The correct detachment point is somewhere 0.150 -16 . 0-2 8

between these two, and the one which satisfies both con-

ditions is the one for which the vui icity has a zero slope o.osM. o , 0 o , .o . o . . 1.0o ,.

at s, which is shown in Figure 5. At this point, we should
have: Figure 4: Cavity shape and vorticity distribution -

A(s,1) > 0
A(,l) = 0 (19)

A different approach of deriving equation 19, is given
in Appendix A. 0 M

The detachment point is determined by solving equa- 0.10 - .4

tion 19 with respect to s numerically, utilizing a Newton
Raphson (secant) method [9]. A typical case requires
about five iterations, depending on the accuracy of the

initial guesses. 0.0
The effect of the location of the detachment point on

the cavitation number and the lift and drag coefficients 0 'so 1 NACA-2606 elo.Z d.8.

is shown in Table 1. The importance of the correct face
Sn. 0.00o 0.400 o 0 0. SW .0 1.o 1A. 01.0

S CL CD SIGM Figure 5: Cavity shape and voiticity distribution -
I -A(s, ) = O

.200 .0136 .0010 .1224

.542 .0247 .0018 .1329 detachment point in the prediction of the cavity extent

and the forces on the foil is apparent.
.0017 .1248 Some further discussion on the determination of the

... .1.0.4 correct cavity detachment point is given in the Section 6.

Table 1: Lift and drag coefficient and cavitation number

for the foils shown in Figures 3, 4 and 5.
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Y ~2(t 0 o<x<o

I. t( =  
7 :o<X<1 (26)

and

\,,dx) e e + F (27)f with:

0 to I

Figure 6: Mildchord detachment on a supercavitating foil. F(x) d4 1 + - (28)
ir 0

2.3 Midchord Detachment where u+ is the horizontal perturbation ",elocity on thewetted part on the suction side of the foil.For the case where the supercavity detaches aft of the Equations 25 and 24 are in the same form as equa-leading edge on the suction side of the foil, as shown in tions 4 and 5. Therefore, to invert these equations theFigure 6, the lineaiized boundary value problem can be same methodology can be followed as described in sec-
formulated as follows: tion 2.1. The perturbatiojn velocity u+ , however, is still

The dynamic boundary condition on the cavity: an unknown.
To determine u+, for 0 < X < 10 the kinematic bound-

-ary condition, equation 22, is applied. The solution for%x) 1 0() +(.) = < 1 , Y=0 +W is described in Appendix B.
2 27r T -

The analysis described in this section has been ap-0 (20) plied for a VLR section [16] and the results are shown

TLe kinematic boundary condition oi, the pressure in Figure 7. The top of Figure 7 shows the predicted
side: cavity shape for a midchord detachment at lo = 0.2. At

the lower part of Figure 7, the corresponding total source
distribution is shown together with the thickness source

+.1- ()d e2)distribution. Notice that the two source distributions arer '-' - = 0<x<1, y =O- (21) identical for 0 <a <10, as required by equation 56.0 The described theory is applied for a VLR foil [16)
for a fixed cavity length l = 1.5 and for different valuesThe kinematic boundary condition on the suction side: of the detachment point lo. The predicted cavity shapes

and pressure distributions on the suction side are shown
1 d in Figures 8 to 11. The cavities in Figures 8 and 9 are+ J = O- 0 <x < 1o, U = 01 (22) unacceptable, because they intersect the foil surface. The2 2cavity in Figure 11 is also unacceptable because it pro-

where: duces pressures in front of the detachment point which
are smaller than the cavity pressure. The correct detach-

1'. (23) ment point seems to be the one corresponding to Figure
a dx 10. It appears to be the point for which the pressure

with q,. being the ordinate of the upper hydrofoil surface distribution in front of the detachment point has a zeroas shown in Figure C. slope. No attempt has been made by the authors, how.
Equations 20 and 21 can be reduced to the following ever, to generalize this condition, since the detachment

form: point on the suction side should be determined by the
viscous flow in front of the cavity [10], rather than by

"" 1 ( )d 1 any other potential flow criterion. Some more discussion
- - 0< " < 1 (24) on cavity detachment is given in section 6.

0

q I f., .....

2 +27r J -x"~) uZ.<

with the use of the definitions:
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Figure 10: Cavity shape and pressure distribution on the
, .... suction side of a supercavitating foil with cavity detach-

ment at 1, = 0.07. Same foil as in Figure 8
.O OTh.clS Source Ditribution Mm

-. 2.0

.0. 0"0

.O. 190.0.000

".0" 0.200 0400 0.000 0. "0 1.000 A.2no 1.4001.9Figure 7: Cavity shape, total and thickness source dis- x
tributions for a VLR thickness profile with NACA a=.8
meanline supercavitating with midchord detachment 10 - Figure 11: Cavity shapr, d pressure distribution on the
.20. suction side of a supercavitating foil with cavity detach-
, , ment at 1, = 0.10. Same foil as in Figure 8

0 ISO

00 2.4 Partial Cavities

-0 : In the case where the- cavity is smaller than the chord
of the foil, as shown in-Figure 12, the linearized cavity
problem- can be- formulated in a similar way as in thecase of the supercavitating foil, in terms of vorticity and

000 0.40. 0 0000 M .L 1.40.. cavity source distributions [20], [18], [22).
Figure 8: Cavity shape and pressure distribution on For given cavity end, 1, and cavity detachment, 10, the
the suction side of a supercavitating foil with cavity de- corresponding cavitati6n number, the vorticity and-cav-
tachment at lo = 0. VLR thickness form and NACA ity source distributions can be given in terms of-integrals
a=0.8 meanline, maximum thickness/chord=0.04, max- of u+, the horizontal perturbation velocity of the fully
imum camber/chord=0.03, PL = 0.001613, a = 20, wetted foil, between 1, and 1 [23].
1= 1.5

,__,_2.5 The Leading Edge Correction

to .01 The linearized partial cavity theory is known to predict
.0 Mthat, for given flow conditions, increasing the foil thick-
,., ness results in an increase in the cavity extent and -vol.0.09 - ume. This is contrary to experimental evidence, the non-
"*.00 linear theory [35], and the short cavity theory [34].

An alternative way of including the non-linear. thick-
"0*1"0 ness effects in the linear cavity theory can be achieved via

_ _ __ I the leading edge corriection [23], [22]. IL essentially con-
4.206)M 0.200 0.400 0.000 00 1.0 1.0 1.4001 sists of including Lighthill's- correction [26] in the formu-

lationi of the linearized cavity problem. It can be proven
Figure 9: Cavity shape and pressure distribution on the [23] that this can be achieved by modifying the linearized
suction side of a supercavitating foil with cavity detach- dynamic boundary condition on the cavity from
mpnt at lo = 0.01. Same foil as in Figure 8

0= ; on the caz'ity (29)
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2.0K -panel Method
-C, - Linear Theoryi

without LZ corr.
cavity

I- 'Upper Poll

0r 4
X/C

Figure 12: Partially cavitating hydrofoil - ,. ..

to Figure 13: Prt,-sure distributions on an NACA 16-009

section with a ,0% cavity at a = 30 from panel method

(,/ -+aXj + pL/ 2  1)u.; on the cavity (30) and linear theory without leading edge corrections. C, =
uX t p - p./pU./2

where x is the distance from the foil leading edge and PL
is the leading edge radius.

The modified boundary value problem with the intro- -c, -Panel Method~-. Llnea Theorys ""'

duction of equation 30 has been solved and the solution with r cor,

has been expressed in terms of integrals of known quan- . a with

tities [23].
A direct comparison of the linear cavity theory, with Upper FOIl

or without the leading edge correction, and the non-linear
theory is shown in Figures 13 and 14. The cavity shapes ,,
as predicted by the linear theory, with or without the
leading edge correction, are added normal to the foil and
the produced foil geometry is analyzed with a poten- Sle
tial based panel method [17], where the exact kinematic : 7, 4.,k ,.0* m i
boundary condition is applied on the exact foil or cavity
surface. The pressure distributions produced from the Figure 14: Pressure distributions on an NACA 16-009

panel method are shown in Figures 13 and 14, together section with a 50% cavity at a = 30 from panel method

with the linearized pressure distributions from linear the- and linear theory with leading edge corrections. C, =

ory with or without the leading edge correction. In these P - po/pU_0 /2

Figures the pressure distribution from the linear theory
with or without the leading edge correction is constant on

the cavity, since this has been required via the dynamic
boundary condition. The pressure distribution from the
panel method, however, is not exactly constant on the
cavity and this is a measure of the accuracy of the lin-
ear cavity theory. Comparing Figures 13 and 14, the
substantial improvement of the linear theory, when the
leading edge correction is included, becomes apparent.
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3 The Cavitating Hydrofoil- The re, x:,, ,

Numerical Method

The numerical method consists of discretizing the chord
and the cavity into a finite number of segments on which C . vortex positions

the vorticity and source (listributions are approximated
with point vortices anid sources respectively. I= sourte positions

The spacing of the panels is half cosine on the foil
and constant in the wake. The arrangement of the vortex 1 1 0 = dynamic C. P

and source panels is shown in Figure 15. The following A = kinematic cp.

notation is used:

"YP' = boundarics of source panels

X = position of point sourcCs

XY, = boundaries of vorIcx panels t

Position Of Point vortices X=0 X. X, 1

Xk, = position of kincmatic boundary condition I I
collocation points

XAd, = position of dynamic boundary conditioncollocation o ts (1) Figure 15: Discrete singularities method for supercavi-
c c tating foil with arbitrary detachment points

The arrangement of the vortex and source panels is
such that the expected source and vorticity singularities q 1 r1 'Y(04 _ _ O 0 <
at the leading edge of the foil, as well as the square root 2 2 Y = 0 0 < X < AV
singularity of the source distribution at the trailing edge (33)
of the cavity, are modeled accurately. The collocation where YI(x) is the foil mean camber surface.
points for the application of the kinematic and dynamic
boundary conditions are chosen such that the Cauchy The dynamic boundary conditions
principal value of the involved singular integrals is com-
puted accurately. The detailed analysis for the selection a 1 __ _ ( )Xl<xO+
of the panels and control points is given in [18], [6] and -Uo '+-2+ r A 7 - Uth Y = X, < X <

The presented numerical method was developed orig- (3-1)

inally for partially and supercavitating hydrofoils with
the cavities starting at the leading edge on the suction U -- Y I I q,( )d( -

side and at the trailing edge on the pressure side of the -U 2  2 2 = uLh y=-
foil [6], [181, (91. (35)

where uth is the horizontal perturbation velocity due to

To extend the numerical method to also predict face foil thickness, given as:

and/or midchord supercavities, we assume that the de- 1 J, q()d (6
tachment points are X, on the suction side and X, on uth =- . (36)

the pressure side. The points X, and Xp coincide with

any of the source panel boundaries X. on the foil. To discretize the above integral equations, we make

By separating the total source q into the thickness the following definitions:

source q, and the cavity source q,, the corresponding 9 N = number of discrete vortices ri
boundary integral equations become:

The kinematic boundary conditions * M = number of discrete cavity sources Qi

I NS = number of fully wetted panels upstream of
q, 1 Y =)d 0 0+  <X<X, X.

(32) * NP = number of fully wetted panels upstream of
x
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The strengths of the discrete vortices and cavity source, . M discrete cavity sources Qj

are related to the corresponding vorticity and source dis- * 1 cavitation number a
tributions as follows:

There are also N+M+ -equations:

= 7(.X ,)' (XP, - Xv,) (37) * NP + NS kinematic boundary conditions
= . X, - Xp,) (8

* M - NP + N - NS - 1 dynamic boundary conditions

where is the mean value of the cavity source at the

corresponding source panel. e 1 cavity closure condition

At this point, we will assume, without loss of gener- * 1 equation relating rI to Q,
ality, that Uo = 1.

The discretized boundary conditions become: The last equation, which relates the discrete singu-
larities Q, and i'1, replaces the first dynamic boundary

The kinematic boundary conditions condition [18]. However, in the case of midchord detach-
a) On the suction side: ment, there is no dynamic boundary condition to be sat-

isfied on the first source panel and this relation is not

Qi I N r_ 1 ) applied.

2 X - TZ E - = d The convergence of the described numerical method
=, X-. -.= , X., j is shown in Table 2 for different numbers of elements on

S= 1,...,NS (39) the foil. The analytical results shown in Table 1 have
been found by using the analysis described in Section 2.

b) On the pressure side: Finally, the predicted cavity shapes from the analyt-
ical and the numerical method are shown in Figure 16.

o -x, ';,)c4 2, Xk. rd,)

= 1,...,NP (40)

where cf is defined as: cf = and is approx-
imated with its value for a flat plate cavitating at the
same cavity length [6] and [9].

The dynamic boundary conditions
a) On the suction side: .,

+ 1 At Q i "0 40's L LI

2 2(Xv,,, -XIv,) 27 E,X, - X,,- th

NS + A. (41) - vecrical MArlytical IWMJCICA* kalyticia
I of Eler nts sigma Sigma Volum Volum

b) On the pressure side: s .30s7 .2357 .09U .0771

10 .2082 .2070 .0883 .0672

r1" Qj , 20 .2111 .2110 .0852 .0053, + = Uh _

2(.Vp,, - XIi,) 2 J=+ .r , ,, t4 .2131 .2131 .0843 .0844

i = NP+I,...,N (42) so .2095 .2100 .0658 .0858

The cavity closure condition: 100 .209S .2099 .0859 .0858

At Table 2: Convergence of the numerical method. Su-
Qi = 0 (43) percavitating Joukowski thickness form with parabolic

i=1 meanline, maximum thickness/chord=0.0 4 , maximum
There are N+M+I unknowns: camber/chord=0.02, a 3 , 1 = 1.5

* N discrete vortices ri
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Figure 16: Cavity shapes from numerical and analytical
method

4 The Unsteady Cavitating Pro-
peller Numerical Method.

A numerical method has been developed -or the unsteady
sheet cavitation of marine propellers in spatially non-
uniform wakes [25], [4], [18]. The corresponding com-
puter code is called PUF-3. The complete three dimen-
sional linearized unsteady cavity problem is solved for
given propeller geometry, inflow wake and cavitation num-
ber. The propeller cavitation number is defined as:

Pahalt - P, (44)

2

where: Figure 17: Numeiical grid on one propeller blade and its
wake.

* PshaO = pressure at the axis of the propeller shaft
The leading edge correction, described in section 2.5,

• pv = vapor pressure has also been implemented in the numerical methodfor

* n = propeller revolutions the propeller, in order to account for the non-linear blade
thickness effects [18].

* D = propeller diameter In the present work, the numerical method for the
unsteady propeller cavitation is extended to predict cav-

The flow around the blades and the cavities is rod- ities with prescribed midchord and/or face detachment.
eled by a lattice of vortices and line sources located on This has been accomplished by a direct application in
the mean camber surface of the blades and their trail- the propeller problem of the numerical method for mid-
ing vortex wakes, as shown for one blade in Figure 17. chord and face hydrofoil cavitation, which was described
The chordwise arrangement of the vortices and sources in Section 3.
is the same as in the hydrofoil case, described in Section The modified PUF-3 has been applied for the DTRC
3. The spanwise spacing is constant with quarter inset N4497 propeller [19]. The advance coefficient is J =

at the tip. Details of the numerical grid can be found in VSHIP/n/D = .8 and the cavitation number o, = 1.5.
[25] and [18]. The time history of the cavity volume is shown in Figure

The time history of the cavity shapes is determined 18 for different detachment points on the suction side of
for each blade strip by applying the three-dimensional the blades. The three-dimensional pespective plots for
linearized unsteady cavity boundary conditions (25]. The some blade sections and their cavities are also shown in
extent of the cavity on each strip is determined iteratively Figures 19 to 21 for different detachment points. Those
until the pressure on the cavity becomes equal to the figures show the effect of the detachment point on the
vapor pressure pu. The effect of the other strips on the cavity extent and shape to be substantial.
same blade as well a.q on the other blades is accounted
for in an iterative sense.
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Figure 20: Cavity shapes for propeller N4497 at blade
sections No. 3, 5 and 7 as predicted by the modified

15.8 PUF-3. Detachment on the suction s;de, at 3.2% of the
local chord; Blade angle = 120 from the top, a,, = 1.5,

0.o J =VSHIP/n/D =0.8
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Figure 18: Cavity volume per blade for different de-
tachment points on the suction side of the N4497 pro-
peller as predicted by the modified PUF-3, an = 1.5,
J = VSHIP/n/D = 0.8.

J=7

= Figure 21: Cavity-shapes for propeller N4497 at blade
cavity ~'..U~sections No. 3, 5 and 7 as predicted by the modified

PUF-3. Detachment on the suction side, at 8.4% of the
local chord; Blade angle = 120 from the top, an = 1.5,

J J = VSHIP/n/D = 0.8

suction side pressure side

Figure 19: Cavity shapes for propeller N4497 at blade
sections No. 3, 5 and 7 as predicted by the modified
PUF-3. Detachment on the suction side, at 0.7% of the
local chord; Blade angle = 12° from the top, an = 1.5,
J = VSHIP/n/D = 0.8
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5 Conclusions • Perform experiments on cavitating propellers which
show midchord and or face cavity detachment. De-

The following has been accomplished in the presented termine the detachment lines from the-experiment
work: and run the modified-PUF-3 with those detachment

lines as input. Compare the predicted-cavity shapes
9 The cavitating general shape hydrofoil problem, with and propeller forces from PUF-3 with the experi-

arbitrary detachments, has been formulated in terms ment.
of singular integral equations of unknown source
and vorticity distributions. Those equations are in- e Employ the cavity detachment criteria in PUF-3.
verted analytically and the cavitation number, cav-
ity shapes and pressure distributions, are expressed 7' Acknowledgements
in terms of integrals of known quantities.

* The effect of the detachment point on the cavity Support of this research was provided by the AB Volvo-

solution has been investigated. In the case where Penta Coorporation. At this point the authors wish to

a supercavity detaches forward of the trailing on thank Professor Justin E. Ierwin of MIT, Mr. Lennart
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Appendix A should have:

Details of Face Detachment A(s,l) = 0 (55)
The Villat-Brillouin condition [36], [5] at the cavity Appendix B

detachment point requires the cavity to have the same
slope and curvature with the foil. This condition satis- Details of Midchord Detachment
fies, locally, the requirements that the cavity does not The solution ;7 and 4 to the system of equations 24
intersect the foil and that the pressures on the foil are and 25, is given by the expressions 10, 11 and 12 where
larger than the cavity pressure. If y and y! are the or-dinates of the cav'ity and the foil at the vicinity of the Gt has to be replaced by 0;, as defined in equation 27.din tes of h e avi y a d t e oil at h e ici ity of h e T o determ ine the u nknow n u +  for 0 < x < I , the
separation point s, as shown in Figure 2, then we should T inem eun nown us fo 0ppl the
have: kinematic boundary condition 22 must be applied on the

upper wetted part of the hydrofoil.
Combining equations 22 with 21 it can be proven that

[dy = dye,(,, - -) =0 (45) the condition 22 is equivalent to:
[dx] dx dx 8

qw)

d ] + -0 (46) = (x) =---X) for O<x<lo (56)
where qw(x) is the foil thickness source defined as follows:

Equations 45 and 46, via the kinematic boundary con-
dition on either the cavity or the foil, become: q(x) = u. d(u. - 'i) (57)

dx
By using the coordinate transformation defined in

[v] = v(s) - v(s-) = 0 (47) equation 13 and by introducing to:F v] = dv (sd)- (v 0 (48)
dx = - w (48) to (58)

(49)
it can be proven [9] that equation 56 is equivalent to:

where v(x) is the vertical perturbation velocity on the

cavity or foil. to
In the context of linearized theory: q.(z) H(z) =1+ z2 .Fn)

in ro~ r + t (1 +ir)(ui-z) (9
q(x) (0 a. r0+ 2(v() =-- + 1(.r) (50)
2 +where H(z) is defined as:where: H(z) = -9o(z) + (1 - - )R(x) (60)

2(x = - X (51) with R(x) defined as:

The total source distribution q(x) is continuous at s
and so is I(x) because j1(s) = 0. This makes the first ( 1R(z) =VFtz-il2 (61)
condition, equation 47, always valid. = V-z ' - -(

By using equations 10, 11 and 12 it can be shown and with tro and qo being the cavitation number and the
that: cavity source solution, respectively, corresponding to a

supercavity with the same extent x = I but starting at
the leading edge, i.e. for 1o = 0. The values for oo and V0dq ^+ dq A (s, 1) 1

-
( - (s) -_ (52) are given from the equations 9 and 11.

d2 7c Equation 59 can finally be inverted to obtain [9]:
dl + dl _ A(s,l)1 (53)
dx TX ) 4 Vi u -)2

where s+ - s s - s- = e, and A(s,l) is defined in 2 -2 "
equation 16. [M(7) - - ) N(i)] (62)
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where

M() L f ' 1 (qw - aoU.Vo)dq (63)

and

N() 0f(1 + q,)(- z) (64)

Equation 62 is the solution of the integral equation
59 which satisfies the condition that u+ - I = 0 at lo.

The cavitation number, a, is obtained by applying
the cavity closure condition 7. It can be shown that [9]:

A, = 1(65)

with the following definitions:

Mo r8vr-- ' - 4+ 1 Ti V'T +1 rV' -T I" F(1)d1

~3(r2 +1) 14,2

(66)
and

Nodef 8V-r4 iv-L-+
73x(r 2 + I)o1 +112

(67)

where:

MVIF(Z) j Z2 M(w)dw (68)
0

and

def ' ¢(t )(tO -w .)Nr()'] w N(w)dw (69)
=FZ L- t 2 - Z2

0

The integrations in equations 66, 67, 68 and 69, are
performed numerically with special cae taken at the sin-
gularities of the involved integrands [9].
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DISCUSSION Author's Reply
by H. Kato

First, we want to thank Prof. Kato taking
I appreciate the authors' effort in the time to read our paper and for making

calculating sheet type cavitation. The authors comments on it.
did not compare their results with
experiments. Therefore I am afraid that some It is correct that we did not compare the
of the assumptions and conditions are results of our method with experimental
different from experimental observations, results, and we are actually planning, as
Firstly the sheet cavitation is closely stated in Section 6 of our paper, a systematic
related with boundary layer separation. The series of experiments in the future. The
leading edge of sheet cavitation coincides objective of this paper was to produce a
with the separation point of boundary layer consistent and convergent numerical method for
according to the observation by Franc and the midchord and fate unsteady propeller
Michel(10] and Yamaguchi and Kato (Al,A2). We cavitation.
can not choose the location of the cavity
leading edge arbitrarily as the authors did in Concerning Prof. Kato's comment on the
the paper, pressure distribution of Fig.ll, we do not

state that the pressure distribution "is not
The authors also mention that the pressure realiatic". We rather say that it is

distribution shown as Fig.ll is not realistic. "unacceptable" according to the conditions
However, we usually observe a negative imposed in the beginning of Section 2.2. In
pressure peak in the front of the cavity where addition, at the end of Section 2.3 as well in
the pressure is lower than the cavity Section 6, w6 also state, as does he, that the
pressure. midchord detachment point in front of the

cavity[lOJ.
The third point I would like to point out

is the cavity closure condition; Eq.(7). A Finally, in eq.(7), we assumed cavity
sheet cavitation is followed by wake flow closure at the trailing edge of the cavity.
which can not be neglected in many cases. The this assumption is in accordance with a
calculation under the assumption of Eq.(7) linearized Riaboushinsky or reentrant jet an
does not agree with the experiment especially cavity model. We agree, however, that more
when the sheet cavity length approaches to the physical model, is an open cavity model with
foil length. the "openness" supplied from further knowledge

of the cavity viscous wake. This "openness"
(All H. Yamaguchi and H. Kato: A Study on a does not affect much the predicted cavity

Supercavit ,ting Hydrofoil with Rounded shape and the cavitation number, in the case
Nose, Navril Architecture and Ocean of supercavitating flows. Thus, in the
Engineering, Soc. Naval Arch. Japan, presented analysis of the supercavitating
Vol.20 (1982). hydrofoils, we decided for simplicity, to take

(A2) H. Yamaguchi and H. Kato: On Application the cavity " openness" equal to zero. For
of Nonlinear Cavity Flow Theory to Thick partially cavitating hydrofoils, however, the
Foil Sections, 2nd Int. Conf. Cavitation, cavity wake is important and should be
I Mech E, Edinburgh, (1983) pp.167-174. included. An experimental analysis of the

cavity wake in the case of partially
cavitating hydrofoils is included in (91.
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Propeller Inflow Correct,. ,. .,r Improved Unsteady Force and
Cavitt. - Calculations

T. S. Mautner
Naval Ocean Systems Center

San Diego, USA

Abstract P Number of blade elements having width Ar
PC Propulsive coefficient

An existing propeller design method was modified and = (Thrust (I- V,)/(Torque 0)
used to calculate the spatial variation of propeller perfor- Q Propeller torque
mance, velocity components and blade pressures for use in r Radial coordinate
determining unsteady forces and cavitation. The calculations Arj Width of the j-th blade element
showed-only small changes in the magnitude of the velocity R Propeller radius
components and blade pressures when compared to typical Re Vehicle radius
counterrotating propeller design rcsults. Approximate agree- SL Propeller stacking line location
ment was found between the absolute magnitude of both the t Time
harmonic coefficients and the total unsteady forces obtained t/C Blade thickness-to-chord distribution
using the calculated axial velocity and the measured wake. T Propeller thrust
However, the unsteady force distributions associated with T , 'T Unsteady moments
the calculated axial velocity, which includes propeller T Unsteady torque for then.-th harmonic
effects, resulted in small reductions in the magnitude of the t(k) Horlock's function
total unsteady forces on the propulsor. The calculated blade u Measured inflow velocity
pressures and cavitation index also showed only small varia- v Axial velocity with.propellers present
tions in magnitude with circumferential position. v, Axial component of the interference velocity

vs Axial inflow velocity with propellers not present
Nomenclature v, Tangential component of interference velocity

Av Change in axial velocity'duie to propellers

a., b. Fourier coefficients V Resultant velocity of blade scctioi and fluid

Ar Vehicle frontal area V. Free stream velocity or vehicle speed
Comphilex Foure coecieAV Overvelocity due to thickness and liftc* Complex Fourier coefficient =a.-ib,,..

C Propeller bladc chord w, Axial component of self-induced velocity

C0  Vehicle drag coefficient = Drag/ %pV2Ar wt Tangential component of self-induced velocity
C, Blade section lift coefficient xy,z Rectangular coordinates
CP Pressure coefficient Z Radial position = (r-ri)/(R-rh)
Cp Power coefficient = Qfl/VpViR 2  Non-dimensional chordwise coordinate
Cq Torque coefficient - Q/ pV2*Rl a Angle of attack of a blade element
CQ True coefficient = T/ pV~rR3  P Blade section pitch ahigle.(radiahs)
CT Thrust coefficient -T/ %pV.'xR2 Poelrefcny JC./wC
D Propeller diameter t) Propeller efficiency - J CT/r Cq
Dn Vehicle diameter W Frequency
FaFy Unsteady side forces 0) Angular velocity of the propeller

On) Unsteady thrust for the n-th harmonic dPotential function

hDL Change in energy from freestream to local Fid dsi
P Fluid density

Ahp Change in pressure through propeller disk a Cavitation number
j Index taking on values - 1.. r Thrust deduction factor = A-Drag/Inrust
J Advance ratio = i V,/fl R 0 Angular coordinate in the direction of
k The reduced frequency = JkCw/V, propeller rotation-
l(k) Sears' function r Bound circulation
L Lift force on an airfoil or blade section
LB Vehicle length Subscripts
m Index taking on values = nNb
M -Moment/Torque on a blade element F Forward propeller
n Order of the propeller force harmonic A After propeller
Nb Number of propeller blades
p Pressure
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Introduction Measured Velocity'Fleld

One current and impoitant issue in the design of marine In the design of wake-adapted propellers, it is important
propellers is the reduction of propulsor generated noise due that the inflow velocity distribution at the propeller stacking
,o both the transmission of unsteady propeller forces through lines be properly specified. Even-- though circumferentially
-hafting into the vehicle and propeller noise radiated into the averaged velocity profiles are .ufficient for piopeller design
near and far fields. The unsteady blade forces/pressures and calculations, the calculation of unsteady forces and pressures
cavitation calculations to be discussed in this paper result re'quires that both the radial and circumferential distributicas
from the passage of a propeller blade through the spatially of the wake be considered.
varying wake generated by upstream appendages. It is
known that when a propeller blade passes behind an append- The velocity data used in this study was obtained from
age, unsteady blade pressures and loadings occur and, with wind tunnel tests (21) where boundary layer measurements
an appropriate velocity and piessure field surrounding the were made on a 0.6 scale model. Pitot tubes, oriented approx-
propeller blade, periodic propeller blade cavitation will imately parallel to the afterbody surface, were used to obtain
occur. both the static pressure and the total head over a Reynolds

number range of 1.3-2.4x10. To avoid strut interference
While there are a wide range of techniques available to effects and to utilize body symmetry, measurements were

calculate unsteady forces and blade pressures, these methods made over the top 900 of the body where the zero degree
require accurate knowledge of the wake incident upon the point coincides with the centerline of the fin-trailing edge.
propeller. One method of determining the incident flow field The measured wake at the forward and after propeller stack-
required in propeller design is to make wake measurements ing line locations is show in fig. 1.
at the proposed propeller stacking line locations. Typically,
these measurements are made without a propulsor present,
and only simple corrections, if any, are made to determine an
effective wake. For single propellers, one could reasonably IM MIS
assume that the appendage generated wake is incident upon ".7,
the propeller without further distortion or modification by ".,,,
the propeller induced velocity field. However, for compound
propulsors, thc wake incident upon the aft blade row now
pw.ses through the forward propeller (or stator) and is modi- ., . .

fled by propeller induced velocities and interactions. ,..

In recent years measurements have been made detailing -
0.2,

propeller velocity fields. For example, Thompson's [24] fig. 6
shows the change in harmonic content of the axial velocity o . ..
ditribution for a body with and without a propeller. In gen-
cral, the results show a reduction in the magnitude of the IM
harmonic components when a propeller is operating.
Another example is the work of Blaurock and Lammurs [1] (a)
which, for three values of thrust coefficient, illustrates the ... , .9 19.9 1.'.

significant changes in axial, radial and tangential velocity CIcWEENTN WIGLE C(E) ,f
components before and after an operating propeller. Addi-
tional examples of propeller flow studies can be found in
refs. 7, 10, 11, and 22. a, 0.92

The above mentioned experimental results and uncer- 0.,2

tainties in the velocity field used in calculation of unsteady .'9
forces, blade pressures and cavitation performance provide ,
the motivation to explore, analytically, the effect of a spa- . .. .....--
tially varying wake on propeller forces and cavitation. The .
continued succe.,, of the propeller design method of Nelson u

[17-20] suggests that if the lifting-line portion of the design
method can accurately predict propeller performance using "4

circumferential mean data, the possibility exits of using the
same calculation techniques, with some modification, to
explore the effect of spatial variations in the wake. The
selection of Nelson's lifting-line method was also based upon (b)
its availability and ease of modification. Certainly, there are
many lifting-surface methods, panel methods and blade pres- . . ... "A 36 3.

sure calculation techniques [2, 5, 8, 9, 23] which might be

used for this purpose.

The discussion to follow will present a description of the Fig. I. Circumferential variation of the measured inflow
propeller design method and the geometry, velocity fields, velocity u/V, at the a) forward and b) after measurement
harmonic content, unsteady forces (blade-rate) and blade locations.
pressures associated with a counterrotating propeller set.
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Propeller Geometry

The propeller geometry used in this study is that for a R7/R 3  C/D)r - i V/V)r
counterrotating propeller set designed using the method
developed by Nelson [17-20]. The design utilized the peram- 0.3393 0.1586 0.5567 0.7199
eters given in table 1, and the circumferential mean inflow 0.3619 0.1698 0.5924 0.7922
velocity, u/V,, and static pressure, Cp , formed-from the 0.4072 0.1906 0.6411 0.9300
measured data [211. Thrust deduction calculations were 0.4525 0.2094 0.6797 1.0503
made using the circumferentially averaged, three-dimensional 0.4978 0.2259 0.7102 1.1566
potential flow velocity profiles calculated using a 3-D body 0.5431 0.2397 0.7101 12567
coordinate generator [13] and a 3-D panel method [3, 4]. The 0.5884 0.2501 0.6894 1.3526.
details of the input velocity and pressure profiles, the circula- 0.6337 0.2548 0.6622 1.4457
tion distribution and thickness distributions are given in refs. 0.6790 0.2448 0.6190 1.5378
15-16. 0.7243 0.2064 0.5657 1.6273

0.7696 0.1286 0.5217 1.7133
Using the inputs described above, a counterrotating pro- -

peller design was performed. The calculated performance
parameters are given in table 1, the radial distribution of
chord-to-diameter, local pitch angle and resultant blade sec- RA/RD C/D)A - - A V/Vs)A
tion velocity are listed in table 2 and the geometry is
sketched in fig. 2. In addition to calculating the aft propeller 0.1953 0.2367 0.7779 0.6411
circulation distribution required for tangential velocity can- 0.2215 0.2540 0.7593 0.6924
cellation, the design method determines the minimum value 0.2738 0.2864 0.7562 0.8236
of C/D required to meet cavitation (o=0.75), blade stress (40 0.3261 0.3154 0.7708 0.9701
ksi maximum) and lift coefficient (CL)wAx=0.5) require- 0.3783 0.3405 0.8100 1.1155
ments. A distribution, which also satisfies the given hub and 0.4306 0.3611 0.8260 1.2384
tip values of C/D, is fit about this value of C/D and has the 0.4829 0.3757 0.8074 1.3372
shape shown in fig. 2. 0.5352 0.3783- 0.7724 1.4177

0.5875 0.3575 0.7117 1.4818-
0.6398 0.2981- 0.6218 1.5334
0.6920 0.1883 0.5503 1.5919

Vehicle Velocity - V. (knots) 40
Drag Coefficient - CD 0.1165
Vehicle La/DB 11.77
Propulsive Coefficient - PC 0.929 Table 2. Propeller Geometry and Operating Characteristics
Propulsive Efficiency -, 1.08 Determined Using Circumferential Mean-Inflow Data
Thrust Deduction - I-r 0.860
Advance Ratio - J 2.12
Thrust Coefficient - CT 0.212 STACKING LINE F. TV
Torque Coefficient -CQ 0.133
Power Coefficient - Cp 0.196
Torque Ratio -QA/Qp 1.00
Thrust Ratio - TA/Tr 1.02 C ..
Blade Surface Cavitation - o 0.75
Maximum Stress (ksi) 40 T ArT

AXIS OF ROTATION
_ ItO DIRECTION

Forward Aftcr z
Parameter Propeller Propeller DIRECTIN

OF ADVANCE
Blade Number 6 4
SL/DB 11.46 11.67 X
R/RB 0.781 0.705rhUb/RE 0.3280 0.1823 Fig. 2.-Description of a typical propeller and its geometry.
rR 020 01400
RPM 1400 1400 Unsteady Force Calculation Method-CTW/CMAux 0.4 0.4

CHu/CMAx 0.6 0.6 The method used in this paper to calculate unsteady
(C/D)MAx 0.255 0.380 blade forces was developed:by-Thompson [24] andextinded
(tlC)Hun 0.18 0.16 by Mautner (14]. The mcthod-divides the propeller blade
(t/C) v 0.09 0.08 into strips which are considered two-dimensional -airfoils,
(C.)MAX 0.346 0.435 and two-dimensional unsteady airfoil theory is used to con-
V.Ip/V, 1.733 1.606 sider sinusoidal velocity- fluctuations- normal and parallel to

I__ __I _ Ithe inflow velocity. Corrections to the blade lift force due to
the presence of adjacentpropeller blades, th- inclusioh of

Table 1. Summary of Counterrotating Propeller Design camber and the calculation ofthe total force and-moment on

Inputs and Calculated Results Using Circumferential the propeller have been included. The expressions used to
Mean Inflow Data calculate the unsteady thrust andtorque are
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P

F,(')=Nb P L( "''b (I) and
H2 2lV(Tf [+ AV (v l)

T.(")=Nb E MI(Wb) C"nNb  (2)
J=I In the above expression for the blade pressure, Ah9 L

represents the change in energy per unit volunie froi "far

where the lift and moment are determined using upstream to where the boundary layer is measured,' Ahp
represents the change in pressure -through the propeller disk
and AV accounts for the increase in velocity along an airfoil

Lim = 1 iCJV,,V-c4 section due to thickness and lift. In the calculation wt varies
() I along the airfoil while the other induced velocities are con-

1" (3) sidered to be constant. Both w, (y) and AV(y-) are functions
(kmq)C°Sl-aj'(kn)sinpj Aricos j of the radial distribution of circulation and the chordwise

I loading. The overvelocity AV due to thickness is determined
and from the experimental data for NACA 0010-64 airfoil

Mj = Lin tan~ rj (4) adjusted for local blade section thickness. If the pressure p
on the suction surface is defined as the vapor pressure, a cav-
itation number, based upon free stream conditions, can be

Examination of the unsteady force equations (1)-(4) and defined as o = ( p )/ipV,2. It should be noted that,
a Fourier analysis of the current four cycle wake where the although r t shown here, the pressure equation has been
velocity is represented by extended to include the axial, radial and tangential com-

ponents of the inflow velocity field.

vtr,0) no(r) + f, [a.(r)cos(n) + b,(r) sin(n0)] (5)
V. 2 L Velocity Field Components

show that the harmonic numbers of interest, for a 6x4 pro- During the design of wake-adapted propellers, one must-

peller set, are nNb= 12, 24, 36 ....... for the forward propeller account for velocities arising from several sources, and these

and nNb= 4, 8, 12, 16 ....... for the after propeller. Thus, only velocities are shown in the velocity -diagram given in fig. 3.

the unsteady thrust and torque require calculation. The resultant relative velocity (V) between the blade section
and the fluid is determined from the tangential velocity due
to propellcr-rotation (fir), the axial inflow velocity with pro-
pellers not present (vi), the axial and tangentia' components

Blade Pressure and Cavitation Calculation Method of the self-induced (w,, wl) and interference (v., vi) veloci-
ties and the change in the axial inflow velocity (Av) due to

The starting point in calculating blade pressures is the the presence of the propellers.
unsteady Bernoulli equation

Development of expressions for the velocity components
are given by Nelson [17-20] and have been summarized by

p=-p pV2 + c(t) (6) Mautner [16]. Briefly, in determining the radial variation of
Av, one considers an axisymmetric flow having a radial vari-
ation of total head as it passes through a-single propeller. As

applied in a constant total head stream annulus located in an

inertial frame of reference. After evaluating the potential
function, 0, and determining the constant c(t), one obtains
the following expression for the pressure coefficient along .
the blade's suction surface

WI
POO - p
p V.2 Ht+H2 (7)v 'I

where

%p P', V V, V, (8)
Hx=_. 

+ 
._.-.. 

2 
iW 

/+ f
(2 

(8)

2w'(y) rfr + L + ""w(y) + vt (8

-. I . I - . + ,

V . + J+ I (9)

-pV 2 [ r (10) Fig. 3-Relative flow velocity diagram at the lifting-line.
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the boundary layer flow moves through the propeller, the at the wall), the measured radial distributions of u/V. and Cp

induced velocity field of the propeller rearranges the vorti- were extrapolated to the wall for -45V<+450. Since the

city in the boundary layer and consequently alters the boun- 3-D potential flow distributions, for the body with append-

dary layer profile. Using a potential flow model, an approxi- ages, show only minor deviations from the circumferential

mate calculation is made to determine Av. mean, (max f0.3% of V,) , the circumferential mean profiles
will be used for all cases. The measured wake data was

The interference velocities are calculated using an exten- specified in 'look up* table format.

sion of the work of Hough and Ordway [61. Using classical
vortex system representation, Hough and Ordway developed In an attempt to account for, at least first order, propeller

expressions, in terms of Fourier coefficients, for the induced effects in the calculation of unsteady forces and pressures,

velocities of a finite bladed propeller with arbitrary circula- the lifting-line portion of Nelson's design method was modi-

tion distribution. The zeroth harmonic, or steady com- fled to provide the calculation of the circumferential varia-

ponent, of their expressions have been extended by Nelson tion in velocity components required to form the resultant

to the case of a moderately loaded, wake-adapted propeller velocity V/V. (fig. 3) at each blade section. The technique

with non-zero circulation at the hub. used fixed the velocity profile, u/V., at a particular forward
propeller angle, Or, and then calculations were performed as

The self-induced velocities are calculated using an the after propeller angle $A was varied from -45 ° to +45t
extended version of Lerbs' [121 induction factor method. In the region of large inflow velocity changes,
Lerbs' original method was restricted to circulation distribu- -100 - 0 < +100, single degree increments were used, and
tions which go to zero at the hub. For wake-adapted, coun- outside this region calculations were made at increments of
terrotating propellers this restriction is not desirable because 4-6 degrees.
circulation distributions having non-zero circulation at the
hub are more efficient (more work done on slower moving Velocity Components and Performance Parameters
fluid near the hub) and the after propeller may be used to
remove the tangential velocity from the forward propeller so For comparison purposes, the counterrotating propeller

that the hub vortex can be avoided. Thus, Lerbs' method was design results obtained using circumferential mean inflow

extended by Nelson to include non-zero circulation at the data are presented in fig. 4 and tables I and 2. Referring to
hub. fig. 4, it is seen that, for the forward propeller, the constant

magnitude of v. is small compared to w. over the central

The blade pitch and the relative flow angle are related by portion of the blade, while at the after propeller these veloci-

r tang = V,/fl and this expression has been extented to the ties are similar in magnitude. Furthermore, it is found that

moderately loaded, wake-adapted propeller case by replacing the maximum value of Av (change in v) is of comparable
V,/11 with its equivalent r tanP6. The result is magnitude to the maximum value of w.. This infers that Av

plays an equal role with w. in determining-the radial distri-
+ + W, (12 bution of blade pitch. The data also shows a small, constant

- tan- + , + ,(12) value of vt on the forward propeller while the after propeller
+ v, + W, vt and both the forward and after propeller values of w, have

comparable magnitudes. The radial variation of or indicates

From this expression it can be seen that the calculated velo- that the region on the blade most prone to blade-surface cavi-

cities and propeller geometry are not independent but must tation occurs at V0.75, and the CL profile (not shown)

be determined in an iterative fashion to account for the reflects the change from large loading at the blade root to the

effects of both the forward and after propellers, unloading of the blade tip region. It should be- noted that
while these results are for a specific design, they are typical
of counterrotating propeller designs obtained using'Nelson's

Propeller Calculations design method.

As stated before, one problem inherent in the calculation Next, the results obtained by variation of -the forward
of unsteady forces involves the use of wake data obtained and after propeller inflow will be presented. During the cal-
without a propeller present. While the propeller design culation procedure, 49-values of X were used- to determine
method of Nelson calculates changes in the circumferential the radial variation of parameters. An example of the calcu-
mean inflow velocity field due to the presence of a propulsor, lated variation of propeller parameters with both Or and A is
the uncorrected, spatially varying inflow has been used to the variation in the change in the axial inflow velocity (Av).
determine the unsteady forces acting on the propeller blades. The results, given in fig. 5, show that the most significant
It is known that the presence of a propulsor will cause variation in 4v occurs in the region of Or=0, 9A=0 and near
changes in streamlines due to acceleration of the flow, that the hub surface (X=0). As one moves away from the hub
there may be additional unsteadiness due to the relative surface the region of large parameter change narrows from
motion of the blade rows and that the propeller will change _+200 at Z-0 to only a few degrees at 1=1.0. Although not
the amplitude and phase of the incident flow distortions, shown here, similar variations are found for v-and p while
From these few facts it is apparent that the measured wake the spatial distribution of the induced and interference velo-
should be "corrected to reflect propulsor induced velocity cities, lift and drag coefficients have a nearly constant magni-
field and then be used in unsteady force, pressure and cvi- tude except for very small changes in a narrow region cen-
tation calculations. tered about 8r=0 and 0A=0.

Calculation Procedure The spatial distribution of propeller performance param-

eters (ref.. 16) indicates that, with the design constraint of
Before velocity or unsteady force calculations could constant CD the performance parameters PC, I-r, tj and CQ

begin, complete specification of the input velocity and static show only small variations in the region of r-=0 and 0A= 0 . It
pressure profiles was required. Due to the fact that the should be remembered that the circumferential variation of
design method requires the velocity and static pressure at the potential flow was not included. Thus, due to-the fact that
hub surface (numerical requirements specify a slip condition
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w,/V,: -- -,forward; ... ...., after. vj/V,: - , forward; ,after.wV,: ,forward; ...... , after. .: - , forward; after.

ar: -, forward; ,after.

PC is a function of the thrust deduction factor, one can con- cially in the region of r/RF<0.6, and the rapid-approach
elude that there would be additional small changes in PC toward zero of the 24th and higherharmonics. The-har-

with 0rA if the circumferential variation of the potential flow monic content distribution for the after propeller shows the
were included; however, calculations made for the forward dominance of the 4th harmonic and, when compard'to the
propeller indicate that changes in PC would be on the order forward propeller, a slower decrease in magnitude ofthe 8th,.or 0.5%. 12th and higher harmonics. As in the forward propeller Case,

the large magnitude of a. is located in the region of

To further illustrate the results obtained by varying r/R1<0.6. For both propellers, the magnitude ofrb. is nearly
OF and Ok, the radial distribution of parameters for the case zero for all-harmonic numbers, 'and the magnitude of a,
when -OT-00 and 0k=I14* is given in ig. 6. Comparison of this becomes nearly -constant for r/Rr %s0.6. Results for higher
data set with the circumferential mean data presented in ig. harmonies can be found in ref. 14, and, in general, harmonic
4 i ndicate that the magnitude and radial distribution of the component magnitude changes are in agreement wih previ-
profiles arc very similar. However, the complete set of calcu- ous work [24].
lated data shows the sensitivity of the results to the relative
angular position of the propellers and to the lack of total
symmetry in the measured wake. The calculated radial distributions of F. and T, associ-

ated with the forward propiller's 12th harmonic (ig. 7) show
Unsteady Forces that regions of large forces occur-in both the inner and outer

portions of the propeller blade. Also, there is a&distinct
The axial velocity component of the measured wake and minimum force region, located at r/Ry Pj 0.7, which -coin-

the calculated axial inflow velocity were used in both cides with the minimum velocity defect/excess region of
Fourie-r analysis and unsteady forces calculations'. The data r/Ri.n 0.45- shown in ig. -Ia. For the, a'ter propcllcr, the
was supplemented with the geometric parameters found in unsteady forces for the 4th harmonic show a minimum point
tables- I and 2. First, Fourier analysis and unsteady force at r/Rr ;s0.38 which coincides -With the region --of -greatest
calculations were made using u/V,, which due to the meas- velocity excess atrR .-(ig..lb). Even though-the~th
urement procedure, contains both axial and radial corn- harmonic has a-small and nearly.constant magnitude over the
ponents. Figure 7 presents the radial distribution of Fourier outer region Of- blade, the fo ,rce and moment-distributions
coefficient magnitude and unsteady thrust and torque for the have large 'Magnitudes in both the, inner and outiriregions of
forward and after propellers. For the forward propeller, the the blade. With in 'creasing harino nic number', n? "$ and I2,

.results show the dominanc~e of the 12th harmonic (a.), spe- the minimum force-point moves outward along the after pro-
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pellcr blade's span to r/R r s 0.52 and coincides with the In addition to the radial distribution of unsteady forces,
region of minimum velocity excess/defect, r/R f 0.48 (fig. given above, the total forces on the forward and after Pro-
lb). Finally, for nNb=8 and 12, the shape and magnitude of pellers were calculated. The results for the measured and
the force and moment distributions become more like that calculated wakes are given in table 3. It can be seen that
found for the forward propeller, removal of the radial component from the measured inflow,

u/V s. results in the introduction of unsteady forces ass6ci-
Next, data will be presented to illustrate the unsteady ated with the 6th and 18th harmonic components, on the for-

forces obtained by varying the propulsor inflow. Figures 8 ward propeller, which were zero for the niasuid-inflow
and 9 present the radial distribution of harmonic coefficient case. The magnitudes of these forces are substantially-lower
magnitude and unsteady forces for the calculated axial velo- (3.4-4.9 times) than those obtained for the 12th and 24th har-
city fields obtained by specifying (a) 0A= 00 and (b) 8,=00 monics and are probably an artifact of the computation pro-
while the other propeller ((a) forward, (b) after) used wake cedure. The data in table 3 also shows a general reduction in
data over the range -45 0:0A_<+ 45°0 Fourier coefficients and unsteady force magnitude for v1/Vs data on both the forward
unsteady forces were calculated using the measured axial and after propellers when compared to the u/Vs results.
velocity vi and the calculated axial velocity, v=v1+Av. For While the unsteady forces obtained using v/V. show a reduc-
0A= 00 (fig. 8), the harmonic coefficient distributions show tion in magnitude for most harmonic numbers, small
total removal of the small magnitude of b. previously increases in magnitude, over the u and v, data, are found for
obtained in the Fourier analysis of u/V. Also, the sign of a. TJr at the 12th harmonic and Ts)A at the 8th harmonic.
has been reversed while its (absolute) magnitude remains
nearly the same. The radial distribution of F. and T. Cavitation and Blade Pressures
obtained using v, are nearly equal to that calculated using
u/V, . For the calculated axial velocity distribution, v/V., An integral part of Nelson's propeller design method is
the magnitude of a. for the 12th harmonic has been reduced the ability to determine the blade geometry (C/D) required
in the region of r/R,<0.5 where the peak magnitude has to satisfy a given blade surface cavitation requirement. The
been reduced by A25%. The unsteady forces associated with counterrotating propeller geometry detailed in tables I and 2
v show a reduction in magnitude over the inner radii, an reflect the the chord-to-diameter ratio required to meet the
increase in magnitude over the outer radii and movement of cavitation requirement of o=-0.75. In all subsequent cavita-
the minimum force point to a smaller radii, r/R, P 0.65. tion and blade pressure calculations, the blade geometry-was-

held constant, and, since cavitation is the parameter of
When 0r=0 and 0A is varied, the measured axial velocity interest, only suction surface pressures will be calculated.

field results in a sign change for the 4th and 12th harmonics The variation of a with both -forward, g, and after,- A, pro-
while the magnitude of a. remains approximately the same. peller angles is presented in figs. 10 and 1I. The results show
As in the previous case, the small magnitude of b. has been that a has the same type of variation from the circumferential
removed. The characteristics of the unsteady force distribu- mean data as did -the various velocity components, blade
tions are nearly the same as those obtained for u/V, ; how- pitch and performance factors (see fig. 5 and ref. 16). The
ever, they show a lower magnitude of F. and T1 at the other variation of a is greatest in the region of - 200 < Or.A < 200.
radii. The harmonic content obtained from the Fourier As shown by equations (6)-(1 1), a and the blade section Cp
t.nalysis of v/V. reveals a reduction in a., for all harmonic distribution depend on-all the velocity components compris-
numbers, over the after propeller blade's inner radii. Also, ing the local blade section velocity diagram (fig. 3). However,
the minimum force point has been shifted to a smaller radii, as mentioned before,-both w and AV, are functions of the
r/R, f 0.35 for the 4th harmonic and to r/R, f 0.57 for 8th chordwise trapezoidal loading distribution and-the radial dis-
and 12th harmonics. Only small deviations from the results tribution of circulation. Thus even with corrections for
given above were found for other combinations of Or and PA.  thickness, lift and circumferential variation of velocity com-

For Use Fs for Nb= T for Nb =
6A Vel 6 12 1 18 24 6 12 18 1 24

--- u/Vr 0 32.3 0 12.4 0 10.8 0 4.9
0-45 v/Vjr 3.9 25.5 3.7 12.1 2.0 8.0 1.5 4.9
0-45 v/V., r  4.8 23.3 3.2 10.8 2.2 9.8 1.3 4.4

For Use Fs for Nb= T for Nb=
or Vel 4 8 112 16 4 8 12 16

.... U/V,)A 79.1 24.4 20.7 8.1 32.9 7.3 7.5 3.0
0-45 VNJ/,)A 60.4 24.7 17.5 7.4 26.7 7.4 6.0 2.8
0-45 v/V,)A 63.3 20.8 14.8 7.2 26.6 , 7.7 5.6 2.9

__ _ _ _ __ __ -__t __ _

For OF or 9A = 0-40, the values of F, (lb)and T, (ft-lb) are representative
Or or 9A was fixed while the other propeller angle was varied

Table 3. Calculated Total Unsteady Forces for the Forward and After Propellers
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formiance. The calculations showed only small changes in the
magnitude of the various velocity components, forces andponents, only small changes in c, are noted, The variation of blade pressures when compared to the counterrotating pro-

ain figs. 10 and I11 also represent the maximum (negative) pller design results. In general, there was approximate
pressure on the blade's suction surface, and, if the bladeag e m n b tw nth ( bs l e) a ni u e o b th he argeometry were allowed to vary as required by the calculation monic coeficients and unsteady forces obtained using the

at ech , on miht otai larer hangs i .axial component of the inflow velocity and the measured
Figues 2 an 13arereprsenativ ofthevaritio in wake data. However, the unsteady force distributions associ-

Fgressre an 1ae suctionsetace of the aea variousi ated with the calculated axial velocity, which includes pro-
presurealog te sutio sufac ofthe lad atvarous peller effects, showed an increase in magnitude at thec inner

radial locations. First, ig. 12 gives the values obtained for radii with minimal change in its general shape. Over'all, there
the counterrotating propeller set using circumferential mean was a small reduction in the magnitfide of the total unsteady
inflow data. The data shows that the shape and magnitude of forces on the propulsor. The circumferential variation of both
suction surface pressure coefficient are typical of that found the cavitation index and suction surface pressure distribu-
on various airfoils and are in general agreement with the ions showed only small variations with blade position. Also,
results of other researchers (for example rfs. 2, 5 and 9). It the difference between the forward and after propeller blade
can also be noted that the magn itd e of Cp is nearly the sam-.p e s r d srb to s e eI alfor both the forward and after propellers. Figre 13 gives pesr itiuin ee il
the results for the case when 0=0 and 0All4 ° where the C, While th,-impl approach used in this paper did not
calculation uses the data presented in ig. 6. Comparison of reveal large change$ in the inflow ve!ocity field, cavitation or
igs. 12 and 13 indicate very small differences in C , This unsteady forces, it didshow that the design method has the

result is consistent with the a data presented in rigs. 10 and tendency to modify the measured inflow velocity field in
I1I and is typical for the range of 0 used in the study. When such a way that boh the forward and after propeller see'

the equation for the suction surface pressure is derived from nearly identical velocity field3. This result indicates a
the Euler equations (see for ref. 9) in a rotating frame of smoothing' of the in~cidet veclccity field. From a design
reference, an additional term equal to L.hp (cqn. 10) is standpoint this is desirable sine one would not want pro-
obtained. The blade pressure results for this formulation pellet performnance to be highly sensitive to small peturba-
reflect sal changes in magnitude due the additional Ahi, tions in the inflow. However, these results can only be con-
however, the magnitude and shape of the suction surface sidred first order and require extension of the calculation
prssure remain in gnral agremnt with previous work procedure to account for additional effects due to the
[2,5,9]. unsteady flow field such as blade interaction terms and~flow

Conclsionacceleration due to the moving blade rows.

An existing propeller design method was modified andAcnwegnt
used to calculatc the spatial variation of propeller perfor- This work was supported'by the Naval Ocean Systems
mance, blade pressures and velocity componenits-for use in Center's Independent Research and Independent Explora-
determining changes in blade-rate forces and cavitation per. tory Development Programs.
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CONCLUDING REMARKS

Francis Noblesse
David Taylor Research Center

As chairman of the last session, I have the task of officially closing the Fifth
International Conference on Numerical Ship Hydrodynamics, although Professor Mori
asked me to urge you to participate in the Group Discussions following the Conference.
I also have the privilege of briefly reflecting upon the Conference.

On behalf of all the participants, I wish first and foremost to thank the
organizers for an absolutely flawless and superb organization. We are well aware that
the organization of the Conference has required an enormous amount of work by
Professor Mori and many other persons around him. We do want him and everyone else
who helped in the organization of the Conference to know that we deeply appreciate
their efforts on our behalf.

I feel confident in expressing that there exists a clear consensus among the
participants that the Conference was highly successful. I believe that at least three
reasons for the success of the Conference can be cited. A first reason resides in the
well-chosen, highly informative four keynote lectures. Another reason is the large
number of excellent papers presented at the Conference. A third reason is that the
importance of validating numerical methods was emphasized at this Conference to much
greater extent than previously. I believe we all leave this Conference with an
increased awareness of the need for establishing the robustness and the reliability of
the numerical methods which we develop or apply. This greater awareness represents a
healthy and important development, and attests to the progress that has been made in
the field of numerical ship hydrodynamics. In this respect, I think the Conference
may come to be remembered as something of a turning point in the history of the
development of numerical methods in ship hydrodynamics, and the organizers have done a
great service to our community by employing the need for validation.

There also exists a clear consensus among the participants that the Conference was
not only successful from a technical point of view but also highly pleasant and
enjoyable. Several factors have contributed to making the Conference a particularly
enjoyable experience. A first factor is that Hiroshima, surrounded by a beautiful
skyline of mountains and divided by several graceful rivers, is a lovely city,
especially under the splendid weather we enjoyed. The charm and kindness of the
people of Hiroshima also contributed to creating an enjoyable experience. The
kindness and hospitality of the people of Hiroshima is quite well demonstrated by the
following personal story which I would like to tell. I happened to get lost while
walking through the city yesterday afternoon. So I asked a middle-aged Japanese man
for directions. He not only pointed me in the right direction but insisted that I
follow him to a nearby parking lot so that he could take his car and drive me to my
hotel! The reception Sunday evening, the buffet party Tuesday evening, and the boat
cruise to Miyajima yesterday evening were also very enjoyable. I believe the evening
cruise to Miyajima provided a
specially pleasant setting for enjoying the company of old friends as well as making
new ones, and will be remembered. The Conference was a particularly
enjoyable experience not only because of several events arranged by the organizers but
also because of the warmth and kindness of the Japanese participants, who invited many
of us who traveled from outside Japan in the evening and made us feel at home.

On behalf of all the participants from outside Japan, I simply wish to say "domo
arrigato go say mashita". May I finally invite the participants from outside Japan to
join me in expressing our deep appreciation to our Japanese hosts by applauding them.
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Summary of the Group Discussion on Rankine Source Methods

Chairman: A. J. Musker
Admiralty Research Establishment

Hadar, England
Co-chairman: S. Ogiwara

Ishikawajima-Harima Heavy Industries Co.
Yokohama, Japan

The Groupe Discussion on Rankine The method of siaggered or shifted

Source Methods was attended by collocation points was discussed at some

approximately 50 leading researchers from length. Jensen described the change in

12 nations. Attention was focussed on the wave pattern resulting from different ways

following items, although there was of staggering the free-surface grid. Waves

necessarily a high degree of overlap were found to propagate upstream and

between the topics: downstream depending on the chosen
configuration. The question remained as to

(i) Radiation condition whether a regime could be identified for

and its application which the results were realistic as well as

(i) Resolution of divergent waves being insensitive to small changes in mesh

-higher order panels geometry.

(iii) Water-line problem

-effect on stability The lack of rigour in treating the

(iv) Calculation of wave resistance radiation condition used in the more

(v) Existance and uniqueness popular methods described in recent years
was criticised by Bai. Suggestions that

Three different approaches to the approaches were nearer to art than

satisfying the radiation condition were science were quickly refuted by the more

discussed: Dawson's approach, involving a pragmatic users of the methods since the

one-sided finite difference operator (eg experience has been that the methods do

Larsson,Musker), staggered collocation provide good engineering predictions

points (Jensen, Ando, Nakatake) and a proviaed the algorithms remain stable.

hybrid approach, first suggested by Gadd,

involving a Kelvin source density There was general agreement about the

distributed on the hull and a Rankine desire to use higher order panels to

source density distributed on the free- resolve the divergent wave system and to

surface but confined to the nearfield better model the larger gradients in the

(Yim). bow region (Yim, Larsson, Mori, Baubeau).
Larsson referred to the 1977 paper by Hess

The errors associated with various which addressed the two dimensional problem

formulations of a four-point Taylor series of the flow over a submerged vortex. His

operator were discussed (Van). A recent conclusion was that a higher order line

study had drawn the same conclusions as source method was required. For ship-

Dawson, namely that the 2nd and 4th flows, the case for higher order panels is

derivatives should be eliminated in its not as strong if the panels are not

formulation. positioned in the calm-water plane

(Baubeau, Musker), altholigh the stability
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of the solution algorithms does seem to length in the context of instabilities near

improve. Larsson made a strong case that the water-line.

the higher order method is more economical

in terms of computing requirements and that In the real world, we know that spray

an additional benefit arose in that the and wave-breaking occur -especially near

pressure integration around the body, the bow; both viscous and surface tension

required in the caluculation of resistance, effect are present (Jensen). Thus the

was more accurate. potential flow model cannot be expected to

cope with these complexities and it ic then

it was the general feeling that the necessary to consider whether, when these

resistance should be calculated by pressure (non-linear) regimes are beinV approached

integration and not by momentum in a Rankine-Source calculation, a solution

considerations. This recommendation was exists at all. Divergence of a scheme may

largely the result of experience in then be truly reflecting the mathematics -

comparing both methods with experiment not the numerical techniques invoked

rather than a rigorous appraisal of the (Musker,Larsson), in which case it might be

numerical issues involved. Numerical possible to identify an upper limit in

damping in the far-field probably accounts terms of the utility of such methods. A

for the disparity. consensus on this issue could not be

reached.

Difficulties remain in the vicinity of

the water-line. Whilst the available Notwithstanding the above

methods behave reasonably well with the difficulties, however, it was agreed that

Wigley and Series 60 hulls, great Rankine-Source methods had a very definite

difficulties have been experienced with the role to play in ship design to predict wave

HSVA tanker (Jensen, Larsson). In Jensen's resistance and that they should also be

case, the collocation points near to the used, in conjunction with Navier-Stokes

water-line were suppressed to achieve methods, to investigate the wave-viscous

convergence. The existence of solutions to interaction problem (Yim).

the potential flow formulation of the wave

resistance problem was discussed at some
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Summary of the Group Discussion on Navier-Stokes Solvers

Chairman: J. Piquet
ENSM

Nantes, France
Co-chairman: Y. Kodama
Ship Research Institute

Tokyo, Japan

First, questions, fields and issues on which this emphasized(Hoekstra). In any case, it appears difficult
Group Dicussion should be focused are given(Kodama). to check the influence of the turbulence model on the
Then a general table, given hereafter, of the meth- numerical results in an unbiased way.
ods presented during the meeting is briefly dis- The discussion is then displaced towards what
cussed(Piquet). It appears that, among the fourteen should be done now (Tzabiras), given the existence of
papers presenting numerical solutions of Navier-Stokes several Navier-Stokes codes able in principle to deal
equations, only three methodologies are used; an unseg- with complex problems. A few possibilities are putfor-
regated approach (Hoekstra) in which the solenoidal- ward and, among the noticed fields of applications, the
ity of the flow is enforced at each iteration; other impact of Navier-Stokes codes on the propeller research
contributions satisfy the incompressibility condition is not considered "too optimistically" (Hoekstra).
at convergence either by means of the so-called ar- Endly, the boundary conditions are discussed
tificial compressibility method(Yang, Kodama) or by mainly in relation with the numerical scheme consid-
means of a pressure correction technique-projection ered(Tzabiras, Kodama) although the natural mathe-
type method(Zhu, Hino, Doi) or simple-like meth- matical character of the Neumann pressure condition is
ods(Tzabiras, Larsson, Oh, Masuko, Piquet, Stern). pointed out (Hoekstra).

It should be therefore necessary to compare in a
more detailed way the methods, in order to isolate their To try a tentative evaluation, the chairmen of the
differences and the resulting effects (Stern). As a first discussion feel that the brief survey of technical prob-
important difference, the choice of independent vari- lems that has been attempted gives a good picture of
ables is felt significant(Tzabiras) although no clear evi- collective weaknesses, given the rather small size of the
dence of optimal choice has been provided, community working on Navier-Stokes solvers for hydro-

Several specific aspects are then addressed in the dynamic problems.
discussion: geometric singularities created by the curvi- The discussion was felt either too specific - and so
linear structured grid, averaging procedures(Kodama); could be considered as a disappointing specialist discus-
orthogonality constraints on the grid, needed regular- sion(Himeno) - or not detailed enough to allow an ap-
ity of the control functions in the elliptic grid gen- preciation of the pros. and cons. of the presented works
eration procedure(Ju), convergence problems on fine and methodologies. May be, this can be attributed to
grids(Piquet) The question of accuracy measures is the fact that not only our mutual work is not known in
posed, from a 2D example, for an inner problem where enough details, but also that the concerned aspects are
momentum conservation implies strongly different re- so numerous that a complete assessment of each detail
suits on the drag forces coefficients CDp and CDM when of the used methods is difficult.
computed from the integration of forces and from the The weaknesses of the discussions appeared also
global momentum balance(Kubota). The problem of on a conceptual level, for instance in the treatment of
conservation of mass, close to the boundaries - e.g. the boundary conditions and on the views over accuracy.
free surface(Hino) -as well as that of momentum is dis- Recognized inadequacies in the treatment of the geom-
cussed. etry - e.g. the HSVA tanker - did not raised the ques-

Problems connected to the turbulence model are tion of the use of partially unstructured girds. Recog-
then addressed Corrrections for the free-surface prob- nized difficulties in enforcing conservativity (geometri-
lems(Hino) and existence of a model adequate for lift- cal, mass, momentum) did not raised the question of the
ing problems(Tzabizas) are questionned. The need to use of Galerkin - type methods. May be, these problems
avoid the "highly convenient" wall function approach is should call for a better consideration of the literature
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issued from applied mathematics. lems was not evaluated. A fortiori, the ability to use

Because a lot of time has been spent on the tech- Navier-Stokes solvers to understand flow situations was

nical aspects of the work, and probably also because of not considered, although these solvers offer a unique

the way the discussion has been conducted, the practi- opportunity to get information on the flow at a level of

cal importance of the whole set of aforementioned prob- details not possible with experiments.

Table of the 14 papers related to Navier-Stokes solvers presented during INC-5 (Part 1).

AUTHORS VARIABLES GRID INCOMPRESS. PRESSURE MOMENTUM

& LAYOUT GENERATION CONSTRAINT SOLVER SOLVER

HOEKSTRA covariant VW Schwarz multiple relax.

contravariant U Christoffel Unsegregated sweep CSIP

collocated transv. ortho.

YANG UVWP Algebraic artif. comp. relaxation relaxation

et Al. collocated + IAF + IAF

KODAMA UVWP Geometrical artif. comp. IAF(Implicit IAF

collocated [interp.btw.] Approximate
surface grids Factorization)

ZHU contravariant Elliptic MAC relaxation explicit

et Al.

HINO UVWP collocated Algebraic MAC relaxation explicit

node-centered

KINOSHITA UVWP Algebraic MAC relaxation explicit
et Al. collocated

KUBOTA UVWP Geometrical compressible relaxation explicit
et Al. collocated (cavitatioii)

DOI No Projection

(channel flow)

TZABIRAS UVWP Elliptic SIMPLE relaxation relaxation

LOUKAKIS staggered

LARSSON contravariant Elliptic SIMPLER relaxation relaxation

et Al. staggered

OH phys. polar Elliptic SIMPLE relaxation relaxation

et Al. staggered

MASUKO UVWP Elliptic SIMPLE relaxation relaxation
OGIWARA staggered

PIQUET UVWP Transfinite PISO ILU-PBCG relaxation

VISONNEAU collocated + Elliptic

STERN UVWP Elliptic SIMPLER plane ADI plane ADI

KIM staggered
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Table of the 14 papers related to Navier-Stokes solvers presented during INC-5 (Part 2).

AUTHORS TURBULENCE WALL SPACE TIME FREE
SURFACE

HOEKSTRA Mixing length damping pressure implicit no
(CS) factor downstream

2nd-order
V upstream

YANG Baldwin-Lomax damping TVD(Roe) implicit no
et Al. factor (A form)

KODAMA Baldwin-Lomax damping centered 2nd-order implicit no
factor artif.dissipation (A form)

ZHU SGS damping centered 4th-order explicit no
et Al. factor artif.dissipation

HINO Baldwin-Lomax wall 2nd-order P explicit yes
function 3rd-order cony. F,=0.25

KINOSHITA none no slip 2nd-order P explicit no
et Al. 3rd-order cony.

KUBOTA none no slip 2nd-order P explicit cavitation
et Al. 3rd-order conv.
DOI SGS damping 3rd-order cony. Adams-Bashforth no

factor artif.dissipation (explicit)
TZABIRAS k-c wall ftn. Hybrid implicit no
LOUKAKIS

LARSSON k-e wall ftn. Finite-Analytic implicit no
et Al.

OH k-c wall ftn. Finite-Analytic implicit no
et Al.

MASUKO k-e wall ftn. Hybrid implicit no
OGIWARA

PIQUET k-E wall ftn. Finite-Analytic implicit no
VISONNEAU

STERN laminar wall ftn. Finite-Analytic implicit no
KIM k-e
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Trabie of the 14 papers related to Navier-Stokes solvers presented during INC-5 (Part 3).

AUTHORS START INLET FAR GRID NO. of CPU TIME TEST CASES
FIELD ,11 ITER.

IIOEI(STRA potential thin B.L. potential 45x49x29 24 .5-1h Cray2 HSVA tanker
P1, = 0 midship 10-3 resid ______

YANG 91x25x29 220 17' Afterbodies 1,2,5
et Al. Cray YMP Bodies at incidence

40"/iter. Flat plate,Wigley,
KODAMA far uniform 5000 Stellar Series 60

upstream GS1000 (Cb=0.6,0.7,0.8)

ZHU rest far uniform 170x0x50 2011 Wigley hull
et Al. upstream (255000 to Hitac

340000 pts) S820/80

HIINO reit far uniform 100x20x38 11000 2h/OO0stps Wigley htull
upstream ACOS 910 Series 60 (Cb=0.6)

KINOSHITA rest rest fest 140x60 ;JU00 70' Oscillating
et Al. VP-100 circular cylinder

KUBOTA uniform far uniform 101x31x3 Hitac NACA0015
et Al. _____upstream _____M-680H1 wing section

DOI "est periodic no Channel flow
_____ ____________LES

TZABIRAS rest thin B.L. potential 44x32x30 35 (20% 60hrs. SSPA ship liner
LOUKAKIS midship resi.red. pa Vax

/iter)
SSPA ship liner

LARSSON rest thin B.L. 60x21x15
et Al. midship

OH rest 1/7 + eq. uniform 54x32x25 190 1600" SSPA ship liner
et Al. midship VP-l0o

MASUKO rest far uniform 94x25x21 Series 60 (Cb=0.6)
OGIWARA upstream IHI-BO tanker

PIQuET rest thin B.L. uniform 80x40x3l i2hrs HSVA tanker
VISONNEAU midship Cray 2

ST1ERN rest jthin B.L. uniform 80000 CryXI' Propeller shaft
KIM +rot. (relative

case j_____ frame) ______
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Summary of the Group Discussion on Boundary Integral Method
for Radiation/Diffraction Problems

Chairman: 0. M. Faltinsen
Norwegian Institute of Technology

Trondheim, Norway
Co-chairman: M. Takaki

Hiroshima University
Hiroshima, Japan

More than 40 participants took part in this by the perturbation theory. Singularities oc-
group discussions and actively discussed about curred in the 2nd order theory at the inter-
the following topics. section between the free-surface and the body.

In order to overcome this problem, it is use-
1. Singularities due to. the body ful to integrate analytically the potential on

a few free-surface elements which are close to
Zhao showed the behaviour of the potential the body.

near the corner of a rectangular cylinder by
using a lower order panel method based on Higo showed that the line integral did not
Green's second identity. The method assumes effect significantly hydrodynamic forces on a
the velocity potential and its normal deriva- vertical circular cylinder. Ohkusu commented
tive are constant over each element. By com- that the line integral effects the wave field
paring with analytical solutions it was near the body much more than the forces on a
demonstrated that the velocity potential at body, therefore the effect of the line in-
the element closest to the corner will always tegral should be checked by the values of wave
be wrong. field.

2. Free-surface intersection, line integral Kashiwagi investigated the validity of a
linear solution for an oscillating and moving

Zhao showed the behaviour of the wave surface piercing body. The solution is based
elevation near the intersection between the on the classical free-surface condition. A
free-surface and the body surface in the case singular solution occurs at the intersection
of a plate suddenly starts to move with a con- betwetn the free-surface and the body surface.
stant velocity. The solution is based on The multiple expansion method is useful for
linear free-surface condition. The analytical overcoming that problem. It was found that
solution by Roberts shows the wave amplitude additional contribution to the rate of energy
is finite everywhere. However. the wave flux arise from the solution around an inter-
elevation near the intersection point between section point.
the free-surface and the body has infinite
number of oscillations. That means we cannot 3. Bldiajtqn conditior
numerically solve the problem by using a
finite number of elements and assuming the Takagi and Naito investigated the linear-
velocity potential to be constant over each and a nonlinear radiation condition due to 2-D
element. BEM (Boundary Elemental Method). They ex-

plained that the idea of the active wave ab-
Regarding the latter problem. Cointe. sorber could be used for the radiation condi-

Pawloski, and Takagi commented that the linear tion for BEM. Cointe pointed out that we
theory is inconsistent, we should treat it as should not use the word wave radiation condi-
a nonlinear problem. tion. It is better to call it wave absorption

condition.
Kyouzuka presented 2-D second order forces
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4. Calculation of velocity on the body and the from a practical point of view. However, as

Rk-terms the body is close to a free-surface, the ac-
curacy of results becomes worse. This means

Kinnas told about calculation of velocity the calculations for surface piercing bodies

near the body by using a lower order panel create problems.

method. There will always be numerical

problems in calculating the velocity at the Validations of numerical results about 3-D

body boundary. He recommended that we should panel method have still the following

use a higher order scheme. Zhao mentioned problems:

that a similar problem occurred in the cal-

culaticn of the ak-terms. a. How many panels do we have to use?
b. How should we treat the wave component

5. Verification procedures with a shorter wavelength?
c. Are there any singularities at the inter

The following items were addressed by the section between the free-surface and the

chairman. body surface?

a. Convergence by increasing panel numbers. Lee commented that using established rela-

This does not always occur, for instance near tions is better than checking the convergence

sharp corners, by increasing the number of panels. This

b. Importance of analytical results. means we should check the mass conservation

c. How to qualify errors. and the body boundary condition etc.

Ohkusu talked about a 3-D panel method with 6. Iterative solution of large eguation system

forward speed. He carried out numerical cal-

culations on a submerged spheroid to exclude Hermans told that there are a lot of

the problem of the line integral. A conver- references in the literature about iterative

gence by 3-D panel method becomes better by solvers. For different problems we should use

increasing number of panels. 1200 panels on a different iterative solvers. It is difficult

submerged spheroid are good enough. So we to know which one is the best for a given

have already reached to the confident result numerical problem.
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